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A B S T R A C T

It is well established that lncRNAs are aberrantly expressed in cancer where they have

been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal ad-

enomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-

sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up-

regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated

to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-

Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16

indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted

in reduced viability, increased apoptotic cell death and impaired cell migration. The

SNHG16 silencing particularly affected expression of genes involved in lipid metabolism.

A connection between SNHG16 and genes involved in lipid metabolism was also observed

in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO-CLIP) demon-

strated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its

length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA)

“sponging” miRNAs off their cognate targets. Most interestingly, half of the miRNA families

with high confidence targets on SNHG16 also target the 30UTR of Stearoyl-CoA Desaturase

(SCD). SCD is involved in lipid metabolism and is down-regulated upon SNHG16 silencing.

In conclusion, up-regulation of SNHG16 is a frequent event in CRC, likely caused by deregu-

lated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role

in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA

related mechanisms.

ª 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction out various biological functions such as transcriptional regu-
Colorectal cancer (CRC) is the third most common malignant

disease and the fourth most common cause of cancer death

worldwide (Haggar and Boushey, 2009). The molecular alter-

ations in CRC have been intensively studied in order to

discover diagnostic and prognostic markers (reviewed in

(Grady and Pritchard, 2014)). Among others, expression

profiling has been widely used to identify differentially

expressed genes with prognostic and diagnostic implica-

tions. However, at present none of these have been trans-

lated into clinical practice and consequently, there is still a

need for further molecular characterization and classifica-

tion of CRC.

It has recently become clear that most of the genome is

transcribed into RNA, although the classical protein-coding

mRNAs only account for approximately 2% of the genome

(Djebali et al., 2012). Hence non-coding RNAs (ncRNA)

including the classical house-keeping ncRNAs (i.e. ribosomal

RNA (rRNA), transfer RNAs (tRNA), small nuclear RNA (snRNA)

and small nucleolar RNAs (snoRNAs)), microRNAs (miRNAs)

and the more recently discovered long non-coding RNAs

(lncRNAs) make up a large fraction of the encoded transcripts.

Apart from the house-keeping ncRNAs, the vast majority of

ncRNAs are lncRNAs (>200 bases). Many lncRNAs share com-

mon characteristics with protein-coding transcripts i.e. they

are transcribed by RNA polymerase II, spliced using canonical

splice site motifs and frequently poly-adenylated at the 30-end
(Derrien et al., 2012; Prensner and Chinnaiyan, 2011). Func-

tional characterization of lncRNAs has shown that they carry
lation (cis/trans), titration of miRNAs (competing endogenous

RNA (ceRNA)) or proteins (molecular decoys) and bridging of

proteins or chromatin regions (scaffolds) (reviewed in

(Ulitsky and Bartel, 2013; Wang and Chang, 2011)). Through

the above different mechanisms of action, lncRNAs are

involved in the regulation of numerous biological processes,

including cell cycle, apoptosis, histone modifications, chro-

mosome imprinting and cell differentiation (Wang and

Chang, 2011). Accordingly, profiling of lncRNAs has revealed

that they are deregulated in various types of cancer, suggest-

ing their potential as cancer biomarkers or therapeutic targets

(Gibb et al., 2011). Few studies have dealt with the overall

expression of lncRNAs in CRC (Gibb et al., 2015; Hu et al.,

2014). Nevertheless several lncRNAs such as CRNDE, HOTAIR,

MALAT-1, PCAT1 and PTENP1, have been shown to be dysre-

gulated in CRC (Ge et al., 2013; Graham et al., 2011; Johnsson

et al., 2013; Kogo et al., 2011; Xu et al., 2011) (reviewed by

(Ragusa et al., 2015)). SNHG16 (also named non-coding RNA

expressed in aggressive neuroblastoma (ncRAN)) (Entrez

gene ID: 100507246) was originally identified as an oncogene

in neuroblastoma. Increased levels of SNHG16 expression

has been reported to associated with poor patient outcome

in neuroblastoma (Yu et al., 2009) and with invasiveness of

bladder cancer (Zhu et al., 2011). On the contrary, reduced

SNHG16 expression was recently demonstrated to be associ-

ated with poor prognosis in colorectal cancer (Qi et al., 2015).

In line with the analysis in clinical samples SNHG16 exhibited

oncogenic phenotypes in bladder and neuroblastoma cell

lines and tumor suppressor like phenotypes in CRC cell lines

http://dx.doi.org/10.1016/j.molonc.2016.06.003
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in vitro (Qi et al., 2015; Yu et al., 2009; Zhu et al., 2011). Finally,

silencing of SNHG16 improved chemotherapy sensitivity of

bladder cells lines suggesting that targeting of SNHG16 may

improve chemoresponse in bladder cancer patients (Zhu

et al., 2011).

The main objectives of the current study were to investi-

gate the expression of SHNG16 in a large cohort of colorectal

adenomas and CRCs (n > 300), to elucidate the mechanism

behind SNHG16 deregulation, and to investigate the func-

tional role of SNHG16 deregulation. We found SNHG16 up-

regulated in the vast majority of CRCs, similarly to what has

been reported for neuroblastoma and bladder cancer but con-

trary to the previous finding in CRC. Our in vitro analyses indi-

cate that SNHG16 is positively regulated by the Wnt pathway

and plays an oncogenic role in CRC among others through

de-regulation of genes involved in lipid metabolism. Notably,

Argonaute CrossLinking and ImmunoPrecipitation (AGO-

CLIP) data suggest that SNHG16 may act as a ceRNA targeting

up to 26 miRNA families.
2. Materials and methods

Details are provided in Supplemental Materials and Methods.

2.1. Ethics statement

The use of the human tissue samples for research purpose

was approved by the Central Denmark Region Committees

on Biomedical Research Ethics (DK; 1999/4678). Informedwrit-

ten consent was given by all participants.

2.2. Clinical samples and cell lines

A total of 281 fresh frozenmicrosatellite stable (MSS) ormicro-

satellite instable (MSI), primary stage IeIV (T2-4, N0-3, M0/1)

CRCs, 33 adenomas and 292 adjacent normal colon mucosa

samples (of which 290 were matched to an included tumor

i.e. collected from the same resected specimen) selected

from the colorectal cancer biobank at the Department of Mo-

lecular Medicine, Aarhus University Hospital, Skejby,

Denmark were used for largeRNA sequencing (largeRNAseq)

(largeRNAseq cohort) (patients and sample characteristics

are summarized in Supplemental Table 1). Among this cohort

a subpopulation of 102 MSI and MSS primary stage IeIV (T2-4,

N0-3, M0/1), 5 adenomas and 151 normal colon mucosa sam-

ples were used for smallRNA sequencing (smallRNAseq)

(smallRNAseq cohort) (patients and sample characteristics in

Supplemental Table 2). Finally, a cohort consisting of 44 MSS

and MSI primary stage IeIV(T2-4, N0-3, M0/1) CRCs, 39 ade-

nomas and 20 normal colon mucosa samples were used for

validation (patients and sample characteristics in

Supplemental Table 3). Patients who had received preopera-

tive chemotherapy and/or radiation of rectal cancers were

excluded. Postoperatively the tumors were histologically clas-

sified and staged according to the pTNM system. Cases with

hereditary colorectal cancer syndromes were not included in

the study.

Cell lines, growth conditions and cell line authentication

can be found in Supplemental Material and Methods.
2.3. Isolation of RNA from clinical samples and cell lines

RNA from clinical sampleswas isolated as follows. Large RNAs

(>200 bases) were isolated from fresh frozen tissue sample us-

ing RNeasy Mini Kit (Qiagen, Hilden, Germany), according to

the manufacturer’s instructions. The small RNAs (<200 bases)

were recovered from the flow-through fraction using RNeasy

Micro Kit together with the RNeasy MinElute spin columns

(Qiagen). Total RNA from cell lines harvested with Qiazol (Qia-

gen) was purified using miRNeasy mini kit (Qiagen) according

to the manufacturer’s instructions.

2.4. mRNA/ncRNA profiling in clinical samples using
RNAseq

The mRNA/ncRNA expression profiling was performed using

RNA sequencing (RNAseq). In brief, 500 ng of fragmented large

RNA (fragment size 200 bases) was used for largeRNAseq

(>200 bases). Subsequently, the TruSeq RNA sample prepara-

tion Kit v2 (Illumina, San Diego, CA, USA) was used to generate

paired-end and indexed libraries. The small RNAseq libraries

were generated using small RNAs (<200 bases) and the TruSeq

small RNA sample preparation Kit (Illumina). The RNAseq li-

braries were loaded on a TruSeq PE v3 flowcells (Illumina)

and amplified with TrueSeq PE Cluster Kit v3 on a cBot (auto-

mated cluster generation system) (Illumina). Finally indexed

paired-end sequencing was carried out on a HiSeq 2000 using

TruSeq SBS Kit v3 chemistry (Illumina). Fastq files were gener-

ated using Illuminas CASAVA software (v1.7) stripped from

adapters using AdapterRemoval (v1.2) (Lindgreen, 2012) and

overlapping read pairs were joined. The reads were processed

using the Tuxedo Suite, consisting of Tophat (v2.0.10), Bowtie

(v2.1.0.0) and Cufflinks (v2.0.2) using default settings without

passing gene annotations to Tophat (Trapnell et al., 2012).

RNA statistics were generated using SAMtools (v0.1.19.0) and

Picard (v1.96). Cufflinks (v2.0.2) was used to assemble tran-

scripts and call their relative expression valued based on GEN-

CODE (v15) annotations stripped for pseudogenes. Expression

was quantified as fragments per kilobase of exon per million

mapped sequence reads (FPKM). Isoform specific expression

analysis using Tophat was based on the Ensemble human

transcriptome annotation (v15). A gene or isoformwas consid-

ered expressed in a given sample if log2(FPKMþ1) was above 2.

2.5. mRNA/ncRNA profiling of clinical samples using
microarrays

The NimbleGen HD2-12 platform (135K 60mer probes) (Roche

NimbleGen, Madison, WI, USA) was used to design custom

made microarrays containing probes against 29,291 non-

coding transcripts and 6856 protein-coding transcripts.

Further details about the microarray design, the sample prep-

aration, array normalization and expression analysis have

been described previously (Nielsen et al., 2014).

2.6. mRNA/ncRNA profiling of HCT116 cells transfected
with SNHG16 siRNAs using RNAseq

HCT116 cells (5 � 105) were reverse transfected with 20 nM of

either SNHG16 siRNA_1, siRNA_2 or the negative control

http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
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siRNA (Scrambled (Scr)) in triplicates for 48 h. The sequences

of the SNHG16 siRNAs and Scr (Gene Pharma, Shanghai,

China) are listed in the Supplemental Table 4 and their posi-

tion in SNHG16 is shown in Supplemental Figure 1A. Subse-

quently, the cells were harvested and RNA (>200 bases) was

isolated from cell pellets using the RNeasy Mini Kit (Qiagen).

The RNA concentration was determined using RiboGreen

quantification (Quant-iT� RiboGreen� RNA Assay Kit (Invitro-

gen)). Prior to RNA library construction ribosomal RNA was

removed from total-RNA preparations using the Ribo-Zero

Magnetic Gold Kit (Human/Mouse/Rat, Epicentre, Madison,

WI, USA) in combination with the Ribo-Zero Magnetic Meta-

Bacteria Kit (Epicentre). Subsequently, paired-end and

indexed RNASeq libraries were synthesized using the Script-

Seq v2 kit (Epicentre) and enriched using the FailSafe PCR

Enzyme, according to the manufactures recommendations.

The RNASeq libraries were loaded into TruSeq PE v3 flowcells

(Illumina) on an Illumina cBot followed by indexed paired-end

sequencing on an Illumina HiSeq 2000 using TruSeq SBS Kit v3

chemistry.
2.7. mRNA/ncRNA and snoRNA RT-qPCR

The TaqMan Assay ID’s (Applied Biosystems, Life Technolo-

gies, Foster City, CA, USA) and the custom made primers/

probes used for RT-qPCR are listed in Supplemental Table 5.
2.8. c-Myc knockdown andWnt pathway model systems

HCT116 cells (5 � 105) were reverse transfected with 50 nM of

c-Myc siRNAs and Scr (Supplemental Table 4) for 48 h. Inacti-

vation of the Wnt signaling pathway in DLD1 cells by knock-

down of b-catenin or over-expression of dominant negative

TCF1 (dnTCF1) or dominant negative TCF4 (dnTCF4) in DLD1

and subsequent isolation of RNAwere carried out as described

previously (Thorsen et al., 2011). The DLD1 dnTCF1 and

dnTCF4 cell line models were a kind gift from Dr Hans Clevers

The Hubrect Laboratory, Utrecht, The Netherlands. The over-

expression of c-Myc in human immortalized fibroblasts (BJ/

hTERT) and the subsequent RNA expression profiling using

custom-made microarrays have been described previously

(Gingold et al., 2014).
2.9. Polysome analysis

HCT116 cells were grown to 70% confluence followed by incu-

bation with cycloheximide (100 mg/ml) at 37 �C for 10 min to

inhibit protein synthesis. Subsequently, the cells were lysed

and loaded onto a sucrose gradient (10e56%) and centrifuged

at 40,000 rpm for 2.5 h to separate actively translated RNA

(polysome bound) and untranslated RNA (free RNA). Finally,

the sucrose gradient was fractionated and total RNA was iso-

lated from each fraction. The RNA was used to determine the

expression of SNHG16 and c-Myc using RT-qPCR

(Supplemental Table 5). Upon RNA isolation the 28s/18s ratios

(agarose gel analysis) were used to determine the fractions

containing free RNA (no ribosomes and) (28s/18s s 2) and

fractionswith polysome bound RNA (28s/18s¼ 2). As a control,

an EDTA (EthyleneDiamineTetraacetic Acid) release
experiment was carried out in which the lysis buffer was sup-

plemented with 25 mM EDTA (pH 8.0).
2.10. Cell fractionation

The Protein And RNA Isolation System (PARIS) (Ambion, Life

Technologies, Foster City, CA, USA) was used to partition

HCT116 and SW480 cells into cytoplasmic and nuclear frac-

tions prior to isolation of RNA according to themanufacturer’s

instructions. Briefly, 5 � 106 HCT116 and SW480 cells were

harvested and re-suspended in cell fractionation buffer fol-

lowed by low speed centrifugation (500 � g) at 4 �C for 5 min.

Finally, RNA was isolated from the supernatant (cytoplasmic

fraction) and the pellet (whole nuclei) as described by the

manufacturer. In parallel RNA was isolated from 5 � 106

unfractionated cells (total cell).
2.11. Cell viability/death, apoptosis and real-time
analysis

Cell viability/proliferation was measured using 3-[4,5-

dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT)

assay (Roche Applied Science, Penzberg, Germany). Cellular

death (Lactate Dehydrogenase (LDH) activity) was measured

using the Cytotoxicity Detection KitPLUS(LDH) (Roche Applied

Science). The Caspase 3/7 activity assay was used to measure

apoptotic death and performedmainly as described previously

(Ostenfeld et al., 2005). The xCELLigence system (Roche

Applied Science) was used for real-timemonitoring of cell pro-

liferation andmigration (Atienza et al., 2006). The sequences of

the SNHG16 siRNAs and the negative control siRNA (Scr) (Gen-

ePharma) are listed in the Supplemental Table 4.
2.12. Ingenuity Pathway Analysis

Ingenuity Pathway Analysis (IPA) software (IPA, QIAGEN, Red-

wood city, CA, USA) was used to gain insight into the overall

biological changes introduced upon ectopic knockdown of

SNHG16 using siRNAs. Filtered RNAseq data were uploaded

to IPA. Using the Ingenuity Pathways Knowledge Base (IPKB)

each gene was linked to specific functions, pathways and dis-

eases and an enrichment analysis was performed examining

whether the data were enriched for genes associated with a

particular function.
2.13. HuR immunoprecipitation (HuR-IP)

HCT116 cells were hypertonically lysed and centrifuged. A

fraction of the supernatant was collected as input control

(RNA-Input). The remaining part was subjected to immuno-

precipitation by incubation with monoclonal Hu antigen R

(HuR) antibody (Sc5261, Santa Cruz)-bound Protein G-coupled

Magnetic Dynabeads slurry (Life technologies) following the

manufacturer’s recommendation. Anti-FLAG immunoprecipi-

tation was done in parallel as a negative control (antibody

F1804, Sigma). Total RNA was isolated from the RNA-Input

fractions and the immunoprecipitated fractions (RNA-IP)

(HuR-IP or FLAG-IP) using QIAZol (Qiagen).

http://dx.doi.org/10.1016/j.molonc.2016.06.003
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2.14. Motif enrichment analysis

A motif enrichment analysis tool, Regmex, capable of using

regular expression, was used to analyze whether the differen-

tially expressed genes in the siRNA analysis contained motifs

(words) with perfect match(es) to the seed regions of siRNA_1

and siRNA_2 (Nielsen et al., 2016). In brief, Regmex evaluates

enrichment of motifs in ranked lists of sequences by calcu-

lating a per sequence p-value for finding the observed number

ofmotifs or more in a sequence, using a Markov chain embed-

ding approach. Sequences were ranked by fold change (FC) of

expression, and occurrences of motifs (siRNA_1 and siRNA_2

seed regions) were correlated with gene ranks. To identify

additional common motifs in the genes affected by SNHG16

silencing, the above analysis was repeated for all 16384

possible 7-mers. The 7-mers occurring in the TOP 100 of corre-

lating 7-mers in both knockdown experiments were selected

(n¼ 40) (Supplemental Table 6). Out of these, five 7-mers over-

lapped with 6 bases (CCTCAGC, CTCAGCC, TCAGCCT,

CAGCCTG and AGCCTGG) and two 7-mers (AGGCTGG and

CAGGCTG) overlapped with 6 bases and had one mismatch

(mismatch underlined), thus defining a 7-mer consensus

sequence (CAG(C/G)CTG). All the 7-mers associated with the

motif correlate with expression in a manner that down-

regulated genes are enriched for the presence of the motif in

their 30UTR sequences. Furthermore, the 7-mer consensus

sequence was identified at two positions in the reverse com-

plement sequence of SNHG16.

2.15. AGO-CLIP target analysis

AGO-CLIP coupled to high throughput sequencing (Chi et al.,

2009; Hafner et al., 2010) (AGO-CLIP-seq) defines global miRNA

binding activity in the cell. PhotoActivatable-Ribonucleoside-

enhanced CrossLinking and ImmunoPrecipitation of Argo-

naute (AGO-PAR-CLIP) is a subset of AGO-CLIP methods that

allows improved target identification through induction of

T / C transitions in bound RNA reads. CrossLinking and

ImmunoPrecipitation (CLIP) data was mined in a manner

similar to that described previously (Hamilton et al., 2013)

with minor modifications. To determine putative miRNAs

bound to SNHG16, high confidence miRNA clusters (atlas oc-

currences �3, conserved miRNA families) (Hamilton et al.,

2013) on SNHG16 were mined from the atlas. Cognate targets

of these miRNAs were subsequently mined to predict the po-

tential SNHG16 ceRNA target spectrum. CLIP binding data was

mapped using integrative genomics viewer (Robinson et al.,

2011) and Circos (Krzywinski et al., 2009).

2.16. Statistical analysis

The significance of mRNA/ncRNA expression changes were

analyzedusingtheMannWhitneyUtest intheMultiExperiment

Viewer (MeV) arrayanalyzer software (v4.9.0) (Saeedetal., 2006).

Student’s unpaired t-test (two-tailed) was applied to compare

siRNA induced changes with respective controls in the MTT

assay, LDH assay, Caspase 3/7 assay and RT-qPCR analysis.

The Student’s paired t-test was used for paired analysis of the

expression of SNHG16, SnoRD1A and snoRD1C. Whereas the

Student’s unpaired t-test was used to compare expression of
SNHG16 innormalmucosa to adenomasandadenocarcinomas.

The significance of the enrichment analyses was evaluated us-

ing Fisher’s exact test. Spearman’s correlationwasused tomea-

surethestrengthanddirectionofassociationsbetweenSNHG16,

c-Myc and other selected transcription factors in clinical sam-

ples. A p-value<0.05 was considered statistically significant.
3. Results

3.1. SNHG16 up-regulation is an early event in
colorectal cancer

RNA profiling of colorectal adenomas/adenocarcinomas and

matched adjacent normal colon mucosa, using RNAseq (char-

acteristics largeRNAseq cohort in Supplemental Table 1)

demonstrated that SNHG16 was significantly up-regulated in

70% (208/290) of the adenomas and adenocarcinomas pairs

(FClog2 > 1, p < 0.001) (Table 1). The mean expression of

SNHG16 in adenomas and all stages of CRC (n ¼ 314) was also

significantly higher than the mean expression in adjacent

normal mucosa (n ¼ 292) ((FC)log2 >1, p < 0.001) (Figure 1A).

SNHG16 was among the TOP25 up-regulated lncRNAs

(Supplemental File 1 e which shows the TOP25 up- and down

regulated lncRNAs). Furthermore, SNHG16 was up-regulated

at comparable levels in MSS and MSI CRCs (Figure 1B). Accord-

ing to the Ensemble human transcriptome annotation (v15)

the SNHG16 locus potentially encodes 8 different transcript iso-

forms (Supplemental Figure 1B). To investigate which isoforms

are expressed in CRC we applied TopHat to the largeRNAseq

data. The analysis revealed that only a single transcript

(ENST00000493536)wasexpressed inmore than10%of thesam-

ples, indicating that this is the primary SNHG16 transcript in

CRC (Supplemental Figure 1B). Intronically the SNHG16 locus

encode three snoRNAs (snoRD1A, snoRD1B and snoRD1C)

(Supplemental Figure 1A) and their expression levels were esti-

mated by small RNAseq (characteristics smallRNAseq cohort in

Supplemental Table 2). In contrast to SNHG16 which was up-

regulated in 70% of the tumors and unchanged in the rest, the

expression of the snoRNAs was much more variable. Paired

analysis of matched tumor and normal mucosa samples

showed the snoRNAs to be up-regulated in some tumors

(ranging from 14 to 55%) and down regulated (ranging from 7

to 28%) and unchanged in others (ranging from 38 to 57%)

(Table 1). A recent study has shown that snoRNAsmay be regu-

lated independently of their host gene via alternative splicing

and nonsense-mediated decay (NMD), which may explain the

differential expression of SNHG16 and the snoRNAs (Lykke-

Andersen et al., 2014). Given that the snoRNAswere only differ-

entially expressed in a small subset of the CRC samples, all sub-

sequent analyses were focused on SNHG16. The SNHG16 up-

regulation was validated in an independent cohort (20 normal

mucosa, 39 adenomas and 44 adenocarcinomas) profiled using

a custom-made expression-array platform (Supplemental

Table 3 andSupplemental Figure 2A) and ina subset of 6normal

colon mucosa and 8 CRCs from the validation cohort using RT-

qPCR (Supplemental Figure2B).All together theSNHG16expres-

sion analysis demonstrates that SNHG16 up-regulation is a

frequent and early occurring event in CRC.

http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003


Table 1 e Expression analysis of SNHG16 and snoRNAs in paired samples.a

Gene name Gene id Pairs with
FC(log2) >1.0 (%)

Pairs with
FC(log2) < �1.0 (%)

Pairs with �1.0
< FC(log2) < 1.0 (%)

Total
number of pairs

FC(log2)

all samples
Corrected
p-valueb

SNHG16 ENSG00000163597.9 208 (72) 0 (0) 82 (28) 290 1.24 <0.001

snoRD1A ENST00000364968.1 40 (55) 5 (7) 28 (38) 73 1.13 <0.001

snoRD1B ENSG00000199961.1 14 (14) 28 (28) 57 (58) 99 �0.34 0.006

snoRD1C ENSG00000200185.1 25 (30) 10 (12) 47 (57) 82 0.57 <0.001

a SNHG16 was measured in the largeRNAseq cohort, and the snoRNAs in the smallRNAseq cohort. Only pairs with expression of the respective

genes in both the normal and the paired tumor sample were included in the analysis.

b Student’s paired t-test. Bonferroni corrected p-values.
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3.2. SNHG16 is regulated by the Wnt pathway and c-
Myc in CRC

The up-regulation of SNHG16 has previously been linked to

the amplification of the SNHG16 (17q25) and the MYCN

(2p24) locus in neuroblastoma (Yu et al., 2009). In house copy

number analyses on a subset of our CRC samples showed no

correlation between 17q25 gain and up-regulation of

SNHG16 (data not shown). Additionally, if amplification of

the SNHG16 locus was a driving mechanism one would also

expect neighboring genes to be frequently up-regulated. How-

ever, the flanking genes were all significantly down-regulated

(Supplemental Figure 3). Taken together this indicates that

amplifications are not driving the SNHG16 up-regulation

observed in CRC. Furthermore, the expression of N-Myc,

encoded by the MYCN locus, was generally very low and did

not correlate with expression of SNHG16 (data not shown).

Hence, we speculated that other transcription factors must

be responsible for the up-regulation of SNHG16 in CRC. A

recent study identified global binding patterns of transcription

factors (TFs) in the human CRC cell line LoVo using high-

throughput chromatin immunoprecipitation (ChIP) combined

with DNA sequencing (ChIP-seq) (Yan et al., 2013). Interest-

ingly, a cluster of 55 TFs binding close to the SNHG16 tran-

scription start site (TSS) (Chr17:72,064,795e72,066,401, Hg18)

was identified. Moreover, 18 of these TFs were significantly
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Figure 1 e SNHG16 expression in CRC (largeRNAseq cohort). Expression

compared to normal colorectal mucosa (A). Equal expression in microsatel
dysregulated in the CRC largeRNAseq cohort including several

targets of the Wnt pathway (Table 2). Most strikingly, SNHG16

was positively correlated to the expression of the Wnt targets

c-Myc (v-myc avian myelocytomatosis viral oncogene), ASCL2

(Achaete-Scute Complex-Like 2) and ETS2 (V-Ets Erythroblas-

tosis Virus E26 Oncogene) (Table 2). The strongest correlation

was found to c-Myc (Spearman’s r ¼ 0.4) (Figure 2A). Like N-

Myc, c-Myc belongs to the MYC family of transcription factors

(Zimmerman and Alt, 1990). Using the ENCODE open chro-

matin TFBS by ChIP-seq data, we also found strong and com-

mon binding of c-Myc to the SNHG16 promoter in cell lines

from various tissues (Supplemental Figure 4). Interestingly,

SNHG16was also negatively correlated to RXRA (Retinoic X Re-

ceptor, Alpha), a negative regulator of theWnt pathway and to

NR3C1 (Nuclear Receptor Subfamily 3, Group C, Member 1),

which is known to be silenced by hypermethylation in CRC

(Table 2) (Dillard and Lane, 2007; Li et al., 2015; Lind et al.,

2006). To investigate if SNHG16 expression is regulated by

the Wnt pathway we abrogated the pathway in two CRC

model systems and correlated this to the expression of

SNHG16. In one system the Wnt-pathway is abrogated by

knockdown of b-catenin in the other by over-expression of

dominant negative forms of TCF1 (dnTCF1) or TCF4 (dnTCF4)

(Thorsen et al., 2011). Indeed, siRNA knockdown of b-catenin

in the colon cancer cell line DLD1 resulted in reduced expres-

sion of SNHG16 as well as c-Myc (Figure 2B). Likewise, SNHG16
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was up-regulated in adenomas and all stages of adenocarcinomas when

lite stable (MSS) and unstable (MSI) colorectal cancers (B).

http://dx.doi.org/10.1016/j.molonc.2016.06.003
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Table 2eDifferential expression of SNHG16 promotor binding TFs and their correlation to the expression of SNHG16 in CRC clinical samples.

Gene name Gene id Wnt targeta FC(log2) rs SNHG16 N þ A þ C rs SNHG16 A þ C rs SNHG16 N

MYC ENSG00000136997.10 þ 2.1 0.8 0.4 0.4

ASCL2 ENSG00000183734.4 þ 3.3 0.7 0.2 0.4

ETS2 ENSG00000157557.7 þ 1.2 0.6 0.2 0.2

MYBL2 ENSG00000101057.11 � 1.6 0.6 0.03 0.4

E2F7 ENSG00000165891.11 � 0.8 0.6 0.1 0.3

CEBPB ENSG00000172216.4 � 1.4 0.6 0.02 0.2

RARG ENSG00000172819.12 þ 0.9 0.5 0.05 0.4

GMEB2 ENSG00000101216.6 � 0.5 0.5 0.03 0.3

ETV7 ENSG00000010030.9 � 1.1 0.5 0.07 0.1

RFX5 ENSG00000143390.13 � 0.6 0.5 0.1 0.2

SMC1A ENSG00000072501.12 � 0.7 0.5 0.1 0.2

TBX3 ENSG00000135111.10 þ 1.0 0.5 0.1 0.002

TP73 ENSG00000078900.9 � 0.6 0.5 �0.05 0.2

HOXA10 ENSG00000253293.3 þ 0.5 0.1 L0.2 0.3

E2F2 ENSG00000007968.6 � �0.6 �0.4 �0.02 0.1

FOXD2 ENSG00000186564.5 � �0.8 �0.4 �0.01 0.1

RXRAb ENSG00000186350.8 � L0.6 L0.5 L0.2 L0.4

NR3C1 ENSG00000113580.10 � L1.1 L0.6 L0.2 0.01

18/55 TFs binding to SNHG16 promotor on chromosome 17 position 72064795-72066401 (Hg18) were significantly dysregulated in CRC clinical

samples (FC(log2) >0.5 or < �0.5 with a Bonferroni corrected p-value <0.001 (Student’s unpaired t-test)).

Genes that are significantly correlated to the expression of SNHG16 in adenomas/adenocarcinomas (A þ C) are in bold (Spearman’s r (rs) � 0.2

or � �0.2 and p < 0.05).

FC: fold change.

N: normal colon mucosa (n ¼ 292).

A þ C: adenoma þ adenocarcinoma (n ¼ 314).

a Known Wnt target (direct/indirect).

b Negative regulator of Wnt.
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was down-regulated in DLD1 cells upon induction of dnTCF1

or dnTCF4 (Figure 2C). To specifically analyze the role of c-

Myc in the regulation of SNHG16 expression, c-Myc was

knocked-down in HCT116 cells using two different siRNAs.

Both siRNAs resulted in 85% knockdown of c-Myc and a simul-

taneous 60% knockdown of SNHG16 (Figure 2D). Finally, up-

regulation of SNHG16 was demonstrated in immortalized hu-

man fibroblasts (BJ/hTERT) upon c-Myc over-expression

(Supplemental Figure 5) mimicking the c-Myc up-regulation

seen in colorectal cells after Wnt-activation. All together the

above results strongly indicate that the transcriptional activ-

ity of the SNHG16 locus in CRC is controlled by Wnt pathway

regulated transcription factors, including c-Myc.

3.3. SNHG16 is primarily expressed in the cytoplasm of
CRC cell lines

To further characterize SNHG16, we analyzed its expression in

nine different CRC cell lines. As shown in Figure 3A SNHG16

was present in all the analyzed cell lines at varying levels. By

profiling RNA isolated from cytoplasmic and nuclear fractions

from HCT116 and SW480 cells, selected as representatives of

cell lines with high to medium expression, we found that

SNHG16 primarily localizes to the cytoplasm (Figure 3B), indi-

cating that it is likely to exert its functional role at the post-

transcriptional level (Ulitsky and Bartel, 2013). As expected the

snoRNAs hosted by SNHG16were expressed almost exclusively

in the nucleus (Supplemental Figure 6A). Expression

of HNRNPA1 (non-coding isoform) and GAPDH confirmed the

successful isolation of pure nuclear and cytoplasmic fractions

(Supplemental Figure 6B).
3.4. SNHG16 is associated with light polysomes

Cytoplasmic lncRNAs that contain small open reading frames

(ORFs) are often associated with ribosomes (Bazzini et al.,

2014; Carlevaro-Fita et al., 2016; Chew et al., 2013). However,

only in rare cases have these lncRNAs been shown to give

rise to functional peptides (Pauli et al., 2014). The SNHG16 lo-

cus encodes transcripts with small ORFs (<60 aa) (Yu et al.,

2009). The results of previous bioinformatic and comparative

genomic analyses and in vitro [35S]-methionine labeling in

cell lines from neuroblastoma have all indicated that

SNHG16 is a non-coding RNA (Yu et al., 2009). In order to

analyze the ribosomal association of the SNHG16 transcripts

in colorectal cells, polysome analysis was carried out. This

showed that SNHG16 is associated with the light polysome/

monosome fractions (Figure 3C andG) compared to the known

protein-coding gene c-Mycwhich is present in the heavy poly-

some containing fractions (Figure 3E and G). To ascertain

whether SNHG16 was bound to polysomes an EDTA release

experiment was carried out. Upon EDTA treatment SNHG16

redistributed toward less-dense fractions, similar to the con-

trol c-Myc (Figure 3D and F), indicating that while SNHG16 is

not heavily bound by polysomes, it is nevertheless recruited

to the ribosomes in CRC cells.

3.5. Knockdown of SNHG16 reduces cell viability,
induces apoptotic death and decreases migration

To elucidate the functional role of SNHG16 in CRC, in vitro

siRNA mediated loss-of function analyses were carried out.

Knockdown efficiencies of w90% were obtained with two

http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
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Figure 2 e SNHG16 expression is regulated by the Wnt signaling pathway. Correlation of c-Myc and SNHG16 expression in CRC (largeRNAseq

cohort) (n [ 314). Spearman’s r [ 0.4, p < 0.05 (A). SNHG16 expression in DLD1 cells transfected with 20 or 40 nm Scr or b-catenin siRNA,

quantified by RT-qPCR. As a positive control of Wnt-inactivation the well-known Wnt target c-Myc was also quantified (B). The expression of

dnTCF1 or dnTCF4 was induced by doxycycline (dox) in stably transfected DLD1 cells. The SNHG16 expression was measured at different time

points using RT-qPCR. c-Myc was included as a positive control (C). Expression analysis of SNHG16 and c-Myc in HCT116 cells transfected

with 50 nM of c-Myc siRNAs or Scr (RT-qPCR) (D). Data are presented as ±sd. of three biological replicates, *p < 0.05 (BeD).
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independent siRNAs (Figure 4A and Supplemental Figure 7A).

We hypothesized that the snoRNAs hosted by SNHG16 are

most likely spliced out prior to siRNA-mediated degradation

of the host transcript. In agreement with this hypothesis

snoRNA expression levels were not affected by SNHG16

knockdown (Supplemental Figure 7B). Accordingly, any

phenotypic change observed following SNHG16 knockdown

are most likely driven by the knockdown of the host tran-

script. Initial phenotypic analyses using anMTT assay demon-

strated that loss of SNHG16 resulted in reduced viability of

HCT116 (Figure 4B). This finding was corroborated by real-
time growth monitoring of the HCT116 cells, using xCELLi-

gence (Figure 4C and D). To elucidate whether the growth sup-

pression was related to cellular death we performed LDH

(cellular death) and Caspase 3/7 activity (apoptosis) assays.

Indeed knockdown of SNHG16 increased cellular death and

apoptosis in HCT116 cells (Figure 4E and F). Furthermore, the

apoptotic death could be inhibited with Z-DEVD-fmk (Caspase

3/7 inhibitor) (Figure 4F), demonstrating that the induced

apoptosis is dependent on Caspase 3/7 activity. These results

indicate that induction of apoptosis is part of the explanation

for the reduced growth rate observed after SNHG16

http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
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Figure 3 e Expression analysis of SNHG16 in CRC cell lines and in polysome fractions. Expression of SNHG16 in nine CRC cell lines (RT-

qPCR). The results are presented as ±sd. of three biological replicates (A). Expression of SNHG16 in fractionated HCT116 and SW480 cells. The

cells were fractionated into cytoplasmic and nuclear fractions followed by RT-qPCR analyses. The data are presented as the relative expression in

the nuclear/cytoplasmic fractions normalized to the expression in unfractionated cells (total cells). The experiment was repeated twice and the

result of one representative experiment ±sd. is shown (B). The polysome profile of SNHG16 (C) and c-Myc (positive control of polysome

association) (D) was determined by isolation of RNA from each fraction collected from a 10e56% sucrose gradient. An EDTA release experiment,

abrogating binding between RNAs and polysomes, was also performed (EeF). The relative expression of SNHG16 and c-Myc was determined by

RT-qPCR. The result from one representative experiment is shown (CeF) Polysome fractions were identified by running RNA isolated from each

fraction on an agarose gel to determine the 28S/18S rRNA ratios (G).
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knockdown, which is in line with previous analyses of neuro-

blastoma and bladder cancer. To further assess the functional

role of elevated SNHG16, a migration assay was carried out.

SNHG16 knockdown significantly inhibited HCT116 cell

migration as early as 25 h after siRNA transfection (Figure 4G

and H). Since SNHG16 silencing also affected proliferation

we cannot rule out that the reduced number of migrating cells

could also be due to increased apoptotic death. However, the

effect on proliferation/apoptosis was most pronounced at

later time-points (60e80 h and 48 h, respectively) (Figure 4C,

D and F). Accordingly, the increased migration at the early

time points (25e35 h) are most likely due to an actual
decreased migration ability of siRNA treated cells. Overall,

the results of the migration assays add further evidence to

an oncogenic role of SNHG16 in CRC (Figure 4G and H). In

conclusion, knockdown of SNHG16 induces apoptotic death

and has an inhibitory effect on cell migration.

3.6. Knockdown of SNHG16 affects genes involved in
lipid metabolism

In order to shed light on the molecular mechanism underly-

ing the knockdown phenotypes we performed genome wide

transcriptional profiling of HCT116 cells treated individually

http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
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Figure 4 e Knockdown of SNHG16 suppresses growth, increases cellular death and decreases migration in vitro. The relative expression of

SNHG16 RNA in HCT116 cells transfected with SNHG16 siRNA_1 or siRNA_2. The siRNAs were used in two concentrations (20 and 50 nM)

and the cells were harvested after 48 h. Shown are the mean of 3 biological replicates ± sd. *p < 0.05 when compared to Scr (A). The effect of

SNHG16 knockdown on the viability HCT116 cells (MTT assay). Data are presented as the mean of at least 3 independent experiments ±sd., each

with three biological replicates and normalized to Scr. *p < 0.05 (B). Real-time monitoring of cell proliferation following SNHG16 knockdown

using an xCELLigence instrument. The cell index from time 0e100 h is shown (C). Following the real-time monitoring in C, the slope (rate of

changes in cell index) was calculated from 40 to 65 h (i.e. when changes in proliferation were apparent) and presented graphically (D). The effect of

SNHG16 knockdown on cellular death (LDH release assay) in HCT116 cells. The cellular death is expressed as percentage of released LDH out of

total cellular LDH. At least two independent experiments were carried out and performed in triplicates. The result of one representative

experiment ±sd. is shown. *p < 0.05 (E). Induction of apoptosis (Caspase 3/7 activity) in the lysate of siRNA transfected cells was examined by

fluorometric kinetic analysis and expressed relative to the Caspase 3/7 activity in “Scr” transfected cells. The Caspase inhibitor Z-DEVD-fmk

(DEVD) was added to the cells six hours post-transfection. Data are presented as ±sd. of at least 2 independent experiments each with three

biological replicates. *p < 0.05 (F). Real-time monitoring of cell migration of HCT116 cells transfected with siRNA was performed using an

xCELLigence instrument. The cell index from time 20e50 h is shown (G). Following the real-time monitoring in G, the slope (rate of changes in

cell index) was calculated from 25 to 45 h (i.e. when changes in migration were apparent) and presented graphically (H).
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with SNHG16 siRNA_1 or siRNA_2. It is well-known that siR-

NAs may exhibit off target effects (Birmingham et al., 2006;

Jackson et al., 2006; Jackson and Linsley, 2010). Therefore, af-

ter having identified the transcripts deregulated by the siRNA

treatments these were searched for 30UTR motifs with perfect

match(es) to the seed region of siRNA_1 and siRNAS_2, indi-

cating that they may be deregulated due to a direct interac-

tion with the siRNAs rather than through SNHG16. These

transcripts were excluded from subsequent analyses and

left a total of 124 transcripts that were significantly dysregu-

lated by both siRNA_1 and siRNA_2 (p < 0.05, FC(log2) <�0.5 or

>0.5). To gain insight into the over-all biological changes

introduced by SNHG16 knockdown the 124 transcripts (99

down- and 25 up-regulated) were analyzed using Ingenuity

Pathway analysis (IPA). IPA demonstrated that SNHG16

knockdown predominantly affected the expression of genes

associated with lipid metabolism, gastrointestinal diseases

and cancer (Figure 5A). To investigate whether SNHG16

potentially also regulate these transcripts in clinical samples,

we set out to explore their expression pattern in the large-

RNAseq cohort. Twenty-four of 124 genes were significantly

dysregulated between normal and tumor samples (p < 0.05,

FC(log2) <�0.5 or >0.5) (Figure 5B and Supplemental Table 7).

Accordingly, we defined them as clinically relevant SNHG16

regulated candidate genes. Most interestingly, 12 of the 24

genes, have functions associated with lipid metabolism

and/or have previously been associated with gastrointestinal

cancer (Supplemental Table 7). To further analyze the rela-

tion between the expression of SNHG16 and the genes related

to lipid metabolism and gastrointestinal cancer, the clinical

samples were ranked according to their SNHG16 FCs (290 ad-

enomas/adenocarcinomas with paired normal colon mu-

cosa). Subsequently, the median FCs of the lipid and cancer

genes were calculated for the upper 25% quartile and the

lower 25% quartile of the ranked samples (73 normal colon

mucosa vs. 73 adenomas/adenocarcinomas). Strikingly, the

FCs of 9/12 genes related to lipid metabolism and/or gastroin-

testinal cancer were significantly higher in the pairs

belonging to the 25% upper quartile of SNHG16 FCs compared

to the FCs of the pairs in the lower 25% quartile (Figure 5C).

Using a “lipid gene list” containing 685 genes derived from

GO term GO:006629 (lipid metabolic process) and Reactome:-

Metabolism_of_lipids_and_ lipoproteins we found that genes

involved in lipid metabolism were generally enriched

among the significantly dysregulated genes in the clinical

samples (Enrichment score 2.87 (95% CI 2.3e3.46 and

p ¼ 2.2 � 10�16)) indicating that changes in lipid metabolism

are a common trait of CRC. In summary, it is likely that

SNHG16 is involved in the regulation of lipid metabolism in

CRC.

3.7. Genes affected by SNHG16 knockdown contain
common sequence motifs

Like other classes of non-coding RNA, cytoplasmic lncRNAs

have been shown to bind to specific mRNA targets through

sequence complementarity (Carrieri et al., 2012; Kretz et al.,

2013; Yoon et al., 2012). In some cases specific motifs have

been shown to be enriched in mRNAs targeted by a specific

lncRNA (Kretz et al., 2013). To further investigate the RNA
interacting potential of SNHG16, we asked if common

sequence motifs, with complementarity to SNHG16 were

found in the mRNAs affected by SNHG16 silencing. Initially

we searched for 7-mers correlating with the differential

expression observed after SNHG16 knockdown. Five 7-mers

were identified which overlapped with 6 bases and twomotifs

had only a single mismatch to the 7-mers (p < 8.4e-07), thus

defining a 7-mer consensus sequence (CAG(C/G)CTG)

(Supplemental Table 6 and Supplemental Figure 8A; details

in Materials and Methods). The 7-mer consensus sequence

was present twice in the antisense sequence of SNHG16

(Supplemental Figure 8B). Finally, we analyzed whether the

12 clinically relevant genes involved in lipid metabolism and

gastrointestinal cancer contained the above consensus

sequence. Indeed, 9/12 genes contained 1e8 copies of the

consensus sequence in their mRNA sequences. Interestingly,

the PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9)

mRNA involved in lipid metabolism contained 8 copies of

the motif. Observing 8 copies of the motif, as inPCSK9 is un-

likely a coincidental finding (p¼ 1.3e10�6). Thus, identification

of a 7-mer consensus motif enriched in mRNAs affected by

SNHG16 silencing suggests that SNHG16 may exert its func-

tion through pairing with specific mRNAs.

3.8. SNHG16 binds AGO and HuR and may function as a
ceRNA

Apart from the consensus sequence described above, U-rich

motifs (URMs) were enriched in the genes that were dysregu-

lated upon SNHG16 silencing (Supplemental Table 6). URMs

are known from previous work to be enriched in transcripts

that bind and interact with miRNAs (Jacobsen et al., 2010).

AGO-CLIP coupled to high throughput sequencing is a

genomic technology that provides experimental evidence of

global miRNA binding in the cell (Chi et al., 2009; Hafner

et al., 2010). In order to determine if SNHG16 is actively bound

by AGO we queried an updated atlas of AGO-CLIP miRNA tar-

gets identified inmultiple cell types (Hamilton et al., 2013). We

found that SNHG16 contains 27 high confidence AGO/miRNA

target sites along its length, corresponding to binding of 26

unique miRNA families (Figure 6A and Supplemental File 2).

This data strongly suggests that the Argonaute protein heavily

binds SNHG16 across multiple cell types. To determine if any

specific mRNAs are targeted by multiple SNHG16 bound miR-

NAs (“co-targeting”) we again used the AGO-CLIP atlas to

define the target spectrum of the miRNAs in question.

SNHG16 boundmiRNAs co-target the 30UTR ofmultiple impor-

tant mRNA transcripts (Figure 6B, Supplemental File 2). Most

interestingly, SCD involved in lipid synthesis and identified

as a clinically interesting SNHG16 target in the knockdown

analysis, had the strongest co-targeting spectrum of 3305

30UTRs in our CLIP analysis (Figure 6C and D), 13 out of 26

unique miRNA families with high confidence targets on

SNHG16 also target the SCD 30UTR. We next were curious if

other mRNAs down-regulated upon SNHG16 silencing could

also be linked to SNHG16 through the AGO-CLIP data. Indeed,

35/99 of these mRNAs were also bound by SNHG16 binding

miRNAs and of these, 18 were up-regulated in the clinical

samples (p < 0.05). Alternatively, association of SNHG16 with

AGO could also indicate that SNHG16 is being targeted for

http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
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miRNA mediated degradation. However, out of 49 miRNAs

(expressed in >80% of the CRCs in the small RNAseq cohort)

belonging to the 26 miRNA families none where significantly

negatively correlated to the expression of SNHG16, either indi-

vidually or when using the geometric mean of the expression

of all 49 miRNAs. This indicates that SNHG16 is generally not

regulated by these miRNAs in CRC.

A recent study has shown that the RNA binding protein

HuR (encoded by ELAVL1) is required in the cytoplasm to facil-

itate the miRNA recruitment of linc-MD1 (Legnini et al., 2014).

RNA immunoprecipitation (RNA-IP) analysis performed by the

ENCODE project consortium demonstrated that HuR binds the

SNHG16 transcript in K562 and GM12878 cells (Supplemental

Figure 9A) (ENCODE_Project_Consortium, 2012). The RNA-

Protein Interaction Prediction program (RPIseq) also predicted

high probability of HuR/SNHG16 interaction (Supplemental

Figure 9B) (Muppirala et al., 2011). Previous analyses have

shown that HuR is predominantly expressed in the nucleus

in normal colon mucosa whereas in colon cancer HuR is up-

regulated and exhibits cytoplasmic localization (reviewed in
(Ignatenko and Gerner, 2008)). The above findings and the

cytoplasmic localization of both SNHG16 and HuR encouraged

us to investigate the potential interaction/binding between

SNHG16 and HuR in colon cancer cells. HuR-IP followed by

RT-qPCR analysis of the RNA isolated from HuR-IP fractions

clearly demonstrated that SNHG16 is enriched in immunopre-

ciptates from HCT116 cells in a HuR dependent manner

(Figure 6E) indicating that the SNHG16 transcript also binds

HuR in CRC cells.

In conclusion, SNHG16 binds AGO and HuR and may act as

a ceRNA “sponging” miRNAs off their cognate targets, thus

relieving miRNA mediated target repression.
4. Discussion

It is well established that lncRNAs are important for normal

cellular development and that abnormal expression of

lncRNAs play a key role in tumorigenesis. SNHG16 has been

reported to be up-regulated and act as a potential oncogene

http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
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in neuroblastoma and bladder cancer (Yu et al., 2009; Zhu

et al., 2011). Accordingly, these previous findings are in line

with the results of the present paper. However, in contrast

to our results, a recent study has reported that SNHG16 is

down-regulated in CRC (Qi et al., 2015). We speculated

whether the use of different methodologies for SNHG16 quan-

tification, detection of different isoforms, differences in RNA

quality, differences in cancer cell percentage, and differences

in the use of preoperative chemotherapy could possibly

explain the discrepancy? To address this we investigated the

two primer sets used by Qi et al. using the in silico PCR tool

at the UCSC genome browser and found that these detect

the same SNHG16 isoform detected in the present study using

RNAseq, RT-qPCR, and custom-made microarrays

(Supplemental Figure 1C). Accordingly the used methodolo-

gies and detected isoform are unlikely explanations of the

discrepancy. The same goes for differences in prior therapy

as the patients in the present study did not receive therapy

prior to surgery nor did the patients in the Qi et al. paper.

Data on RNA quality and cancer cell percentage was not

included in the study by Qi et al. In the present study all

RNAs were of high quality, with median RIN scores above 8.9

(Table 1). The median cancer cell percentage of the samples

in the present study was 85% for the adenomas and 75% for

the colorectal cancers indicating only minor contamination

of non-tumorous cells. In summary, the discrepancy between

the two studies cannot be explained by differences inmethod-

ology/detection of different isoforms or preoperative therapy.

Differences in RNA quality and/or cancer cell percentage in

tissue samples may explain the differences but, these issues

cannot be addressed since such data are not provided by Qi

et al. Nevertheless, the results of the present study was based

on data obtained using three different methods and two inde-

pendent cohorts. Additionally, up-regulation of SNHG16 was

found in 7/9 additional cancer types fromeight different tissue

using data from the TCGA research network (http://cancerge-

nome.nih.gov/) (Supplemental Figure 10). All together our data

and the data from TCGA clearly indicate an oncogenic role of

SNHG16 in colorectal cancer as well as in other cancers. In line

with the up-regulation of SNHG16 in multiple cancers, func-

tional analyses carried out in the present study and in bladder

and neuroblastoma cell lines also suggest oncogenic proper-

ties of SNHG16 (Yu et al., 2009; Zhu et al., 2011). On the con-

trary, previous phenotypic analysis in CRC suggested tumor

suppressor like functions of SNHG16 (Qi et al., 2015). The siR-

NAs used in the present study as well as the RNAi used by Qi

et al. were designed to target the same SNHG16 isoforms.

Hence silencing of different isoforms does not explain the dif-

ferences. Alternatively, variations in the used HCT116 cells

may explain the divergent results in the phenotype assays.

The HCT116 cell lines used in the present paper was authenti-

cated according to the recommendation of ATCC using short

tandem repeat (STR) profiling. The obtained STR profiles all

matched those published by ATCC (data not shown). Such

data are not provided for the SNHG16 cell lines in the study

by Qi et al.

Although it is well established that lncRNAs play important

roles in a large variety of cellular processes the function and

mechanisms of action of most lncRNAs are unknown. Knowl-

edge about the cellular localization of lncRNAs is an important
factor in the understanding of their function andmeans of ac-

tion. We show that SNHG16 is enriched in the cytoplasm of

CRC cell lines and associated with ribosomes. Recent studies

have shown that cytoplasmic enriched lncRNAs are indeed

associated with ribosomes, although they are not actively

translated and suggest that the main function of lncRNAs

may be related to translational regulation (Carlevaro-Fita

et al., 2016; Guttman et al., 2013; Ingolia et al., 2011; Slavoff

et al., 2013; van Heesch et al., 2014). Alternatively, ribosome

associated lncRNA may be regulated by the non-sense medi-

ated RNA degradation pathway as previously shown for the

lncRNA GAS5 (Chew et al., 2013; Tani et al., 2013). In support

of this notion, some SNHG16 isoforms contain an in frame

stop codon, >50 bases upstream of a splice-junction, which

is known to stimulate NMD (Schweingruber et al., 2013). Pub-

licly available sequencing data globally assessing start codon

usage and susceptibility to NMD also suggest that some

SNHG16 isoforms can undergo NMD (Lee et al., 2012; Lykke-

Andersen et al., 2014).

Pathway analysis of the RNA profiles of HCT116 cells af-

ter silencing of SNHG16 showed that SNHG16 knockdown

predominantly affected transcripts associated with lipid

metabolism and gastrointestinal cancer, a finding which

we corroborated by showing that many of these genes

were also significantly dysregulated in clinical CRC tumors.

Aberrant de novo lipid biosynthesis has frequently been

observed in cancerous tissue (reviewed in (Baenke et al.,

2013)). First of all, enhanced lipid synthesis is required for

the metabolic reprogramming of cancer cells. However,

there is compelling evidence that lipids also play a more

active role in cell transformation and cancer development.

Moreover, activation of hepatic b-catenin has been found

to increase the expression of genes involved in lipid meta-

bolism, indicating that the Wnt pathway may also play a

role in aberrant lipid synthesis in CRC (Liu et al., 2011).

The inhibitory effect on pathways related to lipid meta-

bolism/cancer as a result of SNHG16 knockdown is also in

line with the observed phenotypic changes. As examples,

knockdown of SCD, ACLY (ATP citrate lyase) and Nek2

(NIMA-related kinase 2) has previously been shown to

inhibit growth and induce apoptotic death in CRC cells

(Mason et al., 2012; Suzuki et al., 2010; Zaidi et al., 2012).

It is well documented that lncRNAs may act as ceRNAs by

sponging miRNAs off their cognate targets, and thus

relieving miRNA mediated target repression (Salmena et al.,

2011; Tay et al., 2014). Given that the majority of the mRNAs

affected by SNHG16 silencing were down-regulated and that

SNHG16 contain high confidence AGO/miRNA target sites the

results of the present paper suggest that SNHG16 may func-

tion as a ceRNA. Previous studies have primarily described

the selective sponging of single miRNAs by specific lncRNA.

However, it is well known that multiple miRNAs may bind

and suppress the same mRNA 30UTR (Tsang et al., 2010) sug-

gesting that to obtain an effect at the expression level of

target mRNAs several miRNAs must be repressed at the

same time. Most interestingly our results indicate that a

broad spectrum of lncRNA miRNA targets may converge on

a few heavily co-targeted genes suggesting that lncRNAs

may also function bymodulating the activity of a broad range

of miRNAs.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
http://dx.doi.org/10.1016/j.molonc.2016.06.003
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5. Conclusions

Wehave shown that SNHG16 is regulated by theWnt pathway

and up-regulated as an early event in CRC. In vitro functional

analysis demonstrated that SNHG16 is present in the cyto-

plasm and associated with polysomes. Furthermore, knock-

down of SNHG16 induced apoptotic death and increased

cellular migration and showed that reduced expression of

SNHG16 among others affects genes involved in lipid meta-

bolism. Finally, AGO-CLIP analysis and HuR-IP led to the hy-

pothesis that SNHG16 may act as ceRNA for miRNAs in CRC.

Generally, our data suggest that lncRNAs may target multiple

miRNAs rather than selectively sponging single miRNAs.
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