
M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 1 1 6 9e1 1 8 2
ava i l ab le a t www.sc ienced i rec t . com

ScienceDirect

www.elsevier .com/locate /molonc
RNA sequencing of pancreatic adenocarcinoma tumors yields

novel expression patterns associated with long-term survival

and reveals a role for ANGPTL4
Marie K. Kirbya,1, Ryne C. Ramakera,b,1, Jason Gertza,2, Nicholas
S. Davisa,3, Bobbi E. Johnstona, Patsy G. Oliverb, Katherine C. Sextonb,
Edward W. Greenoc, John D. Christeinb, Martin J. Heslinb, James A. Poseyb,
William E. Grizzleb, Selwyn M. Vickersb, Donald J. Buchsbaumb, Sara
J. Coopera, Richard M. Myersa,*
aHudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
bUniversity of Alabama at Birmingham, Birmingham, AL, USA
cUniversity of Minnesota, Minneapolis, MN, USA
A R T I C L E I N F O

Article history:

Received 9 February 2016

Received in revised form

25 April 2016

Accepted 17 May 2016

Available online 26 May 2016

Keywords:

Pancreatic adenocarcinoma

ANGPTL4

Gemcitabine

RNA-seq
* Corresponding author. HudsonAlpha Institu
þ1 256 327 0978.

E-mail address: rmyers@hudsonalpha.org
1 These authors contributed equally to thi
2 Present address: University of Utah Scho
3 Present address: Duke University, Durha

http://dx.doi.org/10.1016/j.molonc.2016.05.00
1574-7891/ª 2016 Federation of European Bi
A B S T R A C T

Background: Pancreatic adenocarcinoma patients have low survival rates due to late-stage

diagnosis and high rates of cancer recurrence even after surgical resection. It is impor-

tant to understand the molecular characteristics associated with survival differences in

pancreatic adenocarcinoma tumors that may inform patient care.
Results: RNA sequencing was performed for 51 patient tumor tissues extracted from pa-

tients undergoing surgical resection, and expression was associated with overall survival

time from diagnosis. Our analysis uncovered 323 transcripts whose expression correlates

with survival time in our pancreatic patient cohort. This genomic signature was validated

in an independent RNA-seq dataset of 68 additional patients from the International Cancer

Genome Consortium. We demonstrate that this transcriptional profile is largely indepen-

dent of markers of cellular division and present a 19-transcript predictive model built from

a subset of the 323 transcripts that can distinguish patients with differing survival times

across both the training and validation patient cohorts. We present evidence that a subset

of the survival-associated transcripts is associated with resistance to gemcitabine treat-

ment in vitro, and reveal that reduced expression of one of the survival-associated tran-

scripts, Angiopoietin-like 4, impairs growth of a gemcitabine-resistant pancreatic cancer cell

line.
Conclusions: Gene expression patterns in pancreatic adenocarcinoma tumors can distin-

guish patients with differing survival outcomes after undergoing surgical resection, and

the survival difference could be associated with the intrinsic gemcitabine sensitivity of
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primary patient tumors. Thus, these transcriptional differences may impact patient care by

distinguishing patients who would benefit from a non-gemcitabine based therapy.

ª 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction 2. Material and methods
Pancreatic adenocarcinoma cancer survival statistics are dis-

heartening, with only 7% of patients surviving to 5 years

post-diagnosis, and the majority of patients succumbing to

this disease within one year from diagnosis (Siegel et al.,

2015). The high mortality rate associated with pancreatic can-

cer is due to late-stage diagnosis and limited efficacy of the

current chemotherapeutic arsenal. Due to the asymptomatic

nature of pancreatic tumors, 53% of pancreatic cancer pa-

tients are not diagnosed until the tumor has metastasized. If

the tumor is detected prior to metastasis, surgical resection

can be combined with chemotherapy and radiation therapy,

increasing the 5 year survival rate to w26%. However, only

w10e15% of patients are diagnosed early enough for surgical

resection to be feasible, and w80% of these patients relapse

within 2 years of surgery because the chemotherapy does

not eradicate all tumor cells (Heinemann and Boeck, 2008;

Stathis and Moore, 2010). The CONKO-001 trial recently re-

ported a median survival time of 22.8 months for patients

that undergo curative resection and are treated with adjuvant

gemcitabine (Oettle et al., 2013). This indicates only marginal

improvements in survival time have been achieved in the

three decades since the GISTG trial, which reported a median

survival time of 21 months, highlighting the need for signifi-

cant progress to improve the outcomes of these early-stage

patients given the considerable risks and financial burdens

imposed by surgery (Kalser and Ellenberg, 1985).

We have conducted RNA-seq analysis on a cohort of 51

pancreatic adenocarcinoma primary tumor tissues with the

goal of understanding survival differences within early-stage

pancreatic cancer patients with localized disease. Our cohort

includes a significant fraction of long-term survivors (>3

years), which provide the opportunity to understand how

these patients differ from short-term survivors. Previous

studies investigating gene expression and pancreatic survival

have made valuable findings (Bailey et al., 2016; Collisson

et al., 2011; Donahue et al., 2012; Newhook et al., 2014;

Stratford et al., 2010; Wu et al., 2011). However, there is still

a need to identify distinguishing molecular phenotypes in

pancreatic tumors that will aid in directing patient care. We

present novel transcript expression differences in primary tu-

mors from early-stage pancreatic patients with vastly

different survival times, and we demonstrate that these

expression differences have prognostic value in multiple pa-

tient cohorts. We link a subset of these molecular alterations

to intrinsic transcriptome differences that drive the response

to gemcitabine treatment in vitro. Furthermore, we provide ev-

idence that reduction of Angiopoietin-like 4 (ANGPTL4) expres-

sion, a gene expressed higher in short-term survivors,

impairs chemoresistant pancreatic cancer cell growth.
2.1. Patient tissue

Pancreatic adenocarcinoma tissues used for this study were

collected at theUniversity ofAlabamaat Birminghambetween

November 2003 and June 2011 from patients undergoing cura-

tivesurgical resection to removepancreatic tumor tissueunder

an IRB-approved protocol (Table 1). Patients were treatment-

na€ıve prior to tumor resection, and themajority of the patients

were treated with gemcitabine/nucleoside analog therapy

post-resection (Supplemental Table 1). Pancreatic tissue was

flash-frozen in liquid nitrogen and stored at �80 �C.

2.2. Macrodissection

Frozen tissues from pancreatic cancers were macrodissected

to enrich the specimens in cancer. For each case, the original

diagnostic slides were reviewed by the pathologist (WEG) to

determine the morphology of the pancreatic cancer. The

frozen tissue was embedded in optimal cutting temperature

compound (OCT) and a frozen section was cut that was orien-

tated by ink dots to the frozen tissue in the OCT block. Using

the orientated frozen section as a guide, areas of uninvolved

pancreas, lymphocytic infiltration, and other non-malignant

tissues were removed from the OCT block by carefully sepa-

rating unwanted tissues using a single edge razor blade. The

proportion of tumor and the percent tumor nuclei were esti-

mated in the macrodissected specimens. Of note, about 30%

of cases could not be macrodissected successfully, usually

due to an inadequate amount of cancer in the frozen tissue or

because intermixed non-malignant tissue could not be sepa-

rated adequately from the cancer cells. These were not

included in the cases evaluated.

2.3. Source and culture of pancreatic cancer cell lines

AsPC-1, Capan-1, Capan-2, CFPac-1, HPAF, and PANC-1 were

obtained from ATCC. L3.6pl was obtained from Isaiah J. Fidler

at The University of TexasMDAnderson Cancer Center (Bruns

et al., 1999). Panc 2.03 and Panc 6.03 were obtained from Eliz-

abeth M. Jaffee at Johns Hopkins University (Jaffee et al., 1998).

Suit-2, S2-013, and S2-VP10 were obtained from Michael A.

Hollingsworth at The University of Nebraska Medical Center

(Akisawa et al., 1999; Iwamura et al., 1997). S2-LM7-AA and

S2-LM7-YB were derived from liver metastases produced

from Suit-2 (LR McNally and DJ Buchsbaum, unpublished).

All cell lines were expanded upon receipt to prepare frozen

cell stocks that were tested to confirm lack of mycoplasma

contamination and cultured in vitro for no longer than 3

months after thawing.
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Table 1 e Clinical information for 51 patients used in this study and 68 patients in the validation cohort.

Cohort Training cohort Validation cohort

Full Short survivors Long survivors Full Short survivors Long survivors

Total samples 51 14 13 68 16 11

T stage

1 3 0 2 0 0 0

2 12 3 4 4 0 3

3 31 10 5 60 14 7

4 5 1 2 1 0 0

TX 0 0 0 3 2 1

N stage

N0 14 3 5 19 5 6

N1 37 11 8 46 9 4

NX 0 0 0 3 2 1

M stage

M0 48 13 13 2 0 0

M1 1 0 0 3 2 0

MX 2 1 0 63 14 11

Median overall survival

days (Standard error)

572 (109.7) 216 (24.0) 1544 (230.2) 413.5 (45.2) 211.5 (23.6) 1054 (87.9)

Median age (Standard error) 66 (1.6) 71 (2.3) 64 (3.9) 68 (1.3) 70.5 (2.9) 64 (2.6)

Diabetes status

Yes 22 4 7 0 0 0

No 29 10 6 0 0 0

N/A 0 0 0 68 16 11

Sex

Male 32 9 8 33 7 5

Female 19 5 5 35 9 6

Race

Caucasian 44 10 12 0 0 0

African-American 6 3 1 0 0 0

N/A 1 1 0 68 16 11

M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 1 1 6 9e1 1 8 2 1171
2.4. Nucleic acid extraction from tissues and cell lines

To extract nucleic acid, tissues were homogenized in Qiagen

RLT buffer þ 1% BME using an MP FastPrep-24 and Lysing Ma-

trix D beads for three rounds of 45 s at 6.5 m/s (FastPrep ho-

mogenizer, Lysing Matrix D, MP Bio, Santa Ana, CA, USA).

RNA was extracted from 350 mL tissue lysate (corresponding

to 10mg of tissue) using Norgen Animal RNA extraction kit ac-

cording to manufacturer protocol (Norgen Animal Tissue RNA

Purification Kit, Norgen Biotek Corporation, Thorold, ON,

CAN).

A panel of 14 pancreatic cancer cell lines was screened for

gemcitabine sensitivity by exposure to serial dilutions of the

drug to calculate an IC50 value for each line. The lines were

classified as sensitive or resistant based on resulting IC50

values. Subsequently, treatment na€ıve cells were grown in

100 mm tissue culture dishes, scraped to dissociate cells

from the dish, pelleted, and frozen in liquid nitrogen. Upon

thawing, cells were resuspended in PBS, and total RNA was

extracted from w2,500,000 cells from each cell line using the

Norgen Animal RNA extraction kit according to manufacturer

protocol.
2.5. RNA-seq library construction

RNA sequencing libraries were constructed using Tn-RNA-

seq, a transposase-mediated construction method described

previously (Gertz et al., 2012). Four RNA-seq libraries were
pooled into each lane and sequenced using Illumina HiSeq

2000 instruments to generate paired-end 50 reads (Illumina,

San Diego, CA, USA). Read-pairs (average of w47 million

read-pairs per library across 51 RNA-seq libraries) were

aligned to Gencode (version 9.0) using TopHat (version 1.4.1),

and the relative abundance of each transcript was quantified

using Cufflinks (version 1.3.0) and BEDTools (Harrow et al.,

2006; Quinlan, 2002; Trapnell et al., 2010, 2009).
2.6. Differential expression analysis

The R package DESeq2 (version 1.8.1) was used to evaluate dif-

ferential expression in pancreatic tumor tissues using a cate-

gorical variable. The two classes were: 1) patients who

succumbed to the disease within 300 days from diagnosis

(short-survivors) and 2) patients who survived for at least

900 days from diagnosis (long-survivors). DESeq2 assumes a

negative binomial distribution to account for the over-

dispersion in counts in RNA-seq data (Love et al., 2014). Tran-

scripts with a DESeq2 FDR-adjusted p-value <5% were classi-

fied as significant. Transcripts expressed from X and Y-

chromosomes were removed prior to differential expression

analysis. Pathway analysis was conducted using the web-

based tool LRPath using all GO term annotations, adjusting

to transcript read count with RNA-Enrich, including direction-

ality and limiting maximum GO term size to 500 genes (Kim

et al., 2012). The Cytoscape Enrichment Map plug-in was

used for visualization (Isserlin et al., 2014). The Genesetfile
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(.gmt) from July 24, 2015 was downloaded from http://down-

load.baderlab.org/EM_Genesets/. Mapping parameters were:

p-value cutoff ¼ 0.005, FDR cutoff ¼ 0.1 and overlap

coefficient ¼ 0.5. Networks were exported as PDFs.

For the cell line analysis, DESeq2 version (1.8.1) was used to

evaluate differential expression in cell lines using a categori-

cal variable based on whether the cell line was sensitive

(IC50< 60 nM) or resistant (IC50> 300 nM) to gemcitabine treat-

ment after three days of treatment. Transcripts with a DESeq2

FDR-adjusted p-value<5%were classified as significant. Tran-

scripts expressed from X and Y-chromosomes were removed

prior to differential expression analysis.

2.7. Random forest modeling

Random forest predictive models were trained using differen-

tially expressed transcripts (FDR < 0.05) between short- and

long-survivors in the training cohort, clinical data (patient

age, diabetes, gender, race and tumor stage), and 1000

randomly sampled transcript sets equivalent in size to the

number of differentially expressed transcripts via the R based

“randomForest” package (version 4.6e12). Models were gener-

ated as described by Griffith et al. except 501 trees were used

to generate each model (Griffith et al., 2013). Model perfor-

mance was assessed by out of bag error (OOB) reported by

the “randomForest” function.

2.8. Hierarchical clustering

Hierarchical clustering was performed on variance-stabilized

RNA-seq data using the hclust command in R (R version 3.2.1).

2.9. LASSO model selection

A predictive survival model was generated from transcripts

differentially expressed (DESeq FDR <0.05) between short-

and long-survival patients in the training set using multivar-

iate linear regression with L1 penalized log partial likelihood

(LASSO) (Simon et al., 2011; Tibshirani, 1996) for feature selec-

tion. LASSO was performed with the R package “glmnet”

(version 1.9e8) and the penalty parameter, l, was selected

based on three-fold cross-validation within the training set

(Friedman et al., 2010). The resulting model was evaluated

on the ICGC Australian cohort of patients as a validation.

The thresholds for dichotomization (300 and 900 days) used

in the validation set were identical to the training set. ICGC

data was retrieved from release 18 on January 21st, 2015 at

https://dcc.icgc.org/repository (Zhang et al., 2011). Model per-

formance was evaluated based on the ability to classify test

set patients as short-survivors or long-survivors and an area

under the curve (AUC) valuewas generatedwith the R package

“ROCR” (version 1.0e7) (Sing et al., 2005). KaplaneMeier

curves, Cox proportional hazards models and Concordance-

indexes (C-Index) were generated with the R packages “sur-

vival” (version 2.38e1) and “survcomp” (version 1.16.0). C-In-

dex was assessed using the “concordance.index” function in

the “survcomp” package with default settings. C-Index is

one of the most widely used performance measures for sur-

vival models and represents a non-parametric ranking anal-

ysis interpreted as the proportion of all pairs of samples
whose predicted survival time is correctly ordered out of all

samples capable of being comparably ordered after censoring

(Harrell, 2001).

2.10. Tumor subtype classification

Tumors from the training and validation cohorts were classi-

fied into the subtypes previously described by Bailey et al.

(Bailey et al., 2016). Validation cohort classification was per-

formed by simply using the labels provided by Bailey et al. in

supplemental table 14. The training cohort was classified by

performing k-means clustering using the R “kmeans” function

with k ¼ 4 on the 613 subtype informative transcripts listed in

Bailey et al. supplemental table 14. Assigned clusters showed

nearly identical expression patterns to the validation cohort

and transcript sets highly expressed in each validation cohort

subtype were used to assign the proper label to each subtype

in the training cohort.

2.11. Meta-PCNA analysis

Meta-PCNA, a previously established index of transcripts posi-

tively correlated with the proliferation marker PCNA, was

used to determine if the survival transcript signature was pro-

liferation independent (Venet et al., 2011). The meta-PCNA

value was established for each patient by using the median

variance stabilized expression value for the 130 meta-PCNA

genes expressed in our patient cohort. ManneWhitney tests

were performed to demonstrate that meta-PCNA values

were not significantly different between short-surviving and

long-surviving patients (p-value > 0.05). Likelihood ratio tests

were performed with the R package “lmtest” (version 0.9e33)

(Zeileis and Hothron, 2002) to determine if our prognostic

model still significantly improved classification of patients

as short-surviving or long-surviving compared to a reduced

model containing only the meta-PCNA value in both the

training cohort of patients and the validation cohort.

2.12. WGCNA analysis

The gene co-expression network for ANGPTL4 was defined us-

ing the R package “WGCNA” (version 1.51) (Langfelder and

Horvath, 2008). Clustering was performed on the 5000

protein-coding transcripts with highest standard deviation

across the training cohort using the “blockwiseModules” func-

tion with a minimum module size of 30. Pathway analysis on

the genes present in co-expression module containing

ANGPTL4 was performed using DAVID (da Huang et al., 2009)

and the 5000 genes used in the WGCNA clustering analysis

were used as the background gene set.

2.13. ANGPTL4 knockdown

PANC-1 cells were transfected using the appropriate Lonza

(Cologne, Germany) Nucleofection kit (Kit R, Program X-005)

with either one of two siRNA directed towardsANGPTL4 (Ther-

moFisher, Massachusetts, USA) or a scrambled control siRNA.

Transfected cells were seeded in 96 well opaque tissue

culture-treated plates (Greiner-Bio One, North Carolina, USA)

at a density of 5000 cells/well, and incubated overnight to

http://download.baderlab.org/EM_Genesets/
http://download.baderlab.org/EM_Genesets/
https://dcc.icgc.org/repository
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allow for cell adherence. Twenty-four hours post-

nucleofection, cells were dosed with gemcitabine (Thermo-

Fisher, Massachusetts, USA) at concentrations ranging from

0 to 500 mM. Cytotoxicity levels were measured using the

CellTiter-Glo luminescent cell viability assay (Promega, Wis-

consin, USA) 24, 48, and 72-h post-gemcitabine treatment.

Knockdown efficiency ofANGPTL4wasmeasured via qPCR us-

ing an ANGPTL4 taqman probeset (ThermoFisher, Massachu-

setts, USA). CyQUANT proliferation assay (ThermoFisher,

Massachusetts, USA) was used as an orthogonal method for

measuring cell viability 48 and 72-h post-gemcitabine

treatment.

To generate stable ANGPTL4 knockdown cells, three

shRNAs targeting ANGPTL4were obtained from Sigma (Sigma,

Missouri, USA) and lentiviral vectors were generated for the

ANGPTL4 shRNAs and a GFP control shRNA as previously

described (Kutner et al., 2009). One million Panc-1 cells were

transduced with the lentiviral vectors and treated with puro-

mycin (2 mg/ml) to generate stable cell lines. Cytotoxicity mea-

surements and qPCRwere performed as described above, with

the exception that we plated 1000 cells/well for the cytotox-

icity assays. To measure ANGPTL4 protein expression levels,

we collected media from each of the cell lines, and performed

a human ANGPTL4 enzyme-linked immunosorbent assay

(ELISA) as per manufacturer instruction (ThermoFisher, Mas-

sachusetts, USA).

To investigate if ANGPTL4 expression associated with sur-

vival in TCGA (The Cancer Genome Atlas) data, Level 3 TCGA

RNA-seq and clinical data was downloaded from the TCGA

data portal (https://tcga-data.nci.nih.gov/tcga/) on November

13th, 2015. “Days_to_death” and/or “Days_to_last_follow_up”

columns in the clincal_patient_paad file were used to acquire

censored survival times from the patient cohort. KaplaneMe-

ier analysis was performed as described above to compare

survival differences between the top quartile of ANGPTL4 ex-

pressers to the bottom quartile.
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3. Results

3.1. Gene expression correlates with pancreatic patient
survival time

To investigate gene expression patterns with clinical utility in

pancreatic cancer, we performed RNA-seq on a cohort of 51

fresh-frozen pancreatic tumor tissues (Table 1). Specifically,

we were interested in exploring whether RNA transcript

expression patterns correlated with patient survival. We

employed a dichotomized approach, investigating transcrip-

tional differences occurring in the tumors of patients with

extreme survival differences, and included the top and bot-

tomw25% of our total patient cohort. We observed 323 differ-

entially expressed transcripts (FDR p-value < 0.05) between

the short-survivors (n ¼ 14) and the long-survivors (n ¼ 13).

Of these 323 transcripts, 176 have higher expression in the

short-survival patients, and 147 have a higher expression in

the long-survival patients (Figure 1A; Supplemental Table

2). Expression patterns in our cohort strongly overlap with

an independent cohort with 20 transcripts significant

(FDR < 0.05) in both cohorts (Fisher’s Exact p ¼ 2.87e-14).

Transcripts with higher expression in the long-survivors

were enriched for immune response cellular pathways and

calcium signaling pathways, whereas transcripts with higher

expression levels in the tumors of short-survivors were

enriched for cell cycle regulation, EGFR signaling, cell adhe-

sion, vesicle transport, peptidase regulation, apoptosis, pro-

tein glycosylation and keratinocyte development (Figure 1B,

Supplemental Table 3). We broadly assessed the prognostic

utility of these significant transcripts relative to randomly

generated sets of transcripts and clinical information

(including patient age, gender, race, tumor stage, nodal

involvement and diabetes status) using random forest

models and found that our significant transcripts far
Immune Response

Cell Cycle Regulation

Protein Glycosylation

Calcium Signaling

Keratinocyte
Development 

Vesicle Transport

Peptidase Regulation

Cell Adhesion

Apoptosis

EGFR 
Signaling

B

vivors and long-survivors. A) Heatmap of 323 transcripts significantly

ssion and yellow is high expression. B) Network diagram of enriched

pression in long-survivors.

https://tcga-data.nci.nih.gov/tcga/
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 1 1 6 9e1 1 8 21174
outperformed both random transcripts and clinical data

(Supplemental Fig. 1).
3.2. A 19-transcript signature successfully predicts
patient survival

To prioritize transcripts most predictive of patient survival,

we employed themultivariate linear regressionwith L1 penal-

ized log partial likelihood (LASSO) for feature selection

(Figure 2) (Simon et al., 2011; Tibshirani, 1996). A 19-

transcript model was identified that successfully discrimi-

nated short-survival from long-survival patients in the

training cohort, and this model differentiated the short- and

long-surviving patients in an independent cohort of pancre-

atic RNA-seq data from ICGC (Zhang et al., 2011) (Figure 3;

Supplemental Table 4). The 19-transcript model also demon-

strated success as a continuous Cox proportional hazards

model, generating a concordance index of 0.82 (p ¼ 1.46e-23)

in the training cohort and a concordance index of 0.60

(p ¼ 0.04) in the validation cohort (n ¼ 68). Furthermore,

KaplaneMeier curves demonstrate that patients in the top

and bottom tertiles of predicted survival have significantly

different survival times in both cohorts (Figure 4). Thus,

despite being optimized for distinguishing patients on the ex-

tremes of the prognosis spectrum, our model has significant

predictive power when applied to full patient cohorts as a

continuous model. We further investigated the performance

of our survival model in the context of each of the four sub-

types described by Bailey et al. (Bailey et al., 2016). Although

sample sizes are insufficient to make definitive interpreta-

tions in either cohort, it appears our model successfully dis-

tinguishes the squamous subtype previously associated with

poor prognosis from the other three subtypes in both the vali-

dation cohort and training cohort (Supplemental Fig. 2).
Training Patient Cohort (n=51) 

Short-Survivors
        (n=14)
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Dichotomization 
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< 300 Days > 900 Days 
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Full Validation Cohort 
Continuous Performance 

Evaluation  

Dichotomized Validation  
Cohort Performance Evaluation 

Short-Survivor (n=16) 
Long-Survivor (n=11) 

(n=68)
C

Long-Survivors 
        (n=13)

Figure 2 e Analysis workflow for prognostic model training and

validation. Patients in the training cohort were dichotomized into

long- (survived > 900 days, n [ 13) and short-survivor

(survived < 300 days, n [ 14) groups. A multivariate linear

regression model with LASSO for feature selection capable of

classifying patients as long- or short-survivors was developed on the

training cohort. Next the model was applied to an independent

validation cohort. We applied the model both to pre-dichotomized

long (n[ 11) and short (n[ 16) survivors as well as the whole cohort

as a continuous model.
The 19-transcript model includes genes with a variety of

functions, many of which have been implicated in cancer pre-

viously (Supplemental Table 4). Solute Carrier Family 16, mem-

ber A3 (SLC16A3) has a higher expression level in the short-

surviving patient tumors, and encodes a monocarboxylate

transporter involved in a broad range of cellular metabolic

pathways including energy metabolism of tumor cells and

drug transport (Halestrap, 2013). SCL16A3 has higher expres-

sion in breast cancer metastases in comparison to breast pri-

mary tumors, and is a component of a gene signature that has

been linked to poor outcome in multiple cancers, including

breast, lung, and glioblastoma (Hu et al., 2009). Regulator of

G-Protein Signaling 20 (RGS20) also has higher expression in

the short-survivor patient tumors. RGS20 inhibits signal trans-

duction of G-protein signaling, and RGS20 has higher expres-

sion in metastatic melanoma when compared to primary

melanoma (Riker et al., 2008). Trinucleotide Repeat Containing

6C (TRC6C ) has higher expression in long-surviving patient tu-

mors and functions to promote microRNA-mediated gene

silencing (Huntzinger et al., 2010; Jinek et al., 2010). Finally,

WAP Four-Disulfide Core Domain 1 (WFDC1), which has higher

expression in the long-surviving patient tumors, is a secreted

protease that is involved in inhibiting cell proliferation of tu-

mor cells (Madar et al., 2009).

3.3. Survival is not explained by cellular proliferation
differences

A recent study suggested that, in breast cancer, transcripts

can be associated with patient outcome simply due to the

high correlation of global gene expression patterns with pro-

liferation, and demonstrated that 90% of randomly selected

sets of 100 transcripts or more are statistically correlated

with patient outcome (Venet et al., 2011). This study points

to the underlying importance of cellular proliferation in over-

all patient outcome in breast cancer and leads to a larger ques-

tion of whether the effect of cellular proliferation rates on

gene expression predicts prognosis in other cancer types.

We used the established meta-PCNA index of 131 tran-

scripts (130 of whichwere expressed in our data set) presented

in the Venet et al. study (Venet et al., 2011) to address whether

the RNA expression pattern we present here is dependent on

cellular proliferation. The meta-PCNA index is composed of

the top 1% of transcripts most highly correlated with Prolifer-

ating Cell Nuclear Antigen (PCNA), in gene expression measure-

ments from 36 different human normal tissues (Ge et al.,

2005). In both the training and validation cohorts, the meta-

PCNA values were not significantly different between the

short-survival and long-survival patient populations (Man-

neWhitney p-value ¼ 0.4583 and p-value ¼ 0.1779, respec-

tively) (Supplemental Figure 3A).

To investigate the effects of proliferation on our datasets

further, we explored whether the meta-PCNA index affected

the power of our 19-transcript LASSOmodel for distinguishing

short-survival and long-survival patients. We performed a

likelihood ratio test using the meta-PCNA index as the null

model for both the training and validation cohorts, and

discovered that in both patient cohorts, the 19-transcript

model added predictive information over the meta-PCNA in-

dex alone (training p-value ¼ 4.443e-05; validation p-

http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
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value ¼ 8.124e-04). Furthermore, Principle Component Anal-

ysis (PCA) demonstrated that our 19-transcript model, both

prior to and after normalization to the meta-PCNA index,

was able to distinguish the short-survival and long-survival

patient populations (Supplemental Figure 3B). These data pro-

vide evidence to suggest that our gene signature is largely in-

dependent of established markers for cellular proliferation.

3.4. A subset of gemcitabine sensitivity genes is
differentially expressed between the short-survival and
long-survival patients

To explore the idea that resistance to adjuvant therapy may

play a role in the survival time and contribute to our gene

expression signature, we investigated whether any of our

323 significant transcripts overlapped with transcripts that

are intrinsically differentially expressed in pancreatic cancer

cell lines that are sensitive or resistant to gemcitabine

(Supplemental Table 5A). The majority of the short-survival

and long-survival patients for which we have complete treat-

ment information were treated with gemcitabine

(Supplemental Table 1). We performed RNA-seq and
compared gene expression patterns in seven gemcitabine-

sensitive pancreatic cancer cell lines and seven gemcitabine-

resistant pancreatic cancer cell lines, and we identified

w1300 differentially expressed transcripts. In vitro expression

differences strongly overlapped with patient data, as twenty-

two transcripts were significant in both analyses (Fishers-

exact p-value ¼ 2.587e-04; Supplemental Table 3B).

A subset of the overlapping transcripts has intriguing bio-

logical links to cancer (Figure 5). One of these overlapping

transcripts, UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyl-

transferase 5 (B3GNT5), is an enzyme responsible for transfer-

ring N-acetylglucosamine (GlcNAc) to glycolipid substrates

and is associated with breast cancer survival (Potapenko

et al., 2015). Cathepsin H (CTSH ) is a proteinase that has been

implicated in angiogenic switching, vascularization, and

growth of mouse models of pancreatic islet cell cancer

(Gocheva et al., 2010). Sterile alpha motif domain containing 9

(SAMD9) encodes for a protein that localizes to the cell mem-

brane and is thought to play a role in regulating cellular prolif-

eration and apoptosis (Tanaka et al., 2010). Periplakin (PPL) is a

component of desmosomes, and expression of PPL results in

cisplatin resistance in endometrial carcinoma cells (Suzuki

http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
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et al., 2010). Kruppel-Like Factor 6 (KLF6) is a transcription factor

with multiple splice variants, and expression of one of these

splice variants in HepG2 cell lines increases gemcitabine

sensitivity (Hanoun et al., 2015). Furthermore, specific splice-

isoforms of KLF6 have been previously associated with

pancreatic cancer prognosis and tumor grade (Hartel et al.,

2008; Stratford et al., 2010). Increased expression of Signal pep-

tide, CUB domain, EGF-like 1 (SCUBE1) in prostate cancer associ-

ated fibroblast cells reduced prostate tumor size in mouse

models (Orr et al., 2013). Given our findings that these tran-

scripts are associated with survival in pancreatic cancer and

gemcitabine sensitivity in pancreatic cancer cell lines, these

transcripts represent potential targets for sensitizing patients

to adjuvant gemcitabine treatment.

3.5. Knockdown of ANGPTL4 expression in a
gemcitabine-resistant pancreatic cancer cell line affects cell
proliferation

We were particularly interested in further investigating the

functional role of Angiopoietin-Like 4 (ANGPTL4) in pancreatic

cancer cells. ANGPTL4 had higher expression in pancreatic

cancer cell lines resistant to gemcitabine therapy and patients

with shorter survival, and these expression patterns were

confirmed via qPCR (Supplemental Figure 4A and B). Further-

more, we observed ANGPTL4 expression significantly associ-

ated with survival time in the validation and TCGA cohorts

of pancreatic adenocarcinoma RNA-seq datasets

(Supplemental Figure 4C). We again separated patients into

the four Bailey et al. pancreatic cancer subtypes, and observed

that ANGPTL4 is expressed highest in the squamous subtype

(Supplemental Figure 5A and B) and ANGPTL4 expression

levels are able to prognostically stratify patients within the

squamous subtype of both cohorts (Supplemental Figure 5C

and D) (Bailey et al., 2016). We used Weighted Gene Co-

Expression Network Analysis (WGCNA) to determine what

protein-expressed genes are being co-expressed with
ANGPTL4, and observed enrichment for genes involved in

ectoderm and epidermis differentiation (Supplemental Table

6).

PANC-1 cells are resistant to gemcitabine treatment

(IC50 > 300 nM after 3 days of treatment), so we were inter-

ested in knocking down ANGPTL4 expression in this cell line

to determine effects of knockdown on gemcitabine response.

We reduced ANGPTL4 expression in PANC-1 cells using siRNA

or shRNA knockdown, and we confirmed efficient knockdown

through qPCR analysis of ANGPTL4 expression and ANGPLT4

ELISA of cell culture media (Figure 6A, Supplemental

Figure 6A and B). We observed a striking reduction of PANC-

1 cell growth at all time points after ANGPTL4 knockdown

(Figure 6B, Supplemental Figure 5C). This growth effectwas in-

dependent of the effects of gemcitabine treatment as cells

treated with both a siRNA targeting ANGPTL4 and gemcitabine

doses ranging from 0 to 500 mM showed less proliferation than

cells treated with gemcitabine alone (Figure 6C).
4. Discussion

With a 7% overall 5-year survival rate, there is a clear and pre-

sent need for improvement of the clinical care of pancreatic

cancer patients, regardless of stage at diagnosis. While the

survival time for patients diagnosed with operable disease is

considerably longer than those diagnosedwith inoperable dis-

ease, it is still a relatively short time frame given themorbidity

associated with surgical resection. Among patients with

resectable disease, median survival has only improved from

21 months in 1985 to 22.8 months in 2014 (Oettle et al., 2013).

Recent studies in metastatic disease found combination ther-

apy with gemcitabine-based and non-gemcitabine containing

therapy are superior to single-agent gemcitabine toward

progression-free and overall survival (Conroy et al., 2011;

Von Hoff et al., 2011). As these treatment regimens are

increasingly explored in the earlier stages of disease, our

http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004


Figure 5 e Boxplots of transcripts significant between both short-survival and long-survival patients and gemcitabine-sensitive and -resistant cell

lines. Boxplots of DESeq2 variance-stabilized data in pancreatic cancer cell lines and patient tissues demonstrate that most of these overlapping

transcripts have a higher expression in the short-survival patients and the gemcitabine-resistant pancreatic cell lines. Purple represents short-

survivors/resistant cancer cell lines and red represents long-survivors/sensitive cancer cell lines.
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expression signature may aid in stratifying patients that may

benefit from a non-gemcitabine based therapy regimen.

While many factors contribute to a patient’s overall sur-

vival, we explored biological differences that are associated
with survival differences in pancreatic patients with similar

clinical characteristics. Our study identified a set of tran-

scripts differentially expressed in tumors of pancreatic cancer

patients that were diagnosed early enough for curative

http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
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surgery, but who had vastly differing survival times. Our con-

fidence in these biological differences is bolstered by the abil-

ity of these expression patterns to distinguish patients with

differing survival times in the validation cohort of pancreatic
tumor tissues, which, to our knowledge, is the largest pancre-

atic cancer RNA-seq dataset available at this time. We

confirmed in the validation cohort that neither the short-

survival or long-survival patients could be classified by muta-

tions in pancreatic cancer driver genes and other clinically

relevant genes such as KRAS, TP53, CDKN2A, SMAD4, and

USP9X (Biankin et al., 2012; Jones et al., 2008; P�erez-Mancera

et al., 2012; Waddell et al., 2015). Furthermore, the short-

survival and long-survival patients are not enriched for a

particular pancreatic cancer subtype, although interestingly,

our data suggest that the 19-transcript model can distinguish

the Squamous subtype, which has a significantly worse sur-

vival time than the ADEX, Immunogenic and Progenitor sub-

types (Bailey et al., 2016; Collisson et al., 2011).

The biology within these 323 transcripts suggests novel

therapeutic interventions, especially for those patients with

the very short survival times. We are especially intrigued

by the transcripts that we discovered with similar expression

comparisons in short- vs. long-survival patients and gemci-

tabine-resistant vs. gemcitabine-sensitive cell lines. It is

perhaps not surprising that a mechanism for a shorter sur-

vival time after surgery would be resistance to adjuvant

chemotherapy. A recent large retrospective study examining

the clinical characteristics of pancreatic adenocarcinoma pa-

tients surviving 10 years or more highlighted adjuvant

chemotherapy as the second most important predictor of

extreme survivorship behind lymph node positivity ratio

(Paniccia et al., 2015). The comparison of these two genomic

analyses has provided us with several genes, many not pre-

viously implicated in gemcitabine resistance, which might

provide insight into new pathways for therapeutic

intervention.

ANGPTL4 is a secreted protein that regulates lipid and

glucose metabolism; however, other complex cellular roles

are emerging for this protein, including roles in cancer pro-

gression and drug response (Tan et al., 2012).ANGPTL4 expres-

sion was recently associated with chemosensitivity to

cisplatin in ovarian cancer (McEvoy et al., 2015). However,

overexpression of ANGPTL4 is associated with lower disease-

free survival in basal breast tumors in young women, and

ANGPTL4 copy number gain within circulating tumor cells in

breast cancer patients is associated with higher tumor aggres-

siveness (Johnson et al., 2015; Kanwar et al., 2015). Intrigu-

ingly, treatment of orthotopic liver tumors in xenograft

models with an antibody to ANGPTL4 resulted in inhibition

of tumor growth and metastasis (Ng et al., 2014). These con-

flicting roles of ANGPTL4 may be driven by differing functions

of the N-terminus and C-terminus of ANGPTL4, which result

from post-translational cleavage of the protein. Our data sug-

gests that ANGPTL4 functions to promote cell proliferation

and is a member of a gene expression network involved in

epidermal differentiation and development. Similarly,

ANGPTL4 expression is highest in the tumors classified as

Squamous subtype and may hold future utility as a simple

marker for patients in this subtype with particularly poor

prognosis. Therefore, we believe ANGPTL4 represents a novel

putative therapeutic target for pancreatic cancer patients

and merits further investigation in patients or tumor model

systems that demonstrate resistance to gemcitabine.

http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
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5. Conclusions

Our investigation has identified gene transcripts that are

differentially expressed in pancreatic adenocarcinoma tumor

tissues from patients with similar clinical characteristics but

vastly differing survival times. We present a 19-transcript

signature that is capable of distinguishing patients with

differing survival times, and importantly, we validate the

prognostic value of this signature in an independent cohort

of patients. It is important to note that currently available

pancreatic cancer patient cohorts, including our own, are

limited in size and future studies will elucidate the value of

this expression signature across larger cohorts of pancreatic

adenocarcinoma patients. We discovered that a subset of

the survival-associated transcripts is also differentially

expressed in pancreatic cancer cell lines with differing sensi-

tivity to gemcitabine treatment. Through siRNA knockdown

experiments, we provide evidence that ANGPTL4, a transcript

with higher expression in short-term survivors and

gemcitabine-resistant pancreatic cancer cells, has a newly

discovered role in pancreatic cancer growth, and thus pro-

vides a novel therapeutic target for pancreatic cancer

treatment.
Author contributions

Conception and Design: MKK, RCR, JAP, WEG, SMV, DJB, SJC,

and RMM.

Acquisition of Data: MKK, RCR, JG, NSD, BEJ, PGO, KCS,

EWG, JDC, MJH, JAP, WEG, SMV, DJB, SJC, and RMM.

Analysis and interpretation of the data: MKK, RCR, SJC, and

RMM.

Writing, review and/or revision of the manuscript: MKK,

RCR, JG, PGO, MJH, JAP, WEG, SMV, DJB, SJC, and RMM.

Administrative, technical, or material support: NSD, BEJ,

PGO, KCS, EWG, JDC, MJH, JAP, and WEG.

Study Supervision: JAP, WEG, SMV, DJB, SJC, and RMM.
Conflict of interest disclosures

None reported.
Funding/Support

This work was funded by the UAB/UMN SPORE in Pancreatic

Cancer (P50CA101955), the NIH-National Institute of General

Medical Sciences Medical Scientist Training Program

(5T32GM008361-21), and by The State of Alabama and the

HudsonAlpha Institute.
Availability of data and materials

The datasets supporting the conclusions of this article are

available in the GEO databank: GSE79670.
Acknowledgments

We thank Drs. Brittany Lasseigne and Kevin Bowling for crit-

ical reading of the manuscript. We thank Dr. Nick Cochran

for packaging the ANGPTL4 lentiviral vectors. We thank Dr.

Shawn Levy, Braden Boone, Angela Jones, and all the mem-

bers of the HudsonAlpha Genomic Services Lab for providing

RNA sequencing data for this project. We acknowledge use

of International Cancer Genome Consortium project Austra-

lian pancreatic RNA-seq dataset and The Cancer Genome

Atlas pancreatic RNA-seq dataset, which were both extremely

valuable in validation of our findings.

Abbreviations

ANGPTL4 Angiopoietin-like 4

B3GNT5 UDP-GlcNAc: betaGal beta-1,3-N-acetylglucosami-

nyltransferase 5

CTSH Cathepsin H

FDR False Discovery Rate

ICGC International Cancer Genome Consortium

KLF6 Kruppel-Like Factor 6

LASSO L1 penalized log partial likelihood

OCT Optimal Cutting Temperature Compound

PCNA Proliferating Cell Nuclear Antigen

PPL Periplakin

RGS20 Regulator of G-protein Signaling 20

RNA-seq RNA sequencing

SAMD9 Sterile Alpha Motif Domain-containing 9

SCUBE1 Signal peptide, CUB domain, EGF-like 1

SLC16A3 Solute Carrier Family 16, member A3

TCGA The Cancer Genome Atlas

TRC6C Trinucleotide Repeat Containing 6C

WFDC1 WAP Four-Disulfide Core Domain 1
Appendix A.
Supplementary data

Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.molonc.2016.05.004.
R E F E R E N C E S

Akisawa, N., Nishimori, I., Iwamura, T., Onishi, S.,
Hollingsworth, M.A., 1999. High levels of ezrin expressed by
human pancreatic adenocarcinoma cell lines with high
metastatic potential. Biochem. Biophys. Res. Commun. 258,
395e400. http://dx.doi.org/10.1006/bbrc.1999.0653.

Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.-M.,
Gingras, M.-C., Miller, D.K., Christ, A.N., Bruxner, T.J.C.,
Quinn, M.C., Nourse, C., Murtaugh, L.C., Harliwong, I.,
Idrisoglu, S., Manning, S., Nourbakhsh, E., Wani, S., Fink, L.,
Holmes, O., Chin, V., Anderson, M.J., Kazakoff, S., Leonard, C.,
Newell, F., Waddell, N., Wood, S., Xu, Q., Wilson, P.J.,
Cloonan, N., Kassahn, K.S., Taylor, D., Quek, K., Robertson, A.,
Pantano, L., Mincarelli, L., Sanchez, L.N., Evers, L., Wu, J.,
Pinese, M., Cowley, M.J., Jones, M.D., Colvin, E.K., Nagrial, A.M.,

http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1006/bbrc.1999.0653
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 1 1 6 9e1 1 8 21180
Humphrey, E.S., Chantrill, L.A., Mawson, A., Humphris, J.,
Chou, A., Pajic, M., Scarlett, C.J., Pinho, A.V., Giry-
Laterriere, M., Rooman, I., Samra, J.S., Kench, J.G., Lovell, J.A.,
Merrett, N.D., Toon, C.W., Epari, K., Nguyen, N.Q., Barbour, A.,
Zeps, N., Moran-Jones, K., Jamieson, N.B., Graham, J.S.,
Duthie, F., Oien, K., Hair, J., Gr€utzmann, R., Maitra, A.,
Iacobuzio-Donahue, C.A., Wolfgang, C.L., Morgan, R.A.,
Lawlor, R.T., Corbo, V., Bassi, C., Rusev, B., Capelli, P.,
Salvia, R., Tortora, G., Mukhopadhyay, D., Petersen, G.M.,
Initiative, A.P.C.G., Munzy, D.M., Fisher, W.E., Karim, S.A.,
Eshleman, J.R., Hruban, R.H., Pilarsky, C., Morton, J.P.,
Sansom, O.J., Scarpa, A., Musgrove, E.A., Bailey, U.-M.H.,
Hofmann, O., Sutherland, R.L., Wheeler, D.A., Gill, A.J.,
Gibbs, R.A., Pearson, J.V., Waddell, N., Biankin, A.V.,
Grimmond, S.M., 2016. Genomic analyses identify molecular
subtypes of pancreatic cancer. Nature 531, 47e52.

Biankin, A.V., Waddell, N., Kassahn, K.S., Gingras, M.-C.,
Muthuswamy, L.B., Johns, A.L., Miller, D.K., Wilson, P.J.,
Patch, A.-M., Wu, J., Chang, D.K., Cowley, M.J., Gardiner, B.B.,
Song, S., Harliwong, I., Idrisoglu, S., Nourse, C.,
Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M.,
Scarlett, C.J., Gill, A.J., Pinho, A.V., Rooman, I., Anderson, M.,
Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K.,
Fink, J.L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G.,
Newell, F., Pinese, M., Mead, R.S., Humphris, J.L., Kaplan, W.,
Jones, M.D., Colvin, E.K., Nagrial, A.M., Humphrey, E.S.,
Chou, A., Chin, V.T., Chantrill, L.A., Mawson, A., Samra, J.S.,
Kench, J.G., Lovell, J.A., Daly, R.J., Merrett, N.D., Toon, C.,
Epari, K., Nguyen, N.Q., Barbour, A., Zeps, N.,
Initiative, A.P.C.G., Kakkar, N., Zhao, F., Wu, Y.Q., Wang, M.,
Muzny, D.M., Fisher, W.E., Brunicardi, F.C., Hodges, S.E.,
Reid, J.G., Drummond, J., Chang, K., Han, Y., Lewis, L.R.,
Dinh, H., Buhay, C.J., Beck, T., Timms, L., Sam, M., Begley, K.,
Brown, A., Pai, D., Panchal, A., Buchner, N., De Borja, R.,
Denroche, R.E., Yung, C.K., Serra, S., Onetto, N.,
Mukhopadhyay, D., Tsao, M.-S., Shaw, P.A., Petersen, G.M.,
Gallinger, S., Hruban, R.H., Maitra, A., Iacobuzio-
Donahue, C.A., Schulick, R.D., Wolfgang, C.L., Morgan, R.A.,
Lawlor, R.T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G.,
Tempero, M.A., Mann, K.M., Jenkins, N.A., Perez-
Mancera, P.A., Adams, D.J., Largaespada, D.A., Wessels, L.F.A.,
Rust, A.G., Stein, L.D., Tuveson, D.A., Copeland, N.G.,
Musgrove, E.A., Scarpa, A., Eshleman, J.R., Hudson, T.J.,
Sutherland, R.L., Wheeler, D.A., Pearson, J.V., McPherson, J.D.,
Gibbs, R.A., Grimmond, S.M., 2012. Pancreatic cancer genomes
reveal aberrations in axon guidance pathway genes. Nature
491, 399e405. http://dx.doi.org/10.1038/nature11547.

Bruns, C.J., Harbison, M.T., Kuniyasu, H., Eue, I., Fidler, I.J., 1999.
In vivo selection and characterization of metastatic variants
from human pancreatic adenocarcinoma by using orthotopic
implantation in nude mice. Neoplasia 1, 50e62.

Collisson, E.A., Sadanandam, A., Olson, P., Gibb, W.J., Truitt, M.,
Gu, S., Cooc, J., Weinkle, J., Kim, G.E., Jakkula, L., Feiler, H.S.,
Ko, A.H., Olshen, A.B., Danenberg, K.L., Tempero, M.A.,
Spellman, P.T., Hanahan, D., Gray, J.W., 2011. Subtypes of
pancreatic ductal adenocarcinoma and their differing
responses to therapy. Nat. Med. 17, 500e503. http://dx.doi.org/
10.1038/nm.2344.

Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R.,
Becouarn, Y., Adenis, A., Raoul, J.L., Gourgou-Bourgade, S., de
la Fouchardiere, C., Bennouna, J., Bachet, J.B., Khemissa-
Akouz, F., Pere-Verge, D., Delbaldo, C., Assenat, E.,
Chauffert, B., Michel, P., Montoto-Grillot, C., Ducreux, M., 2011.
FOLFIRINOX versus gemcitabine for metastatic pancreatic
cancer. N. Engl. J. Med. 364, 1817e1825. http://dx.doi.org/
10.1056/NEJMoa1011923.

da Huang, W., Sherman, B.T., Lempicki, R.A., 2009. Systematic
and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc. 4. http://dx.doi.org/
10.1038/nprot.2008.211.

Donahue, T.R., Tran, L.M., Hill, R., Li, Y., Kovochich, A.,
Calvopina, J.H., Patel, S.G., Wu, N., Hindoyan, A., Farrell, J.J.,
Li, X., Dawson, D.W., Wu, H., 2012. Integrative survival-based
molecular profiling of human pancreatic cancer. Clin. Cancer
Res. 18, 1352e1363. http://dx.doi.org/10.1158/1078-0432.CCR-
11-1539.

Friedman, J., Hastie, T., Tibshirani, R., 2010. Regularization paths
for generalized linear models via coordinate descent. J. Stat.
Softw. 33, 1e22.

Ge, X., Yamamoto, S., Tsutsumi, S., Midorikawa, Y., Ihara, S.,
Wang, S.M., Aburatani, H., 2005. Interpreting expression
profiles of cancers by genome-wide survey of breadth of
expression in normal tissues. Genomics 86, 127e141.

Gertz, J., Varley, K.E., Davis, N.S., Baas, B.J., Goryshin, I.Y.,
Vaidyanathan, R., Kuersten, S., Myers, R.M., 2012. Transposase
mediated construction of RNA-seq libraries. Genome Res. 22,
134e141. http://dx.doi.org/10.1101/gr.127373.111.

Gocheva, V., Chen, X., Peters, C., Reinheckel, T., Joyce, J.A., 2010.
Deletion of cathepsin H perturbs angiogenic switching,
vascularization and growth of tumors in a mouse model of
pancreatic islet cell cancer. Biol. Chem. 391, 937e945. http://
dx.doi.org/10.1515/BC.2010.080.

Griffith, O.L., Pepin, F., Enache, O.M., Heiser, L.M., Collisson, E.A.,
Spellman, P.T., Gray, J.W., 2013. A robust prognostic signature
for hormone-positive node-negative breast cancer. Genome
Med. 5, 1e14. http://dx.doi.org/10.1186/gm496.

Halestrap, A.P., 2013. The SLC16 gene family e structure, role and
regulation in health and disease. Mol. Aspects Med. 34,
337e349.

Hanoun, N., Bureau, C., Diab, T., Gayet, O., Dusetti, N., Selves, J.,
Vinel, J.-P., Buscail, L., Cordelier, P., Torrisani, J., 2015. The SV2
variant of KLF6 is down-regulated in hepatocellular carcinoma
and displays anti-proliferative and pro-apoptotic functions.
J. Hepatol. 53, 880e888. http://dx.doi.org/10.1016/
j.jhep.2010.04.038.

Harrell, F., 2001. Regression Modeling Strategies with
Applications to Linear Models, Logistic Regression, and
Survival Analysis. Springer-Verlag, New York.

Harrow, J., Denoeud, F., Frankish, A., Reymond, A., Chen, C.-K.,
Chrast, J., Lagarde, J., Gilbert, J.G.R., Storey, R., Swarbreck, D.,
Rossier, C., Ucla, C., Hubbard, T., Antonarakis, S.E., Guigo, R.,
2006. GENCODE: producing a reference annotation for
ENCODE. Genome Biol. 7 (Suppl. 1), S4.1eS4.9.

Hartel, M., Narla, G., Wente, M.N., Giese, N.A., Martignoni, M.E.,
Martignetti, J.A., Friess, H., Friedman, S.L., 2008. Increased
alternative splicing of the KLF6 tumour suppressor gene
correlates with prognosis and tumour grade in patients with
pancreatic cancer. Eur. J. Cancer 44, 1895e1903.

Heinemann, V., Boeck, S., 2008. Perioperative management of
pancreatic cancer. Ann. Oncol. 19, 273e278. http://dx.doi.org/
10.1093/annonc/mdn450.

Hu, Z., Fan, C., Livasy, C., He, X., Oh, D.S., Ewend, M.G., Carey, L.A.,
Subramanian, S., West, R., Ikpatt, F., Olopade, O.I., van de
Rijn,M., Perou, C.M., 2009. A compact VEGF signature associated
with distant metastases and poor outcomes. BMC Med. 7, 9.

Huntzinger, E., Braun, J.E., Heimst€adt, S., Zekri, L., Izaurralde, E.,
2010. Two PABPC1-binding sites in GW182 proteins promote
miRNA-mediated gene silencing. EMBO J. 29, 4146e4160.

Isserlin, R., Merico, D., Voisin, V., Bader, G.D., 2014. Enrichment
Map e a Cytoscape app to visualize and explore OMICs
pathway enrichment results. F1000Research 3, 141. http://
dx.doi.org/10.12688/f1000research.4536.1.

Iwamura, T., Caffrey, T.C., Kitamura, N., Yamanari, H.,
Setoguchi, T., Hollingsworth, M.A., 1997. P-selectin expression
in a metastatic pancreatic tumor cell line (SUIT-2). Cancer Res.
57, 1206e1212.

http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref2
http://dx.doi.org/10.1038/nature11547
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref4
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref4
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref4
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref4
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref4
http://dx.doi.org/10.1038/nm.2344
http://dx.doi.org/10.1038/nm.2344
http://dx.doi.org/10.1056/NEJMoa1011923
http://dx.doi.org/10.1056/NEJMoa1011923
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1158/1078-0432.CCR-11-1539
http://dx.doi.org/10.1158/1078-0432.CCR-11-1539
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref9
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref9
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref9
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref9
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref10
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref10
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref10
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref10
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref10
http://dx.doi.org/10.1101/gr.127373.111
http://dx.doi.org/10.1515/BC.2010.080
http://dx.doi.org/10.1515/BC.2010.080
http://dx.doi.org/10.1186/gm496
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref14
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref14
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref14
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref14
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref14
http://dx.doi.org/10.1016/j.jhep.2010.04.038
http://dx.doi.org/10.1016/j.jhep.2010.04.038
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref16
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref16
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref16
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref17
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref17
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref17
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref17
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref17
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref17
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref18
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref18
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref18
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref18
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref18
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref18
http://dx.doi.org/10.1093/annonc/mdn450
http://dx.doi.org/10.1093/annonc/mdn450
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref20
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref20
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref20
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref20
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref21
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref21
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref21
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref21
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref21
http://dx.doi.org/10.12688/f1000research.4536.1
http://dx.doi.org/10.12688/f1000research.4536.1
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref23
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref23
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref23
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref23
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref23
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 1 1 6 9e1 1 8 2 1181
Jaffee, E.M., Schutte, M., Gossett, J., Morsberger, L.A., Adler, A.J.,
Thomas, M., Greten, T.F., Hruban, R.H., Yeo, C.J., Griffin, C.A.,
1998. Development and characterization of a cytokine-
secreting pancreatic adenocarcinoma vaccine from primary
tumors for use in clinical trials. Cancer J. Sci. Am. 4, 194e203.

Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N., Doudna, J.A.,
2010. Structural insights into the human GW182-PABC
interaction in microRNA-mediated deadenylation. Nat. Struct.
Mol. Biol. 17, 238e240.

Johnson, R.H., Hu, P., Fan, C., Anders, C.K., 2015. Gene expression
in “young adult type” breast cancer: a retrospective analysis.
Oncotarget 6, 13688e13702.

Jones, S., Zhang, X., Parsons, D.W., Lin, J.C.-H., Leary, R.J.,
Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H.,
Jimeno, A., Hong, S.-M., Fu, B., Lin, M.-T., Calhoun, E.S.,
Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y.,
Hartigan, J., Smith, D.R., Hidalgo, M., Leach, S.D., Klein, A.P.,
Jaffee, E.M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C.,
Eshleman, J.R., Kern, S.E., Hruban, R.H., Karchin, R.,
Papadopoulos, N., Parmigiani, G., Vogelstein, B.,
Velculescu, V.E., Kinzler, K.W., 2008. Core signaling pathways
in human pancreatic cancers revealed by global genomic
analyses. Science 321, 1801e1806. http://dx.doi.org/10.1126/
science.1164368.

Kalser, M.H., Ellenberg, S.S., 1985. Pancreatic cancer: adjuvant
combined radiation and chemotherapy following curative
resection. Arch. Surg. 120, 899e903.

Kanwar, N., Hu, P., Bedard, P., Clemons, M., McCready, D.,
Done, S.J., 2015. Identification of genomic signatures in
circulating tumor cells from breast cancer. Int. J. Cancer 137,
332e344. http://dx.doi.org/10.1002/ijc.29399.

Kim, J.H., Karnovsky, A., Mahavisno, V., Weymouth, T., Pande, M.,
Dolinoy, D.C., Rozek, L.S., Sartor, M.A., 2012. LRpath analysis
reveals common pathways dysregulated via DNA methylation
across cancer types. BMC Genomics 13, 526. http://dx.doi.org/
10.1186/1471-2164-13-526.

Kutner, R.H., Zhang, X.-Y., Reiser, J., 2009. Production,
concentration and titration of pseudotyped HIV-1-based
lentiviral vectors. Nat. Protoc. 4, 495e505.

Langfelder, P., Horvath, S., 2008. WGCNA: an R package for
weighted correlation network analysis. BMC Bioinformatics 9,
1e13. http://dx.doi.org/10.1186/1471-2105-9-559.

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2.
BioRxiv, 1e21. http://dx.doi.org/10.1101/002832.

Madar, S., Brosh, R., Buganim, Y., Ezra, O., Goldstein, I.,
Solomon, H., Kogan, I., Goldfinger, N., Klocker, H., Rotter, V.,
2009. Modulated expression of WFDC1 during carcinogenesis
and cellular senescence. Carcinogenesis 30, 20e27. http://
dx.doi.org/10.1093/carcin/bgn232.

McEvoy, L.M., O’Toole, S.A., Spillane, C.D., Martin, C.M.,
Gallagher, M.F., Stordal, B., Blackshields, G., Sheils, O.,
O’Leary, J.J., 2015. Identifying novel hypoxia-associated
markers of chemoresistance in ovarian cancer. BMC Cancer
15, 547. http://dx.doi.org/10.1186/s12885-015-1539-8.

Newhook, T.E., Blais, E.M., Lindberg, J.M., Adair, S.J., Xin, W.,
Lee, J.K., Papin, J.A., Parsons, J.T., Bauer, T.W., 2014. A thirteen-
gene expression signature predicts survival of patients with
pancreatic cancer and identifies new genes of interest. PLoS
One 9, e105631. http://dx.doi.org/10.1371/
journal.pone.0105631.

Ng, K.T.-P., Xu, A., Cheng, Q., Guo, D.Y., Lim, Z.X.-H., Sun, C.K.-W.,
Fung, J.H.-S., Poon, R.T.-P., Fan, S.T., Lo, C.M., Man, K., 2014.
Clinical relevance and therapeutic potential of angiopoietin-
like protein 4 in hepatocellular carcinoma. Mol. Cancer 13, 196.
http://dx.doi.org/10.1186/1476-4598-13-196.

Oettle, H., Neuhaus, P., Hochhaus, A., et al., 2013. Adjuvant
chemotherapy with gemcitabine and long-term outcomes
among patients with resected pancreatic cancer: the conko-
001 randomized trial. JAMA 310, 1473e1481.

Orr, B., Grace, O.C., Brown, P., Riddick, A.C.P., Stewart, G.D.,
Franco, O.E., Hayward, S.W., Thomson, A.A., 2013. Reduction
of pro-tumorigenic activity of human prostate cancer-
associated fibroblasts using Dlk1 or SCUBE1. Dis. Model. Mech.
6, 530e536. http://dx.doi.org/10.1242/dmm.010355.

Paniccia, A., Hosokawa, P., Henderson, W., Al, E., 2015.
Characteristics of 10-year survivors of pancreatic ductal
adenocarcinoma. JAMA Surg. 150, 701e710. http://dx.doi.org/
10.1001/jamasurg.2015.0668.

P�erez-Mancera, P.A., Rust, A.G., van der Weyden, L.,
Kristiansen, G., Li, A., Sarver, A.L., Silverstein, K.A.T.,
Gr€utzmann, R., Aust, D., R€ummele, P., Kn€osel, T., Herd, C.,
Stemple, D.L., Kettleborough, R., Brosnan, J.A., Li, A.,
Morgan, R., Knight, S., Yu, J., Stegeman, S., Collier, L.S., ten
Hoeve, J.J., de Ridder, J., Klein, A.P., Goggins, M., Hruban, R.H.,
Chang, D.K., Biankin, A.V., Grimmond, S.M., APGI,
Wessels, L.F.A., Wood, S.A., Iacobuzio-Donahue, C.A.,
Pilarsky, C., Largaespada, D.A., Adams, D.J., Tuveson, D.A.,
2012. The deubiquitinase USP9X suppresses pancreatic ductal
adenocarcinoma. Nature 486, 266e270. http://dx.doi.org/
10.1038/nature11114.

Potapenko, I.O., L€uders, T., Russnes, H.G., Helland, �A., Sørlie, T.,
Kristensen, V.N., Nord, S., Lingjærde, O.C., Børresen-Dale, A.-
L., Haakensen, V.D., 2015. Glycan-related gene expression
signatures in breast cancer subtypes; relation to survival. Mol.
Oncol. 9, 861e876. http://dx.doi.org/10.1016/
j.molonc.2014.12.013.

Quinlan, A.R., 2002. BEDTools: the Swiss-army tool for genome
feature analysis. In: Current Protocols in Bioinformatics. John
Wiley & Sons, Inc. http://dx.doi.org/10.1002/
0471250953.bi1112s47.

Riker, A.I., Enkemann, S.A., Fodstad, O., Liu, S., Ren, S., Morris, C.,
Xi, Y., Howell, P., Metge, B., Samant, R.S., Shevde, L.A., Li, W.,
Eschrich, S., Daud, A., Ju, J., Matta, J., 2008. The gene
expression profiles of primary and metastatic melanoma
yields a transition point of tumor progression and metastasis.
BMC Med. Genomics 1, 13.

Siegel, R.L., Miller, K.D., Jemal, A., 2015. Cancer statistics, 2015. CA
Cancer J. Clin. 65, 5e29. http://dx.doi.org/10.3322/caac.21254.

Simon, N., Friedman, J., Hastie, T., Tibshirani, R., 2011.
Regularization paths for cox’s proportional hazards model via
coordinate descent. J. Stat. Softw. 39, 1e13.

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2005. ROCR:
visualizing classifier performance in R. Bioinformatics 21,
3940e3941. http://dx.doi.org/10.1093/bioinformatics/bti623.

Stathis, A., Moore, M.J., 2010. Advanced pancreatic carcinoma:
current treatment and future challenges. Nat. Rev. Clin. Oncol.
7, 163e172. http://dx.doi.org/10.1038/nrclinonc.2009.236.

Stratford, J.K., Bentrem, D.J., Anderson, J.M., Fan, C., Volmar, K.A.,
Marron, J.S., Routh, E.D., Caskey, L.S., Samuel, J.C., Der, C.J.,
Thorne, L.B., Calvo, B.F., Kim, H.J., Talamonti, M.S., Iacobuzio-
Donahue, C.A., Hollingsworth, M.A., Perou, C.M., Yeh, J.J., 2010.
A six-gene signature predicts survival of patients with
localized pancreatic ductal adenocarcinoma. PLoS Med. 7.
http://dx.doi.org/10.1371/journal.pmed.1000307.

Suzuki, A., Horiuchi, A., Ashida, T., Miyamoto, T., Kashima, H.,
Nikaido, T., Konishi, I., Shiozawa, T., 2010. Cyclin A2 confers
cisplatin resistance to endometrial carcinoma cells via up-
regulation of an Akt-binding protein, periplakin. J. Cell. Mol.
Med. 14, 2305e2317. http://dx.doi.org/10.1111/j.1582-
4934.2009.00839.x.

Tan, M.J., Teo, Z., Sng, M.K., Zhu, P., Tan, N.S., 2012. Emerging
roles of angiopoietin-like 4 in human cancer. Mol. Cancer Res.
10, 677e688. http://dx.doi.org/10.1158/1541-7786.MCR-11-0519.

Tanaka, M., Shimbo, T., Kikuchi, Y., Matsuda, M., Kaneda, Y.,
2010. Sterile alpha motif containing domain 9 is involved in

http://refhub.elsevier.com/S1574-7891(16)30040-0/sref24
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref24
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref24
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref24
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref24
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref24
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref25
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref25
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref25
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref25
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref25
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref26
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref26
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref26
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref26
http://dx.doi.org/10.1126/science.1164368
http://dx.doi.org/10.1126/science.1164368
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref28
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref28
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref28
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref28
http://dx.doi.org/10.1002/ijc.29399
http://dx.doi.org/10.1186/1471-2164-13-526
http://dx.doi.org/10.1186/1471-2164-13-526
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref31
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref31
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref31
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref31
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1101/002832
http://dx.doi.org/10.1093/carcin/bgn232
http://dx.doi.org/10.1093/carcin/bgn232
http://dx.doi.org/10.1186/s12885-015-1539-8
http://dx.doi.org/10.1371/journal.pone.0105631
http://dx.doi.org/10.1371/journal.pone.0105631
http://dx.doi.org/10.1186/1476-4598-13-196
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref38
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref38
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref38
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref38
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref38
http://dx.doi.org/10.1242/dmm.010355
http://dx.doi.org/10.1001/jamasurg.2015.0668
http://dx.doi.org/10.1001/jamasurg.2015.0668
http://dx.doi.org/10.1038/nature11114
http://dx.doi.org/10.1038/nature11114
http://dx.doi.org/10.1016/j.molonc.2014.12.013
http://dx.doi.org/10.1016/j.molonc.2014.12.013
http://dx.doi.org/10.1002/0471250953.bi1112s47
http://dx.doi.org/10.1002/0471250953.bi1112s47
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref44
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref44
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref44
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref44
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref44
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref44
http://dx.doi.org/10.3322/caac.21254
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref46
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref46
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref46
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref46
http://dx.doi.org/10.1093/bioinformatics/bti623
http://dx.doi.org/10.1038/nrclinonc.2009.236
http://dx.doi.org/10.1371/journal.pmed.1000307
http://dx.doi.org/10.1111/j.1582-4934.2009.00839.x
http://dx.doi.org/10.1111/j.1582-4934.2009.00839.x
http://dx.doi.org/10.1158/1541-7786.MCR-11-0519
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 1 1 6 9e1 1 8 21182
death signaling of malignant glioma treated with inactivated
Sendai virus particle (HVJ-E) or type I interferon. Int. J. Cancer
126, 1982e1991. http://dx.doi.org/10.1002/ijc.24965.

Tibshirani, R., 1996. Regression shrinkage and selection via the
lasso. J. R. Stat. Soc. B 58, 267e288.

Trapnell, C., Pachter, L., Salzberg, S.L., 2009. TopHat: discovering
splice junctions with RNA-seq. Bioinformatics 25, 1105e1111.
http://dx.doi.org/10.1093/bioinformatics/btp120.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G.,
van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L., 2010.
Transcript assembly and quantification by RNA-seq reveals
unannotated transcripts and isoform switching during cell
differentiation. Nat. Biotechnol. 28, 511e515. http://dx.doi.org/
10.1038/nbt.1621.

Venet, D., Dumont, J.E., Detours, V., 2011. Most random gene
expression signatures are significantly associated with breast
cancer outcome. PLoS Comput. Biol. 7. http://dx.doi.org/
10.1371/journal.pcbi.1002240.

Von Hoff, D.D., Ramanathan, R.K., Borad, M.J., Laheru, D.A.,
Smith, L.S., Wood, T.E., Korn, R.L., Desai, N., Trieu, V.,
Iglesias, J.L., Zhang, H., Soon-Shiong, P., Shi, T.,
Rajeshkumar, N.V., Maitra, A., Hidalgo, M., 2011. Gemcitabine
plus nab-paclitaxel is an active regimen in patients with
advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29,
4548e4554. http://dx.doi.org/10.1200/JCO.2011.36.5742.

Waddell, N., Pajic, M., Patch, A.-M., Chang, D.K., Kassahn, K.S.,
Bailey, P., Johns, A.L., Miller, D., Nones, K., Quek, K.,
Quinn, M.C.J., Robertson, A.J., Fadlullah, M.Z.H.,
Bruxner, T.J.C., Christ, A.N., Harliwong, I., Idrisoglu, S.,
Manning, S., Nourse, C., Nourbakhsh, E., Wani, S., Wilson, P.J.,
Markham, E., Cloonan, N., Anderson, M.J., Fink, J.L.,
Holmes, O., Kazakoff, S.H., Leonard, C., Newell, F., Poudel, B.,
Song, S., Taylor, D., Waddell, N., Wood, S., Xu, Q., Wu, J.,
Pinese, M., Cowley, M.J., Lee, H.C., Jones, M.D., Nagrial, A.M.,
Humphris, J., Chantrill, L.A., Chin, V., Steinmann, A.M.,
Mawson, A., Humphrey, E.S., Colvin, E.K., Chou, A.,
Scarlett, C.J., Pinho, A.V., Giry-Laterriere, M., Rooman, I.,
Samra, J.S., Kench, J.G., Pettitt, J.A., Merrett, N.D., Toon, C.,
Epari, K., Nguyen, N.Q., Barbour, A., Zeps, N., Jamieson, N.B.,
Graham, J.S., Niclou, S.P., Bjerkvig, R., Gr€utzmann, R., Aust, D.,
Hruban, R.H., Maitra, A., Iacobuzio-Donahue, C.A.,
Wolfgang, C.L., Morgan, R.A., Lawlor, R.T., Corbo, V., Bassi, C.,
Falconi, M., Zamboni, G., Tortora, G., Tempero, M.A.,
Initiative, A.P.C.G., Gill, A.J., Eshleman, J.R., Pilarsky, C.,
Scarpa, A., Musgrove, E.A., Pearson, J.V., Biankin, A.V.,
Grimmond, S.M., 2015. Whole genomes redefine the
mutational landscape of pancreatic cancer. Nature 518,
495e501. http://dx.doi.org/10.1038/nature14169.

Wu, T.T., Gong, H., Clarke, E.M., 2011. A transcriptome analysis by
lasso penalized cox regression for pancreatic cancer survival.
J. Bioinform. Comput. Biol. 9, 63e73.

Zeileis, A., Hothron, T., 2002. Diagnostic checking in regression
relationships. R News 2, 7e10.

Zhang, J., Baran, J., Cros, A., Guberman, J.M., Haider, S., Hsu, J.,
Liang, Y., Rivkin, E., Wang, J., Whitty, B., Wong-Erasmus, M.,
Yao, L., Kasprzyk, A., 2011. International Cancer Genome
Consortium Data Portalda one-stop shop for cancer genomics
data. Database 2011. http://dx.doi.org/10.1093/database/
bar026 bar026.

http://dx.doi.org/10.1002/ijc.24965
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref53
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref53
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref53
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1371/journal.pcbi.1002240
http://dx.doi.org/10.1371/journal.pcbi.1002240
http://dx.doi.org/10.1200/JCO.2011.36.5742
http://dx.doi.org/10.1038/nature14169
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref59
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref59
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref59
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref59
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref60
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref60
http://refhub.elsevier.com/S1574-7891(16)30040-0/sref60
http://dx.doi.org/10.1093/database/bar026
http://dx.doi.org/10.1093/database/bar026
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004
http://dx.doi.org/10.1016/j.molonc.2016.05.004

	RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and  ...
	1. Introduction
	2. Material and methods
	2.1. Patient tissue
	2.2. Macrodissection
	2.3. Source and culture of pancreatic cancer cell lines
	2.4. Nucleic acid extraction from tissues and cell lines
	2.5. RNA-seq library construction
	2.6. Differential expression analysis
	2.7. Random forest modeling
	2.8. Hierarchical clustering
	2.9. LASSO model selection
	2.10. Tumor subtype classification
	2.11. Meta-PCNA analysis
	2.12. WGCNA analysis
	2.13. ANGPTL4 knockdown

	3. Results
	3.1. Gene expression correlates with pancreatic patient survival time
	3.2. A 19-transcript signature successfully predicts patient survival
	3.3. Survival is not explained by cellular proliferation differences
	3.4. A subset of gemcitabine sensitivity genes is differentially expressed between the short-survival and long-survival patients
	3.5. Knockdown of ANGPTL4 expression in a gemcitabine-resistant pancreatic cancer cell line affects cell proliferation

	4. Discussion
	5. Conclusions
	Author contributions
	Conflict of interest disclosures
	Funding/Support
	Availability of data and materials
	Acknowledgments
	Abbreviations
	Appendix A. Supplementary data
	References


