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Abstract

Objectives

First, to apply a recently extended scoring system for preterm brain injury at term-equivalent

age (TEA-)MRI in a regional extremely preterm cohort; second, to identify independent peri-

natal factors associated with this score; and third, to assess the prognostic value of this

TEA-MRI score with respect to early neurodevelopmental outcome.

Study design

239 extremely preterm infants (median gestational age [range] in weeks: 26.6 [24.3–27.9]),

admitted to the Wilhelmina Children’s Hospital between 2006 and 2012 were included.

Brain abnormalities in white matter, cortical and deep grey matter and cerebellum and brain

growth were scored on T1- and T2-weighted TEA-MRI using the Kidokoro scoring system.

Neurodevelopmental outcome was assessed at two years corrected age using the Bayley

Scales of Infant and Toddler Development, third edition. The association between TEA-MRI

and perinatal factors as well as neurodevelopmental outcome was evaluated using multivar-

iable regression analysis.

Results

The distribution of brain abnormalities and brain metrics in the Utrecht cohort differed from

the original St. Louis cohort (p < .05). Mechanical ventilation >7 days (β [95% confidence

interval, CI]: 1.3 [.5; 2.0]) and parenteral nutrition >21 days (2.2 [1.2; 3.2]) were indepen-

dently associated with higher global brain abnormality scores (p < .001). Global brain abnor-

mality scores were inversely associated with cognitive (β in composite scores [95% CI]: -.7

[-1.2; -.2], p = .004), fine motor (β in scaled scores [95% CI]: -.1 [-.3; -.0], p = .007) and gross
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motor outcome (β in scaled scores [95% CI]: -.2 [-.3; -.1], p < .001) at two years corrected

age, although the explained variances were low (R2�.219).

Conclusion

Patterns of brain injury differed between cohorts. Prolonged mechanical ventilation and par-

enteral nutrition were identified as independent perinatal risk factors. The prognostic value

of the TEA-MRI score was rather limited in this well-performing cohort.

Introduction

With the increased use of term-equivalent age magnetic resonance imaging (TEA-MRI) as a

biomarker for neurodevelopmental outcome among extremely preterm infants, there is a need

for an accurate TEA-MRI scoring system to enable systematic and uniform evaluation of pre-

term brain abnormalities across cohorts.

Over the last decade, several TEA-MRI scoring systems have been developed to assess the

degree of white matter (WM) and cortical grey matter (GM) injury[1,2] as well as to evaluate

brain maturation.[3] In 2013, Kidokoro and colleagues extended a previous scoring system

from their group to also incorporate evaluation of deep GM and cerebellar abnormalities.[1,4]

In addition, several brain metrics were included to systematically account for impairments in

brain growth. This extended scoring system provides a more comprehensive assessment of

brain abnormalities on TEA-MRI, taking into account the increased awareness of the effect of

deep GM and cerebellar injury on neurodevelopment.[5,6].

The global brain abnormality score (GBAS) by Kidokoro et al.[4] was recently shown to

relate inversely to motor outcome as well as memory and learning performance at two and

seven years of age, respectively; reported explained variances for outcome were, however, lim-

ited (<10%).[7,8].

The aims of this study were threefold. First, to apply the TEA-MRI scoring system by Kido-

koro et al.[4] to a new cohort of extremely preterm infants from Utrecht; for this purpose, the

distribution of brain abnormalities in the Utrecht cohort was compared with the St. Louis

cohort, in whom the scoring system was evaluated initially.[4] Second, to identify perinatal fac-

tors independently associated with higher brain abnormality scores. Third, to evaluate the

prognostic value of the TEA-MRI scoring system with respect to neurodevelopmental outcome

at two years corrected age (CA).

Methods

Patients

Between October 2006 and December 2012, 332 extremely preterm infants (gestational age

[GA]<28 weeks) were admitted to the level three Neonatal Intensive Care Unit of the Wilhel-

mina Children’s Hospital/University Medical Center Utrecht, The Netherlands and were eligi-

ble for participation in this prospective neuroimaging study approved by the institutional

review board. Neonates with congenital anomalies (n = 5, 1.5%) were excluded. Fifty-two

(15.7%) infants died before reaching TEA, and no parental informed consent was obtained for

eighteen (5.4%) infants. Seven (2.1%) infants were examined on a 1.5 Tesla system, leaving 250

(75.3%) infants with a 3.0 Tesla TEA-MRI. We further excluded infants who were scanned at a

postmenstrual age (PMA)�44 weeks (n = 2, 0.6%) or with severe motion artefacts on
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TEA-MRI (n = 1, 0.3%). Eight (2.4%) infants were lost to follow up at two years CA, leaving

239 (72.0%) infants with TEA-MRI and neurodevelopmental outcome data eligible for final

inclusion.

Fifty-two (21.8%) of the 239 included infants were also included in a previous smaller study

of 93 very preterm infants (gestational age [GA] <31 weeks), comparing the prognostic value

of several neuroimaging modalities, including assessment of the TEA-MRI scoring system by

Kidokoro et al.[4,7].

Permission from the medical ethical review committee of the University Medical Center

Utrecht for the current study and oral informed parental consent for the MRI was obtained.

Clinical variables

Maternal and neonatal charts were reviewed for demographic and perinatal characteristics.

Socioeconomic status was based on maternal educational level.[9] Maternal educational level

was classified as low, intermediate or high, depending on the highest educational grade.[10]

Ethnicity was classified as Western, mixed, or non-Western, based on the ethnic background

of both parents. Birth weight (BW) z-scores were computed according to the Dutch Perinatal

registry reference data.[11] Postnatal events that were considered included days of mechanical

ventilation, severe chronic lung disease (i.e. defined as the need for mechanical ventilation,

positive airway pressure, and/or supplemental oxygen >30% at 36 weeks PMA[12]), inotropic

support, patent ductus arteriosus requiring treatment with indomethacin or surgery, days

of parental nutrition, perforated necrotizing enterocolitis, culture proven sepsis, germinal

matrix-intraventricular hemorrhage (GMH-IVH; graded according to Papile et al.[13]),

progressive post-hemorrhagic ventricular dilatation (PHVD; i.e. ventricular index >97th per-

centile according to Levene[14], anterior horn width>6mm or thalamo-occipital distance

>24mm) requiring cerebrospinal fluid (CSF) drainage, and cystic periventricular leukomalacia

(c-PVL; defined according to de Vries et al.[15]). GMH-IVH, PHVD, and c-PVL were diag-

nosed by sequential cranial ultrasound (cUS) examination, performed within six hours of

admission, at least three times in the first week after birth, then weekly till discharge to a level

two hospital, and again at TEA.

TEA-MRI

MR images were acquired around TEA on a 3.0 Tesla MR system (Philips Healthcare, Best,

The Netherlands) using a sense head coil. Infants were sedated with 50–60 mg/kg chloralhy-

drate by gastric tube. Until May 2008, conventional axial 3DT1-weighted imaging (repetition

time [TR] = 9.4ms; echo time [TE] = 4.6ms; slice thickness = 2.0mm, no gap) and axial T2-

weighted imaging (TR = 6293ms; TE = 120ms; slice thickness = 2.0mm, no gap) were per-

formed. In June 2008, a new protocol was introduced, which involved coronal 3D T1-weighted

imaging (TR = 9.5ms; TE = 4.6ms; slice thickness = 1.2mm, no gap) and coronal T2-weighted

imaging (TR = 4847ms; TE = 150ms; slice thickness = 1.2mm, no gap).

Assessment of brain injury. WM, cortical and deep GM, and cerebellum were evaluated

for the presence of brain abnormalities (MJNLB and LSV) and abnormal brain metrics (MJB

and KJK) according to the scoring system by Kidokoro et al.[4] for T1- and T2-weighted

TEA-MRI. Measurements were obtained using OsiriX (32-bit version, www.osirix-viewer.

com), which allowed for free conversion to all planes. The GBAS was calculated as the sum of

regional subscores and further classified as normal (0-�3), mildly abnormal (4-�7), moder-

ately abnormal (8-�11), and severely abnormal (�12) according to Kidokoro et al.[4].
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Neurodevelopmental outcome

Neurodevelopmental outcome was assessed at either 24 or 30 months CA, depending on inclu-

sion in a European study (www.i-med.ac.at/neobrain). Neurodevelopmental assessment was

performed by a single developmental specialist (ICH), who was blinded for the TEA-MRI

scores, using the cognitive, fine motor, and gross motor subtests of the Bayley Scales of Infant

and Toddler Development, third edition (BSITD-III).[16] The composite and scaled scores

corrected for premature birth were calculated (mean [standard deviation] in a normative pop-

ulation: 100 [15] and 10 [3], respectively). For motor outcome, only the scaled scores for gross

and fine motor function were considered, as the composite motor score compromises both

items and therefore provides less detail. The severity of cerebral palsy was graded according to

the Gross Motor Function Classification System.[17].

Statistical analysis

Data were analysed using IBM SPSS Statistics version 20 (SPSS Inc, Chicago, Illinois, USA).

Measurements of the biparietal diameter, deep GM area, and transcerebellar diameter were

corrected for PMA using linear regression analysis as described in the original paper (i.e. cor-

rected measurement = original measurement+slope�[40-PMA]).[4] Corrected measures were

used in subsequent analysis.

Perinatal characteristics and TEA-MRI scores of the Utrecht and St. Louis cohorts were

compared using either a Chi-square or Fisher’s exact test for categorical variables and

ANOVA for continuous variables.

The relationship between perinatal characteristics and TEA-MRI was explored using a Chi-

square or Fisher’s exact test, logistic regression analysis, and multivariable regression analysis

with TEA-MRI as dependent variable. This was done by hand in a forward manner with a p-

value�.05 as exclusion criterion. All potential interactions were evaluated and statistically sig-

nificant interactions between independent variables were added to the model.

The correlation between neonatal cUS and TEA-MRI was explored using multivariable

regression analysis.

The association between TEA-MRI and neurodevelopmental outcome was evaluated using

multivariable regression analysis. Given the number of missing data in the St Louis cohort,

only the data from the Utrecht cohort were analysed. Results were adjusted for maternal edu-

cation, non-Western ethnicity, female sex, GA, BW z-score, and test age (i.e. 24 or 30 months

CA). A p-value < .05 was considered to be statistically significant; no corrections for multiple

comparisons were needed using these models.

Results

Descriptive results

In total, 239 preterm neonates were included. Clinical characteristics and neurodevelopmental

outcome data are presented in Table 1. Neurodevelopmental assessment was performed at a

median (range) CA of either 24.0 (23.2–27.6) or 30.0 (29.5–30.9) months in 159 (66.5%) and

80 (33.5%) infants, respectively.

Comparison with the original St. Louis cohort

A comparison of perinatal characteristics between the Utrecht cohort and St. Louis cohort

(n = 97) is presented in Table 1. For more details regarding the latter cohort, we refer to the

paper by Kidokoro et al.[4]Significant differences in the distribution of the GBAS and all

regional subscores were observed between both cohorts (Fig 1; S1 Table). Overall, a smaller
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Table 1. Patient characteristics of the Utrecht and St. Louis cohorts.

Utrecht cohort (n = 239) St. Louis cohort (n = 97) P Value

Neonatal characteristicsa

Maternal age in years 31 (27–34; 21–42) 28 (23–33; 15–47) .004

Maternal educational levelb Low: 75 (31.8)

Intermediate: 77 (32.6)

High: 84 (35.6)

Ethnicityb Western: 177 (74.1)

Mixed: 13 (5.4)

Non-Western: 49 (20.5)

Gestational age in weeks 26.6 (25.9–27.4; 24.3–27.9) 27 (25–28; 23–32) .39

Birth weight in gram 900 (760–1000; 455–1450) 930 (745–1120; 480–1600) .03

Birth weight <2 SD 2 (.8) 6 (6.2) .008

Female 177 (49.0) 54 (55.7) .26

Multiple birth 75 (31.4) 33 (34.0) .64

Antenatal corticosteroids (�1 gift) 221 (93.6)c 80 (82.5) .002

Caesarean section 110 (46.0) 68 (70.1) < .001

Mechanical ventilation >7 days 120 (50.2) 30 (30.9) .001

Oxygen at 36 weeks PMA 103 (43.1) 49 (50.5) .22

Inotropics 102 (42.7) 33 (34.0) .14

Persistent ductus arteriosus 108 (45.2) 39 (40.2) .40

Parenteral nutrition >21 days 39 (16.8)d 38 (39.2) < .001

Sepsis 96 (40.2) 29 (29.9) .08

Perforated necrotizing enterocolitis 18 (7.5) 7 (7.2) .92

Sequential cranial ultrasounde

GMH-IVH 98 (41.0)

Grade I 20 (8.4)

Grade II 43 (18.0)

Grade III 18 (7.5)

PVHI 17 (7.1)

PHVD requiring CSF drainage 20 (8.4)

c-PVL 1 (0.4)

TEA-MRIa

Postmenstrual age in weeks 41.1 (40.7–41.6; 39.3–43.7) 38 (37–39; 36–42) < .001

Weight in grams 3300 (2985–3630; 1685–4715) 2500 (2270–2745; 1490–3825) < .001f

Head circumference in cm 35.2 (34.5–36.2; 30.0–39.0) 32.5 (31.9–33.5; 29.0–36.8) < .001g

Neurodevelopmental outcome at 24 and 30 months CAa

Cognitive composite score 105 (95–110; 60–145) 85 (70–100; 65–110) < .001

Motor composite score 107 (100–112; 70–148) 85 (73–97; 58–107) < .001

Fine motor scaled score 13 (11–14; 3–19) 8 (6–10; 2–15) < .001

Gross motor scaled score 9 (8–10; 1–17) 7 (4–10; 1–11) < .001

Cerebral palsy 6 (2.5)

PVHI: periventricular hemorrhagic infarction; SD: standard deviation.
a data are presented as either n (%) or median (interquartile range; range).
b data were not comparible between both cohorts.
c data were missing for three infants.
d data were missing for seven infants.
e sequential cUS data were not available for the St. Louis cohort.
f adjusted for PMA in multivariable regression analysis: β (95% confidence interval, CI) for the St. Louis cohort: -395 gram (-600; -195; p < .001).
g adjusted for PMA and weight at MRI-TEA in multivariable regression analysis: β (95% CI) for the St. Louis cohort: +.1 cm (-.5; .6; p = .85).

https://doi.org/10.1371/journal.pone.0177128.t001
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proportion of the Utrecht infants demonstrated moderate/severe brain injury (15.9% vs 35.0%;

p< .001).

Substantial differences were also observed in the distribution of brain metrics (S2 Table).

Compared to the Utrecht cohort, St. Louis infants demonstrated a relatively larger atrial size

whereas measurements of the deep GM area and transcerebellar diameter, corrected for PMA

at TEA-MRI, were reduced (p< .001). In both cohorts, deep GM and cerebellar measurements

appeared to be interrelated. Deep GM area was 1.6 cm2 [95% confidence interval, CI: 1.4–1.8;

p< .001] reduced in the St. Louis infants after adjustment for deep GM signal abnormalities,

biparietal diameter, and transcerebellar diameter. Differences in cerebellar size between the

Fig 1. Distribution of the global brain abnormality score and regional subscores across the Utrecht (n = 239) and

St. Louis (n = 97) cohorts. A left-sided shift of the curve can be appreciated for the Utrecht data.

https://doi.org/10.1371/journal.pone.0177128.g001
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Utrecht and St. Louis infants remained no longer statistically significant after correction for

cerebellar signal abnormalities, biparietal diameter and deep GM area.

Perinatal factors associated with TEA-MRI

In the Utrecht cohort, mechanical ventilation >7 days (β [95% CI]: 1.3 [.5; 2.0], p< .001) and

parenteral nutrition >21 days (2.2 [1.2; 3.2], p< .001) were independently associated with a

higher GBAS on TEA-MRI.

Infants with parenteral nutrition >21 days demonstrated a higher rate of cystic WM abnor-

malities (12.8% vs. 3.6%, p = .03), deep GM signal abnormalities (17.9% vs. 2.6%, p< .001),

and cerebellar signal abnormalities (35.9% vs. 13.0%, p< .001).

Biparietal diameter, adjusted for body weight at TEA-MRI, was negatively related to both

prolonged mechanical ventilation (-1.2 mm [-2.1; -.3], p = .008) and parenteral nutrition (-1.4

mm [-2.6; -.1], p = .03). Mechanical ventilation >7 days was also associated with a small reduc-

tion in deep GM area (-.4 cm2 [-.6; -.2], p< .001), adjusted for deep GM signal abnormalities,

biparetial width, and transcerebellar diameter.

Sequential cUS findings in relation to TEA-MRI

Grade II (1.5 [.7; 2.3]), grade III (2.5 [1.2; 3.8]), and grade IV (5.7 [4.3; 7.1]) GMH-IVH (p<
.001) as well as PHVD requiring CSF drainage (2.0 [.7; 3.4], p = .007) were independently asso-

ciated with a higher GBAS on TEA-MRI. GMH-IVH grade II-IV correlated with increased

subscores of WM, deep GM, and cerebellum, whereas PHVD requiring CSF drainage was

exclusively related to an increased cerebellum score.

TEA-MRI and neurodevelopmental outcome

GBAS. The GBAS demonstrated an inverse relationship with cognitive, fine motor and

gross motor performance at two years GA (Table 2, p< .01). Classification of the GBAS into

four categories (i.e. normal, mildly, moderately, or severely abnormal) according to Kidokoro

et al.[4] was only associated with gross motor outcome (β [95% CI] in scaled scores: -.6 [-1.0;

-.3], p< .001, R2 = .152).

Subscores. Distinct associations were observed between the different subscores for WM,

cortical and deep GM, and cerebellar injury and cognitive and motor outcome (i.e. in compos-

ite and scaled scores, respectively) at two years CA. Cognition was exclusively related to cere-

bellum scores (-1.8 [-2.9; -.6], p = .002, R2 = .223). Fine motor outcome was only associated

with WM scores (-.2 [-.4; -.1], p = .004, R2 = .134). Gross motor outcome was independently

related to WM (-.2 [-.4; -.1], p = .008) and deep GM (-1.2 [-1.9; -.5], p< .001) scores, with R2 =

.206. We adjusted for the parameters mentioned in Table 2.

Brain metrics. Independent associations with cognitive and motor outcome–in compos-

ite and scaled scores, respectively, and adjusted for the parameters mentioned in Table 2 –were

exclusively observed for ventricular and cerebellar measurements on TEA-MRI (Fig 2). The

maximal atrial width and transcerebellar diameter were independently associated with cogni-

tion (-.6/mm [-1.2; -.1] and .5/mm [.1; .9], respectively, p< .05; R2 = .239) as well as gross

motor outcome (-.2/mm [-.3;-.0] and .1/mm [.0;.2], respectively, p< .05; R2 = .184). The maxi-

mal atrial width was also related to fine motor function (-.3/mm [-.4; -.1], p< .001; R2 = .165).

After the exclusion of 102 (42.7%) infants with concomittant brain pathology on sequential

cUS (i.e. GMH-IVH grade I-IV or c-PVL) or TEA-MRI (i.e. WM cysts or extensive signal

abnormalities in WM, deep GM, or cerebellum), only the inverse association between the max-

imal atrial width and cognition remained statistically significant (-1.1/mm [-2.2; -.1], p = 0.03),

with a trend for fine motor outcome (-.2/mm [-.5; .0], p = .06).

Preterm brain injury, perinatal factors and neurodevelopmental outcome

PLOS ONE | https://doi.org/10.1371/journal.pone.0177128 May 9, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0177128


Discussion

In this study, the recently developed scoring system for T1- and T2- weighted TEA-MRI by

Kidokoro et al.[4] was evaluated in a large regional cohort of extremely preterm infants from

Utrecht. The distribution of brain abnormalities and brain metrics was shown to differ from

the original St. Louis cohort. In the Utrecht cohort, mechanical ventilation >7 days and paren-

teral nutrition>21 days were identified as risk factors for a higher GBAS on TEA-MRI in mul-

tivariable analysis. For the St. Louis cohort, these factors were also identified to relate to

increased GBAS in univariate analysis.[4] TEA-MRI scores accounted for only a relatively

small amount of variance in neurodevelopmental outcome at two years CA according to the

BSITD-III.

Significant differences in the distribution of both the GBAS and regional subscores were

observed between the Utrecht and St. Louis cohorts.[4] Overall, a smaller proportion of the

Utrecht cohort demonstrated moderate/severe brain injury on TEA-MRI (15.9% vs 35.0%; Fig

1). There was a lower prevalence of ventricular enlargement in the Utrecht cohort. This may

relate to differences in the incidence and severity of GMH-IVH and PHVD as well as

Table 2. Global brain abnormality score on TEA-MRI in relation to neurodevelopmental outcome in

the Utrecht cohort (n = 239) according to multivariable regression analysis.

β (95% CI) P Value R2

Cognitive outcomea; composite score (mean [SD]: 100 [15]d) .219

(Constant) 104.1 (100.2; 108.0)

Maternal education 3.0 (1.4; 4.7) < .001

Non-Western ethnicity -8.3 (-11.7; -4.9) < .001

Female sex 3.6 (.8; 6.4) .01

Test age 30 months CA -3.5 (-6.5; -.5) .02

Global brain abnormality score -.7 (-1.2; -.2) .004

Fine motor outcomeb; scaled score (mean [SD]: 10 [3]d) .130

(Constant) 12.0 (10.9; 13.2)

Maternal education .6 (.3; 1.0) .001

Gestational age (centered at 24 weeks) .4 (.1; .7) .008

Birth weight z-score .4 (.1; .8) .02

Test age 30 months CA -.9 (-1.5; -.2) .01

Global brain abnormality score -.1 (-.3; -.0) .007

Gross motor outcomec; scaled score (mean [SD]: 10 [3]d) .178

(Constant) 9.4 (8.7; 10.1)

Maternal education .6 (.2; .9) .001

Female sex .6 (.0; 1.2) .03

Birth weight z-score .5 (.2; .8) .002

Global brain abnormality score -.2 (-.3; -.1) < .001

β: beta coefficient, representing the unit change in an outcome variable based on one unit change in the

predictor variable; CI: confidence interval; SD: standard deviation.
a the explained variance of maternal education, ethnicity, female sex, and test age (i.e. 30 versus 24 months

CA) for cognitive outcome was .191 (p < .001); GA and BW z-score did not contribute to the model.
b the explained variance of maternal education, GA, BW z-score, and test age for fine motor outcome was

.102 (p < .001); ethnicity and female sex did not contribute to the model.
c the explained variance of maternal education, female sex, and BW z-score for gross motor function was

.108 (p < .001); ethnicity and GA did not contribute to the model.
d i.e. in a normative population, according to the BSITD-III.

https://doi.org/10.1371/journal.pone.0177128.t002

Preterm brain injury, perinatal factors and neurodevelopmental outcome

PLOS ONE | https://doi.org/10.1371/journal.pone.0177128 May 9, 2017 8 / 13

https://doi.org/10.1371/journal.pone.0177128.t002
https://doi.org/10.1371/journal.pone.0177128


periventricular WM injury with subsequent ex-vacuo dilatation. Since GMH-IVH, PHVD,

and c-PVL were diagnosed differently across both cohorts (i.e. using sequential neonatal cUS

in Utrecht vs. TEA-MRI in St. Louis), no definite conclusions can be drawn regarding the

underlying pathophysiology.

Fig 2. Association between brain metrics on TEA-MRI and neurodevelopmental outcome in the Utrecht

cohort (n = 239). Presented are the residuals for cognitive outcome (i.e. corrected for maternal education, non-

Western ethnicity, female sex, and test age), fine motor outcome (i.e. corrected for maternal education, GA,

birth weight z-score, and test age), and gross motor outcome (i.e. corrected for maternal education, female sex,

and birth weight z-score).

https://doi.org/10.1371/journal.pone.0177128.g002
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Also striking was the relative reduction in deep GM and cerebellar size in the St. Louis

cohort compared to the Utrecht cohort. This cannot be explained exclusively by the higher

presence of focal signal abnormalities or by differences in brain size, hence suggesting different

rates of regional brain growth impairments between cohorts. The prevalence of delayed gyral

maturation was significantly lower in the St. Louis cohort (1.0% vs. 41.4%). This is likely due

to the difference in median scan ages between the cohorts (38 vs. 41 weeks PMA) since the

absence of tertiary folds in the inferior temporal and occipital lobes was the main reason to

score infants as delayed in the Utrecht cohort, and this feature is not yet required at 38 weeks

PMA.

As far as we could compare both cohorts, differences in the distribution of perinatal charac-

teristics did not seem to be sufficient to explain the lower prevalence of brain injury in the

Utrecht cohort. This suggests that other determinants, such as antenatal risk factors, socio-eco-

nomic circumstances and access to antenatal care, might be involved. More intrinsic differ-

ences between populations, e.g. ethnicity and rate of teenage pregnancies, may also offer a

partial explanation for the observed differences.

The negative effects of respiratory problems on preterm brain development, as observed in

the present cohort, were previously acknowledged. Chronic lung disease has been shown to

negatively impact brain volumes, cortical growth, and brain microstructure.[18–21] Prolonged

mechanical ventilation and chronic lung disease have also been identified as independent risk

factors for neurodevelopmental impairments, including cerebral palsy.[22–24].

Mechanisms underlying the observed adverse effects of prolonged parenteral nutrition are

likely dual. On the one hand, parenteral nutrition itself can have a negative impact on brain

growth and maturation.[25,26] On the other hand, preterm infants requiring prolonged par-

enteral nutrition tend to be the more severely ill infants in whom nutritional needs are often

not optimally met, as evident in decreased growth rates of both body weight and head circum-

ference.[27] Malnutrition following birth has previously been shown to delay microstructural

development of the cortical GM.[25,28] The duration of parenteral nutrition has been reported

to be negatively associated with regional brain volumes at TEA.[29].

In our extremely preterm cohort, the GBAS was inversely related to cognitive and motor

outcome, although the amount of explained variance was small. Concerning the regional sub-

scores, a negative association was observed between cognition and cerebellar abnormalities,

which is in agreement with previous studies.[30–32] Fine motor outcome was related to WM

injury, whereas gross motor outcome was associated with both WM and deep GM injury. WM

abnormalities have previously been related to motor impairments.[33,34] Moderate/severe

deep GM abnormalities in our cohort were invariably due to the presence of GMH-IVH grade

III-IV and PHVD, which are known to be related to motor impairments.[35,36].

Regarding the brain metrics incorporated in the TEA-MRI score, associations with cogni-

tive and motor performance were exclusively observed for ventricular and cerebellar measure-

ments. The association between transcerebellar diameter and outcome was mainly determined

by a few infants with a significantly reduction in cerebellar size due to a severe cerebellar hae-

morrage. Both ventriculomegaly, whether due to PHVD or ex-vacuo,[7,37] and cerebellar vol-

ume loss[30–32] were previously identified as risk factors for developmental impairments.

The strengths of the present study include the evaluation of the TEA-MRI scoring system

in a large cohort of extremely preterm infants with high-quality neuroimaging and a follow-up

rate of>97% of survivors. Some limitations should be mentioned. First, the limited prognostic

value of the TEA-MRI scoring system observed in this study may relate to the overall relatively

favourable outcome in the Utrecht cohort. In addition, evaluation of neurodevelopmental out-

come at two years of age using the BSITD-III may not be sensitive enough to recognize more

subtle neurodevelopmental deficits that first manifest at a later age.[38] This assumption is
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supported by the observed differences in cognitive and fine motor performance between

infants evaluated at 24 versus 30 months of corrected age. Furthermore, TEA-MRI alone may

not show the full extent of brain injury that occurred during the neonatal period.[7] Sequential

early neuroimaging is necessary to fully appreciate the severity of GMH-IVH and subsequent

PHVD as well as c-PVL.

Previous research also illustrated the limited capability of conventional TEA-MRI in partic-

ularly predicting cognitive outcome.[33,39–41] Additional MRI techniques such as diffusion

tensor imaging, (resting-state) functional MRI or MR-spectroscopy, may provide more insight

into the relationship between more subtle or diffuse patterns of brain injury and the spectrum

of long-term neurodevelopmental deficits associated with preterm birth.

In conclusion, the scoring system by Kidokoro et al.[4] allows for a structured and compre-

hensive evaluation of brain abnormalities in preterm born infants at TEA. The need for pro-

longed mechanical ventilation and parenteral nutrition was found to be associated with a

higher rate of brain abnormalities on TEA-MRI. The prognostic value of the TEA-MRI scoring

tool in this relatively well-performing cohort appeared to be rather limited. Since patterns of

brain abnormalities and impaired brain growth were shown to differ among preterm cohorts,

we recommend further evaluation of the TEA-MRI scoring system and incorporated items in

relation to long-term neurodevelopmental outcome across other preterm populations.
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