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Abstract

Clinical trials often lack power to identify rare adverse drug events (ADEs) and therefore cannot 

address the threat rare ADEs pose, motivating the need for new ADE detection techniques. 

Emerging national patient claims and electronic health record databases have inspired post-

approval early detection methods like the Bayesian self-controlled case series (BSCCS) regression 

model. Existing BSCCS models do not account for multiple outcomes, where pathology may be 

shared across different ADEs. We integrate a pathology hierarchy into the BSCCS model by 

developing a novel informative hierarchical prior linking outcome-specific effects. Considering 

shared pathology drastically increases the dimensionality of the already massive models in this 

field. We develop an efficient method for coping with the dimensionality expansion by reducing 

the hierarchical model to a form amenable to existing tools. Through a synthetic study we 

demonstrate decreased bias in risk estimates for drugs when using conditions with different true 

risk and unequal prevalence. We also examine observational data from the MarketScan Lab 

Results dataset, exposing the bias that results from aggregating outcomes, as previously employed 

to estimate risk trends of warfarin and dabigatran for intracranial hemorrhage and gastrointestinal 

bleeding. We further investigate the limits of our approach by using extremely rare conditions. 

This research demonstrates that analyzing multiple outcomes simultaneously is feasible at scale 

and beneficial.

I. Introduction

Adverse drug events (ADEs) pose a serious public health risk. While clinical trials remain 

the gold standard for evaluating drug safety and efficacy, the emergence of massive 

healthcare repositories, in the form of longitudinal observational databases (LODs), 

introduces a novel resource for asking and answering drug safety questions. These databases 

contain insurance claims and electronic medical records, with time-stamped patient data that 
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include drug exposures and diagnoses. The scale of these datasets is remarkable, with 

hundreds to thousands of observations on tens of millions of patients. These resources can 

potentially support post-approval surveillance for ADEs, where we can monitor the relative 

safety of drugs after they are clinically available. The development of a common data model 

(CDM) for LODs through the Observational Medical Outcomes Partnership (OMOP) 

experiment facilitates statistical methods implementation using these data to address 

pertinent questions about health practices, including comparative drug safety [Overhage et 

al., 2012]. The OMOP experiment has demonstrated the value and efficacy of competing 

analytical approaches [Stang et al., 2010]. While observational studies may be vulnerable to 

variability of study design, and the OMOP community produced the first steps toward 

systematic statistical evaluation of observational evidence [Madigan et al., 2014].

Commensurate with its considerable promise, analysis of LODs presents a significant 

statistical and computational challenge. Patients have different levels of illness and 

compliance that are not readily identifiable from the LODs. Observations are incomplete and 

inhomogeneous over time. In addition, the scale of the data creates a massive, but extremely 

sparse, resource. Not only are LODs massive in the number of patients recorded, they also 

contain the full spectrum of medical products, interventions, and diagnoses. This scale 

precludes many analytic approaches.

ADEs are clinical manifestations of specific pathologies. For example, hypocoagulability 

affects the entire body, creating a general increased risk of bleeding. However, the clinician 

will identify the results of hypocoagulability by the anatomic location where a bleeding 

event occurs. If the bleeding occurs in the brain, the diagnosis will be an intracranial 

hemorrhage. If the bleeding occurs in the stomach, the diagnosis will be a gastric 

hemorrhage. The clinician will identify the outcome but may not identify the pathology. The 

drug-specific effect often occurs at the level of the pathology, but the identified ADEs appear 

at finer granularity. Connecting outcomes and drugs without considering shared pathology 

ignores a crucial component of the pathophysiology.

Currently, most analytical approaches consider one outcome at a time, ignoring relationships 

among the outcomes. In particular, we miss an opportunity to "borrow strength" 

[DuMouchel, 2012] across outcomes where there is shared pathophysiology. Dealing with 

multiple ADE outcomes remains of critical importance to epidemiology and data mining 

[Thuraisingham et al., 2009, DuMouchel, 2012]. DuMouchel [2012] and Crooks et al. 

[2012] approach this problem by borrowing strength across outcomes to construct a 

multivariate logistic regression.

A common method for avoiding multiple outcomes is aggregating all the outcomes of 

interest into one overarching category, essentially considering different outcomes as 

exchangeable. Selecting which outcomes are related often follows directly from how 

clinicians codify diseases. For example, the International Classification of Diseases version 

9 (ICD-9) code 432 represents “other and unspecified intracranial hemorrhage," of which 

432.1 “subdural hemorrhage" is a subtype. Using all 432.* ICD-9 codes would capture all 

the subtypes of “other and unspecified intracranial hemorrhage" the ICD-9 considers, 

essentially aggregating all subtypes under the 432 code. The OMOP Standard Vocabulary 
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encompasses multiple disease relationship representations, including the Systematized 

Nomenclature of Medicine-Clinical Terms (SNOMED-CT) vocabulary. However, 

determining which outcomes are related by shared pathology need not be limited to disease 

codes; the discretion of a clinical expert should guide their selection.

Aggregating outcomes produces drug risk estimates that reflect a weighted average of the 

risk for each outcome separately. This may introduce bias into outcome-specific risks. 

Prevalence differences underscore this bias, with high prevalence outcomes driving risk 

estimates. When considering outcomes with low prevalence, we would like to combine 

information about them with closely related common outcomes. However, aggregating these 

rare outcomes with common ones overwhelms the drug-outcome specific relationship. 

Therefore, we would like a way to treat similar outcomes as distinct while still respecting 

their relatedness.

In this paper we move beyond focusing on one outcome at a time. Specifically, we seek to 

reduce the bias that arises when we aggregate multiple, related outcomes into one synthetic 

outcome. To do this, we develop a set of open-source statistical tools relying on LODs 

structured according to the OMOP common data model. We integrate a hierarchy of 

pathology and outcomes into ADE detection.

II. The SCCS Model

I. SCCS Framework

The most common approaches to analyzing outcomes from LODs include cohort, case-

control, and case-crossover methods [Maclure, 1991, Rothman et al., 2008]. However, other 

approaches have gained popularity in recent years. Farrington [1995] proposes the self-
controlled case series (SCCS) method in order to estimate the relative incidence of rare 

drug-specific outcomes to assess vaccine safety. Simpson et al. [2013] and Suchard et al. 

[2013] use this model successfully in ADE detection. A significant benefit of the SCCS 

model is that it reduces the sample size to exposed patients experiencing at least one adverse 

event. Adverse event risk is a function of drug-specific effects and patient-specific risks, 

including underlying conditions. However, we are only interested in the drug-specific 

effects, and the SCCS model allows us to focus our statistical power on estimating these 

covariates of interest. These benefits make the SCCS model ideal for pharmacovigilance. A 

major limitation of the SCCS remains its formulation around one outcome at a time, a 

situation we will rectify by splicing our hierarchical model into an SCCS framework.

The SCCS model assumes that ADEs arise according to an inhomogeneous Poisson process. 

For a given LOD, let P count the number of outcome types we are considering, and let p = 1, 

…, P index these outcomes. For a given drug j, let Qj equal the number of outcomes where 

at least one patient who has that outcome consumed that drug. Let jp = 1, …, Jp index the 

drugs where there is at least one exposure to a patient with outcome p, such that J1, …, JP 

count the total number of drugs observed in the exposure set for each outcome. Parameters β 
= (β1, …, βP)′ where βp = (βp1, …, βpJp)′ measure the instantaneous, unknown, log relative 

risks given exposure for each drug with respect to each outcome. Under the model, let 

patient i = 1, …, N for outcome p = 1, …, P have a baseline risk eϕip. We consider drug eras 
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as intervals of exposure over which the drugs a patient takes remains constant. Let the drug 

exposures multiplicatively modulate the underlying instantaneous event intensity λikp during 

constant drug exposure era k.

We consider drug eras as intervals of exposure over which the drugs a patient takes remain 

constant. This aspect of the OMOP CDM requires special attention. We use the OMOP 

CDM 4 definition of a drug era. A drug era is a combination of individual drug exposures, 

such as individual prescription fills. For example, if the same medication is refilled routinely 

at the end of its 30 day supply for 3 refills, this appears as a single 90 day drug era. Our 

constant eras are intervals of time where patients remain on the same combination of 

medication. For example, consider a patient who takes drug A from July 5, 2009 through 

July 20, 2009 and drug B from July 10, 2009 to July 17, 2009. Three distinct drug eras 

emerge: one era from July 5 to July 9; another from July 10 to July 17; and the last era from 

July 18 to July 20.

Let Kip be the total number of drug eras for person i in condition p. Following the notation 

of Suchard et al. [2013] and Simpson et al. [2013], the intensity arises as , 

where xikp = (xikp1, …, xikpJp)′ and xikpj indicates exposure to drug j in era k for outcome p. 

The exposure duration for exposure era k of patient i is likp. The number of ADEs in era k of 

patient i for outcome p is yikp ~ Poisson(likp × λikp). The SCCS method conditions on the 

total number of events for a particular outcome nip = ∑k yikp that a patient experiences over 

her total observation period. For multiple outcomes, (ni1, …, nip) remain sufficient statistics 

for the subject’s baseline risks (ϕi1, …, ϕip). By conditioning on these statistics, the baseline 

risks fall out of the conditional likelihood of the data regardless of their correlation and 

hence greatly reduce the number of parameters to estimate:

(1)

Taking the log of Equation (1) yields the log-likelihood under our model

that forms only part of our objective function of interest. Specifically we work in a Bayesian 

framework and choose to specify a prior distribution for the covariates.

Bayesian techniques are ideal for pharmacovigilance, succinctly capturing clinical prior 

knowledge of drug safety, and are common in the field, as seen in Curtis et al. [2008], 

Madigan et al. [2011]. Furthermore, the Bayesian approach mitigates many of the challenges 

of massive sparse data. Simpson et al. [2013] reduce overfitting under a maximum 

likelihood approach by assuming a prior over the drug effect parameter vector, constructing 
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a Bayesian SCCS. We assume a priori that most drugs are safe and therefore assume a prior 

that shrinks the parameter estimates toward 0.

II. Disease Hierarchies

To analyze a group of related outcomes, we follow DuMouchel [2012] in framing our 

approach as a hierarchical multivariate regression, where the specific outcomes are related 

under their shared pathology. Each adverse event has a separate representation of each 

shared drug, a drug-outcome effect estimate. We rely on our Bayesian perspective and 

project that idea onto multiple ADE outcomes by extending our prior.

In the original Bayesian SCCS formulation applied to LODs, there can exist upwards of Jp ~ 

10, 000 drug covariates. Multiple outcomes exacerbate this extreme dimensionality. Namely, 

we need to compute  covariates, roughly P-fold more covariates. To cope with 

this ultra high dimensionality, we model the effects of the same drug across outcomes 

hierarchically. We represent each drug-outcome effect as inheriting from a drug-pathology 

effect. We extend the prior structure of the original Bayesian SCCS model by using a 

hierarchical prior that shares information across regression coefficients (β1j, …, βQjj) that 

measure the association of a single drug j across all Qj outcomes where drug j appears in the 

records. The drug-level precision is τd, and the pathology-level precision is τp.

Not all drugs need be present across all outcomes. Therefore, we scale the prior precision for 

each drug by the number of outcomes in which the drug appears as a non-zero covariate. For 

example, if drug A appears among the patients with intracranial hemorrhage and gastric 

hemorrhage, while drug B appears only among patients with gastric hemorrhage, we seek to 

compensate for this mismatch by scaling the universal drug-level precision when 

approaching each outcome specific risk estimate. Specifically, we model

(2)
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III. Computational Swindle

As described, the hierarchical model imposes greater dimensionality, a more cumbersome 

log-likelihood, and a host of new parameters to track, suggesting that we will require new 

inference equipment that scales for LODs. However, a redefinition of parameters 

demonstrates that our more complex model easily compresses into a form that allows for 

inference with the existing high performance SCCS tools of Suchard et al. [2013]. We 

concatenate outcome specific event counts vectors ỹ = (y1, y2, …, yP)′ and time of exposure 

vectors l̃ = (l1, l2, …, lP) into new vectors representing the adverse events and exposure 

times across all outcomes.

In practice, we take our data, a set of event counts and drug exposures, for each outcome and 

add an outcome-specific tag to each of the drug exposures. That is, each drug exposure now 

has an associated outcome. For example, if we look at bleeding events, with outcomes 

intracranial hemorrhage and gastric hemorrhage, and drug warfarin, a covariate would be 

warfarin-intracranial hemorrhage or warfarin-gastric hemorrhage. Considering β̃ = (β1, β2, 

…, βP), covariates for the same event are consecutive. We construct a new design matrix X̃,

This design matrix is necessarily block diagonal, since the outcome-specific covariates are 

not represented in other outcomes. For example, the warfarin-intracranial hemorrhage 

covariate is not present among the data on patients who have gastric hemorrhage events. 

Given this structure, the resulting log-likelihood is

(3)

Under this reindexed representation, log-likelihood (3) matches the expression in Suchard et 

al. [2013], enabling us to recycle existing computational infrastructure. Furthermore, each 

Xp is extremely sparse, and the computational approach of Suchard et al. [2013] efficiently 

represents and computes over sparse systems. While creating X̃ increases the dimensionality, 

it is a sparse expansion, mitigating the computational demand. Thus, we can leverage the 

extant sparse computing solutions to evaluate this more sophisticated model, without 

drastically increasing the computational demand.
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IV. Maximum A Posteriori Estimation using Cyclic Coordinate Descent

Given the reformulation, the changes to the univariate Bayesian SCCS framework remain in 

the prior. For notation, we consider the set Gj of covariates representing the same drug 

across all conditions we consider. The cardinality of Gj is Qj. Let Gj{p} be this set excluding 

βpj. We consider the induced prior distribution,

(4)

Taking the log of the integrand and recalling that all coefficients are independent given the 

pathology effect yields:

In this construction, f1(τp), f2(τd), and f3(τp, τd) are constants with respect to μj and Gj 

employed to simplify notation.

Completing the square to perform the integral returns

(5)

where f4(τp, τd) is a constant with respect to μj and Gj that remains after integrating over μj.

The implementation of Suchard et al. [2013] uses cyclic coordinate descent (CCD) to find 

the maximum a posteriori (MAP) estimates through optimizing the model log posterior P(β) 

= L(β) + log[p(β)]. Our approach amounts to regularized regression, for which CCD has 

been heavily employed [Friedman et al., 2010, Wu and Lange, 2013]. CCD circumvents the 

need to invert the full Hessian at each step [Wu et al., 2009]. At each CCD iteration, the 

updates are a function of the log-likelihood gradient ∂L/∂βpj and Hessian  as well 

as the penalty gradient ∂log[p(β)]/∂βpj and Hessian . A single Newton step 

is taken along each coordinate and proves extremely efficient when X is sparse [Genkin et 

al., 2009, Suchard et al., 2013].
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Working in the CCD framework, we require the gradient and the Hessian contributions to 

the log-likelihood and log-priors. Fortunately, the log-likelihood remains unchanged using 

our computational swindle. However, the penalty component does change under the 

hierarchical model, with both the gradient and the Hessian a function of the pathology 

precision. The forms of the penalty components in the Newton steps are

(6)

V. Hyperparameter Selection

We use cross-validation based on the predictive log-likelihood of the hold-out set to select 

the hyperparameters τp and τd. Suchard et al. [2013] use a log-scale grid search that is 

computationally expensive even with only a single parameter. When we add a second 

parameter, this method becomes impractically slow. The additional parameter τp increases 

overall computing cost by an order of magnitude. However, it remains desirable to use cross-

validation to select both τd and τp.

To help overcome this burden, we turn to Genkin et al. [2009] in implementing an 

"autosearch" for hyperparameter selection. We start with an initial guess and then increase or 

decrease our guess by one log unit until we have bracketed the maximum of the hold-out set 

predicted log-likelihood. Then we compute a quadratic approximation to the predicted log-

likelihood. The maximum of this approximate surface becomes our estimate. To find both 

hyperparameters, we alternate between them, fixing one and finding the conditional 

maximum of the other, and then fixing to that new conditional solution and finding the 

conditional maximum of the other. We continue this process until both previous and 

proposed hyperparameters are within an order of magnitude. We prefer using this flexible 

tolerance method to a fixed tolerance method, in which finding the appropriate fixed 

tolerance would be difficult considering the log-scale of the search space.

III. Demonstration

I. Synthetic Study: Biased Risk Estimates

To evaluate the bias that arises when using aggregated outcomes, we simulate a small dataset 

with three conditions of interest. For the first and third conditions, the prevalence of these 

diagnoses is extremely low, with only 20 and 10 patients having these conditions, 

respectively. For the second condition, the prevalence is much higher, with 1000 patients 

present in our hypothetical dataset. We expose these synthetic patient groups to 10 drugs. 

Two drugs are positively associated with all conditions. However, the risk for these two 

drugs varies drastically among the three groups. In particular, the two dangerous drugs 
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present a log relative risk of 0.5 for the first, rare condition, a log relative risk of 1 for the 

second common condition, and a log relative risk of 2 for the third, rare condition.

In our simulations, we first draw a patient-specific underlying risk from a Normal(−1,0.5) 

distribution. Then, for each patient, we uniformly select between 1 and 10 observations, or 

drug exposure eras, as well as an observation length per observation. In each observation, we 

assign between 1 and 10 drugs to the patient. For each drug, we know the log relative risk 

for the given event. Armed with the underlying risk rate as well as the drugs per observation, 

we compute the overall risk rate for each observation and draw from a Poisson distribution 

with that intensity to get the event count during that observation.

We compare the marginal estimates of the relative risks in both the aggregated data situation 

and using our hierarchical model. We first run our analysis considering all conditions 

exchangeable, extracting one risk estimate per drug. Effectively, when we aggregate data, the 

log relative risk among these three populations becomes a weighted average risk estimate. In 

Figure (1 a) we see that the analysis of the aggregated data slightly underestimates the log 

relative risk of the dangerous drugs in the large population. In the 20 patient and 10 patient 

populations, the method seriously overestimates and underestimates, respectively, the log 

relative risk of the dangerous drugs. In contrast, the estimates from modeling these outcomes 

together under a hierarchical structure avoid this problem. Separate risk estimates for each 

drug-outcome pairs demonstrate much less bias, as seen in Figure (1 b).

We compare the model fitting times for each of these datasets, including cross-validation 

and bootstrapping with 200 replicates. For the cross-validation, we averaged the predicted 

log-likelihood over 6 permutations of the 10-fold sampling of the data. Fitting the 

aggregated dataset took 5 seconds, and the cross-validation variance was 0.1. Using the 

autosearch cross-validation method, fitting the hierarchical model took 9 seconds. We also 

fit the model using the grid search cross-validation method. Specifically, we used a 10 by 10 

grid ranging from 10−4 to 105 for both  and . Using this grid, fitting the model took 

32 seconds. The results from the autosearch, with starting estimates of 100, produced 

estimates of  and  at 1.1 and 2.2; the results from the grid search produced estimates 

of  and  at 100 and 1.

The difference between the estimates for  from the autosearch method and the grid-

search method is noteworthy. The autosearch method finds a value beyond a grid point of 

100. This results from two effects. First, both the autosearch and grid-search estimates may 

be sensitive to fitting parameter choices, like the number of permutations over which to 

average. This reflects the relatively flat topology of the predictive log-likelihood in this 

small dataset, where chance selections of data for cross-validation can move our perceived 

apex. We remedy this partly by averaging over multiple data permutations. Second, this 

difference underscores the inability of the grid method to adjust resolution as needed. The 

grid-search method is bound by our decision of grid size. Resolving the method using a finer 

grid is computationally daunting. The autosearch method avoids this problem, adjusting 

resolution as needed without the computational tax. However, the difference we see between 

the search methods in this case fails to appreciably change the estimated relative risks, with 
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no risk estimates changing by more than 0.015. This result highlights the stability of our risk 

estimates to different hyperprior estimates.

II. Real World Study: Warfarin and Dabigatran

The standard for outpatient anticoagulation is warfarin, an inhibitor of vitamin K 

metabolism. Clinically, warfarin is difficult to use, requiring frequent laboratory tests to 

identify its sensitive, patient-specific dosing. Alternatives to warfarin present an opportunity 

for improving anticoagulation care. In 2009, a randomized, controlled, noninferiority trial 

suggested that dabigatran etexilate has a comparable treatment effect to warfarin [Connolly 

et al., 2009]. Furthermore, the manufacturer claims that dabigatran requires less clinical 

attention than warfarin to find the appropriate dose. Although this trial also found grossly 

similar risk profiles for dabigatran and warfarin, there were notable differences. In particular, 

warfarin posed a greater overall risk of major bleeding. However, dabigatran posed a 

significantly elevated risk of gastrointestinal hemorrhage (GIH). Among the worst outcomes 

for patients on anticoagulation therapy with warfarin is intracranial hemorrhage (ICH). The 

rate of this ADE among dabigatran patients was one third that of warfarin patients. Thus, for 

one ADE, dabigatran appears to increase risk; for another, it appears to be safer. Many 

concerns about this trial have surfaced [Charlton and Redberg, 2014]. New events of interest 

from the trial emerged later [Connolly et al., 2010]. Reilly et al. [2014] produced better 

dose-risk trade-off results. Subsequent clinical trials have reexamined the risk of major 

bleeding events. The results of these trials are equally inconclusive, with greater transfusion 

needs among dabigatran treated patients counterbalanced by lower intensive care stay and 

lower mortality [Majeed et al., 2013].

We contribute to this debate by considering a real world equivalent of the simulated study 

above. We want to use our hierarchical model to tease out the risk profiles for both warfarin 

and dabigatran while reflecting the shared pathology of bleeding events. Thus, we consider 

each of these outcomes under our hierarchical model. Furthermore, we explore what would 

happen if we aggregated these data, considering GIH and ICH exchangeable.

To perform these studies, we examine the MarketScan Lab Results (MSLR) dataset, 

maintained by the Reagan-Udall Foundation Innovation in Medical Evidence Development 

and Surveillance project. This dataset comprises 1.5 million patient lives. We depend on the 

OMOP common data model version 4 for representation of concepts of interest. To examine 

GIH and ICH, we select all patients who experienced a diagnosis that the OMOP common 

data model version 4 considered a subset of GIH or ICH. There are 37,909 patients who had 

GIH and 2,893 patients who had ICH.

Figure (2) demonstrates our results. Grossly, three trends appear. First, we see that warfarin 

presents a lower risk for GIH than dabigatran. Second, this risk pattern reverses for ICH. 

This replicates trends previously found in the literature. Third, we see that considering these 

outcomes as exchangeable seriously masks the ICH estimates. The larger population of GIH 

patients overwhelms the analysis.

We again consider the computation time for each analysis, including cross-validation and 

bootstrapping. We used 200 replicates for the bootstrapping and averaged over 20 
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permutations of the cross-validation sampling data. Analyzing the GIH and ICH datasets 

independently took 124 and 9 seconds producing single variance estimates of 5.28 and 29.06 

using one dimensional autosearch with a starting value of 0.1. Analyzing the aggregated 

dataset using one dimensional autosearch required 111 seconds and produced a single 

variance estimate of 1.1. Under the hierarchical model, the 10 by 10 log grid-search 

approach with a range of 10−3 to 106 took 4735 seconds and produced estimates of  and 

 of 1 and 0.1. Using the two dimensional autosearch approach with an initial value of 

0.001 took 2163 seconds and produced estimates of  and  of 4.15 and 0.18.

III. Real World Study: Extreme Prevalence Differences

In some cases, we want to evaluate the risk of extremely rare events, which may contain very 

little information about each drug risk pair. To explore what happens in this situation, we 

return to the MarketScan Lab Results (MSLR) dataset. Specifically we focus on two 

conditions: chronic gastrojejunal ulcer with hemorrhage and obstruction (CGJUHO) and 

vomiting blood (VB). Both of these diagnoses inherit from the OMOP common data model 

version 4 representation of upper gastrointestinal bleeding. We produce risk estimates from 

modeling these two categories as exchangeable, and we contrast our results when treating 

these two categories hierarchically. To construct our patient population, we select all patients 

who have had either of those diagnoses delivered in an inpatient, emergency department, or 

outpatient setting. There are only 24 patients with CGJUHO; there are 16,062 patients with 

VB. We consider the entire spectrum of drugs for both conditions.

Using 10-fold cross-validation with the predictive log likelihood averaged over two 

permutations and the one dimensional autosearch with an initial value of 0.1, analyzing the 

CGJUHO data alone produces a single prior variance estimate of 0.060 in 4 seconds, and 

analyzing the VB data produces a single prior variance estimate of 0.0076 in 200 seconds. 

The aggregated model required 200 seconds to find the point estimates, with a variance 

estimate of 0.0077. Under the hierarchical model, using a 10 by 10 log-scale grid of variance 

values ranging from 10−8 to 101, we find  and  maximize the predicted log-likelihood 

at 0.01 and 0.0001, respectively. Using the autosearch method, we find the optimal  and 

 to be 0.019 and 0.00017, respectively. The autosearch required 10,500 seconds; the grid 

search required 209,500 seconds.

Although we consider all drugs for each condition of interest, it is most interesting to look at 

the drugs that are present among both the set of patients with CGJUHO and the set of 

patients with VB. The 288 drugs that fit this criterion have non-trivial hierarchies. From 

Figure (3), we see that under the hierarchical model, the condition-specific risk estimates are 

very close. Furthermore, the estimates under the hierarchical model are very close to those 

under the aggregated model.

Ostensibly, this result undercuts the purpose of the hierarchical modeling. However, there 

are notable differences between this study and both the previous simulated study and the 

warfarin and dabigatran study. In this case, CGJUHO had drastically fewer patients than VB. 

Given the stark contrast in prevalences, it is reasonable for the very common condition to 
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dominate the risk estimates of both the hierarchical and aggregated models. This suggests 

that the hierarchical model will correct for risk estimate bias as long as the prevalence 

differences between two conditions are not extreme. But, in the case of extreme prevalence 

differences, the results will be similar to aggregating the data. While the greedy iterative two 

dimensional autosearch approach greatly reduces computational time relative to the 

exhaustive search, it is still faster to compute a single hyperprior. Therefore, the differences 

in prevalence should guide the user in determining whether using the hierarchical model is 

warranted in her analysis.

IV. Discussion

In this work, we have developed a novel hierarchical framework for analyzing multiple 

outcomes in the setting of massive observational data. We have demonstrated that we can 

easily restructure this framework to leverage extant inference tools that mitigate the 

dimensional explosion of analyzing multiple outcomes. Furthermore, we have shown the 

value of such a framework in better discrimination of dangerous drugs and in better risk 

identification in small populations.

There are challenges in working with observational data [Ryan, 2013]. Inter-database 

variation in reported risk estimates can be considerable [Madigan et al., 2013]. Bias in the 

recording of the data percolates through all analyses. Assumptions regarding the uniformity 

of treatment and diagnosis decisions among physicians are almost certainly incorrect. The 

time-invariant risk assumption underlying the SCCS model is almost certainly false for some 

drug and disease pairs.

However, the quantity of data from observational healthcare datasets will not decrease, and 

the promise of these data remains strong. One hope for success in this field is to channel the 

information present in these databases into a framework that optimally allows for signal 

detection and noise reduction. One method for achieving this goal effectively is to integrate 

more biological and medical knowledge into the models. The simple hierarchical model of 

disease, which matches both disease biology and clinical perspectives of disease, is one 

modest example of such structural knowledge motivating advances in modeling.

In the future, hierarchical modeling can extend beyond diseases. Drugs also follow a natural 

hierarchical structure. Physicians and pharmacologists use drug classification heavily to 

group medications with similar modes of action together. These classification systems form 

a natural framework for understanding drug risk. The post-approval withdrawal of Vioxx 

(rofecoxib) has been one of the highest profile cases of a drug with insidious side effects. 

The medical community did not fully appreciate the cardiac effects of rofecoxib until after 

the drug had been released to the market. It is thought that the entire class of COX-2 

inhibitors puts patients at risk for cardiovascular events [Cannon and Cannon, 2012]. While 

traditional NSAIDs inhibit COX-1 and COX-2, COX-2 selective inhibitors have negligible 

effects on COX-1. One could consider the hierarchical structure of the drugs following a 

similar model as suggested here. Each of the drugs could inherit a class-specific risk. For 

example, all of the COX-2 inhibitors would share a greater risk for MI than the COX-1 
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inhibitors. This would allow the model to capture class specific effects that are currently 

inefficiently estimated independently.
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Figure 1. 
Mode estimates and 95% bootstrap confidence intervals (gray) of the log relative risk for 

each drug and their simulated relative risk (black) across two conditions with different 

prevalence. The first 10 covariates represent the estimates from one condition with a 

prevalence of 20 patients; the second 10 represent estimates from the condition with high 

prevalence, affecting 1000 patients; and the last 10 covariates represent a second condition 

with low prevalence, affecting 10 patients. Using the multiple outcomes in an aggregated 

Shaddox et al. Page 15

Stat Anal Data Min. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach (a) produces less appropriate estimates than the hierarchical outcomes approach 

(b).
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Figure 2. 
Mode estimates and 95% bootstrap confidence intervals for the effect of dabigatran (light 

gray) and warfarin (dark gray) on gastrointestinal hemorrhage (GIH) and intracranial 

hemorrhage (ICH), compared to an aggregated outcome where GIH and ICH are 

exchangeable.
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Figure 3. 
Mode estimates of the log relative risk for each drug for a common, rare, or aggregated 

outcome. The common outcome is vomiting blood (VB), dark gray triangles. The rare 

outcome is chronic gastrojejunal ulcer with hemorrhage and obstruction (CGJUHO), light 

gray circles. The aggregated outcome is CGJUHO or VB, black squares. The estimates for 

CGJUHO and VB rely on the hierarchical structure.
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