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Abstract

Purpose of Review—Educate the reader of the multiple roles undertaken by the human 

epidermal lipidome and the experimental techniques of measuring them.

Recent Findings—Damage to skin elicits a wound healing process that is capped by the 

recreation of the lipid barrier. In addition to barrier function, lipids also undertake an active 

signaling role during wound healing. Achievement of these multiple functions necessitates a 

significant complexity and diversity in the lipidome resulting in a composition that is unique to the 

human skin. As such, any attempts to delineate the function of the lipidome during the wound 

healing process in humans need to be addressed via studies undertaken in humans.

Summary—The human cutaneous lipidome is unique and play a functionally significant role in 

maintaining barrier and regulating wound healing. Modern mass spectrometry and Raman 

spectroscopy based methods enable the investigation epidermal lipidome with respect to those 

functions.
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Introduction

Skin, the largest organ in the body, is protected by a continuous barrier of lipids that face the 

external environment. These lipids are a combination of those secreted by the sebaceous 

glands as well as those generated by the cells of the stratum corneum. The composition and 

distribution of lipids on the skin is unique to humans. Furthermore, skin lipids are often 

unique compared to lipids of internal tissues. In fact, the two key words used to characterize 

the human skin lipidome is “complexity and perversity”, where complexity is manifested by 

a large number of diverse lipid species and perversity is demonstrated by the uniqueness of 

skin lipids [1]. This is exampled by the fact that skin lipids contain significant amounts of 

both odd chain and branch chained lipids, a feature that is unique to the skin lipidome [1]. 

While there is significant spatial variability in the same person, the lipidome is also 

significantly altered during different stages of growth [2] and is also affected by 

environmental factors such as the different seasons, the skin microbiome and exposure to the 

elements [3–6]. Furthermore, significant variations exist between the skin lipidome of the 

different ethnic groups such as the Asian, African American and Caucasians [3]. This 

particular compositional spatial and temporal distribution of the lipidome found among 

humans are highly unique in the animal kingdom and cannot be replicated faithfully in any 

of the model organisms available for study. As such any studies that investigate the human 

dermal lipidome necessitates that those studies be undertaken using humans themselves as 

the model of choice. However, this requirement needs to be balanced with the potential for 

discomfort to subjects and minimizing invasive procedures wherever possible. In this 

regards, techniques such as micro sampling demonstrate significant advantages in the 

application towards studies investigating the human dermal lipidome. Furthermore, until 

recently, such detailed investigations of the human skin lipidome have not been feasible due 

to technological limitations. Technological advances in modern mass spectrometry based 

analytical methods has enabled micro sampling methods containing very small amounts of 

material to be used in the investigation of the variations in the human dermal lipidome 

during the wound healing process. Using these methods, as well as traditional techniques, a 

significant body of information has been derived with respect to the human skin lipidome.

Skin Surface Lipids

The primary sources of the human epidermal lipidome are the sebum and the cells of the 

stratum corneum. Triglycerides, free fatty acids, wax esters, squalene cholesterol esters and 

cholesterol constitute the primary human dermal lipids that are synthesized by the sebaceous 

glands [7]. The human sebum lipidome is especially unique in the fact some of the lipids 

such as squalene and wax esters are only found in the sebum secretions and nowhere else. 

Furthermore, the sebum derived skin lipidome is also unique in the presence of odd chain 

length and branched chain free fatty acids. An additional unique feature in the sebum 

derived human skin lipidome is the presence of Δ6 desaturase derived free fatty acids, 
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namely sapinic acid [16:1 Δ6] which constitute almost 25% of the total fatty acids and 

demonstrate a significant level of antimicrobial activity [8, 9]. Additional elongation and 

desaturation also gives rise to unique sebaleic acid [18:2 Δ5,8] which has recently been 

described as being important in neutrophil recruitment following transcellular conversion to 

5-oxo-[6E,8Z]-octadecadienoic acid [10]. The primary functions of the human sebum 

lipidome include photoprotection, antimicrobial activity [e.g. sapinic acid], and delivery of 

fat soluble antioxidants to the skin surface as well as lipid specific pro and anti-

inflammatory activity [7]. Alterations to the sebum lipidome has been implicated in multiple 

dermal human dermal health complications including acne, asteatosis, comedone, furuncles, 

comedones, carbuncles, sebaceous hyperplasia, seborrhea, seborrheic dermatitis and 

steatomas [7, 11]. As such detailed investigation into changes of the sebum lipidome 

associated with such disease states has the potential towards novel treatment options that 

specifically target the lipid balance of the sebum derived skin lipidome.

Stratum Corneum Lipids

The second and equally important source of the skin lipidome is derived from the stratum 

corneum [SC] and is primarily involved in the maintenance of epidermal permeability 

barrier and prevention of trans epidermal water loss [TEWL] [12–14]. These SC derived 

lipids are primarily composed of ceramides [50% by mass] with the remainder made up of 

free fatty acids and cholesterol [14–16]. These lipids fill in the gaps between the spaces of 

the keratinocytes in a “brick and mortar” type of structure where the dead and terminally 

differentiated keratinocytes acting as the bricks and the SC derived lipids act as the mortar 

[16]. As in the case of the sebum lipidome, human SC lipidome is unique in that a 

significant fraction of this lipidome is only found on the skin. In this regards, SC barrier 

lipidome composed of 4 different sphingoid bases N-acylated to 3 different fatty acyls 

creating a combination of 12 classes of ceramides [numbered CER1-12]. The sphingoid 

bases are primarily composed of 18 carbons and include sphingosine, sphingenine, 

phytosphingosine and 4-hydroxy-sphingosine (Table 1). The fatty acyls include non-

hydroxy, omega-hydroxy and esterified-Omega hydroxyl fatty acids (Table 1). A majority of 

the sphingoid bases demonstrated antibacterial activity [8].

Signaling Lipids

In addition to the structural functions performed by the skin lipidome, a significant amount 

of signaling events are also mediated by the lipidome. We have demonstrated the importance 

of the sphingolipid ceramide-1-phosphate in the migration and proliferation of skin 

fibroblasts and demonstrated that this lipid species follow a temporal change during 

cutaneous wound healing in humans [17]. Additional studies by us and others have 

demonstrated the importance of eicosanoids in the mediating the signaling events during the 

wound healing process [17, 18]. Furthermore, we and others have demonstrated roles for 

sphingosine-1-phosphate in many of the aspects of wound healing biology [19]. Other lipids 

of relevance to the human dermal wound healing process include sphingophosphorylcholine 

[20], lysophosphatidic acid [21], protectins and resolvins [22].
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Diseases Associated with Dysregulated Skin Lipid Metabolism

Dermatological research undertaken in the past few years have demonstrated a major role for 

the human dermal lipidome in the pathological conditions of the skin. In this regards, the 

role of ceramide metabolism with respect to atopic dermatitis is the most intensively 

investigated [15, 23–26]. For example, Yamato et al demonstrated that while the relative 

amounts of the major stratum corneum lipids remained unchanged, significant changes were 

observed within the ceramide class and the squalene, wax esters and triglycerides [24]. For 

example, the proportions of ceramides were demonstrated to be lower in the AD patients 

compared to their controls [24]. On the other hand, the sebaceous lipids were observed to be 

elevated in the AD patients compared to their controls [24]. The decrease in the ceramide 

content of the SC of the AD patients can be explained in part by the increased expression of 

sphingomyelin/glucosylceramide deacylase in the SC of AD patients [27]. This enzyme was 

demonstrated to hydrolyze sphingomyelin and glucosyl ceramides at the acyl site to liberate 

sphingophosphoroylcholine and glucosyl sphingosine which in turn lead to decreased 

production of SC ceramides [27]. In addition to the abnormalities in ceramides, significant 

changes were also observed in the cell membrane phospholipids in the epidermis of AD 

patients compared to their controls with a significant reduction observed in the phospholipid 

content of the epidermis of the AD patient [25]. These published studies demonstrate a close 

relationship between human skin lipid metabolism and AD. Psoriasis is another skin 

disorder that is due in part to lipid dysbiosis of the SC. In this regards, the generation of an 

abnormal skin ceramide composition leads to a disruption in the skin barrier function and 

elevated trans epithelial water loss [TEWL][12]. While the total ceramide content was 

demonstrated to remain unchanged, long chain ceramides containing ester linked fatty acids 

and those containing phytosphingoid backbones were demonstrated as being lower in 

psoriatic skin compared to normal skin [28]. These changes are attributed at least in part to 

decreased expression of the sphingolipid activation protein saposin [29, 30] which is a non-

enzymatic component required for the hydrolysis of glucosyl ceramides. An inherited lipid 

related genetic disorder that leads to skin disease via dysregulated lipid metabolism is 

Gaucher disease. The disease is caused by a decrease in β-glucocerebrosidase and varies in 

clinical severity from asymptomatic to severe [31]. The decreased incidence of this enzyme 

manifests as an increase in the glucosyl ceramide and a decrease in the ceramide content 

[32] with a concomitant increase in the epidermal barrier function. Dry skin or Xerosis that 

often end up impairing barrier function is characterized by a deficiency primarily in the 6-

hydroxy and 4-hydroxy backbone containing ceramides [33]. The fact that there is seasonal 

variation in skin ceramide content and the incidence in increases Xerosis in cooler seasons 

have been causally linked to each other [2]. Finally the most common of skin lipid mediated 

disorders would be acne. Alterations to the sebum lipidome has been heavily implicated in 

the outbreak of acne [11, 34–36]. Specifically, altered ratios between saturated and 

unsaturated fatty acids as well as altered amounts of specific fatty acids such as linoleic acid 

and the formation of squalene peroxides have all been linked to outbreaks of acne [37].

Pharmaceutical Modulation of the Skin Lipidome

Considering the primary roles played by the lipidome in the structure and function of the 

human skin, development of lipid formulations for both therapeutic and cosmetic purposes is 
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a highly active pharmaceutical industry [38, 39]. As such, several formulations include the 

use of ceramides or their precursors. Primary among those are formulations containing 

hydroxypalmitoyl sphingenine [Cetaphil, RestoraDerm Skin restoring Moisturizer], 

ceramide 1, ceramide 3 [Eucerin, CeraVe] and pseudo ceramides. Additionally, lipid blends 

such as epicerum [13] consisting of a blend of ceramides, cholesterols and free fatty acids 

are also used as cosmetic and barrier repair agents.

Sampling Methods for the Investigation of the Skin Lipidome

In order to explore different lipid components involved in human skin wound healing a 

variety of skin sampling techniques have been developed. The least invasive technique is 

called tape stripping [40]. One such process utilizes D-Squame® tape (CuDerm Corporation, 

Dallas, TX, USA) where the adhesive discs are applied to the skin using a set force and then 

ten or more successively samples are removed. The attached cells and lipid material on the 

disc are placed in an appropriate lipid extraction buffer followed by analysis of the lipids of 

interest [41]. Wound dressings are also a rich source of sampling material for research 

analyses of human wounds especially with respect to the signaling lipidome. A recent 

review by Widgerow et al., describes the usefulness of collecting wound fluids under film 

dressings as well as analyzing components obtained from the discarded primary dressing 

[42]. This technique is especially useful for the study and progression of the healing of 

human chronic and burn wounds. The wound fluids and contents of the dressing can be 

extracted and the specific target analyte can be isolated and analyzed. Another useful 

technique is the suction blister model of wound healing to obtain interstitial fluid as well as 

the epithelial “roof” layer for analyses [18]. One useful instrument to create suction blisters 

on the inner forearm is the Negative Pressure Instrument [Electronic Diversities, Finksburg 

MD]. Alternatively a simple chamber attached to a standard vacuum pump can be used as 

well [350 mmHg for 1 to 2 hours]. The procedure is relatively painless and does not leave a 

scar. Creation of partial-thickness skin wounds using a variety of dermatomes has also been 

used to study human skin reepithelization [43]. The “donor site” type of wound can be 

photographed over time to quantify the process of reepithelization with or without the 

topical application of test materials. The wound surface can also be sampled using a sterile 

swab or Whatman filter paper and then analytes can be isolated and analyzed [44]. Punch 

biopsy is the classical procedure to obtain epidermal and dermal tissues for analyses. The 

recent review by Yang and Kampp provides a complete “how to” procedure to obtain skin 

biopsies for research and analyses [45]. The various layers in the full thickness specimen can 

be isolated and analyzed by histology as well as specific biochemical techniques to quantify 

proteins and bioactive lipids. In addition, the open wound created by the tissue punch can be 

covered with an occlusive dressing such as Opsite® (Smith and Nephew, Fort Worth, TX) 

and the wound fluid can be collected over time for analyses [46]. Furthermore, the process 

of wound contraction can be measured by using standardized photography and image 

analysis. One of the more recent and highly valuable techniques to study human wound 

healing has been the development of implantable and retrievable high-porosity 

Polytetrafluoroethylene tubes (012-01-2 PTFE; International Polymer Engineering, Tempe 

AZ) [47–51]. Typically the PTFE tubes can be implanted using an 18 g, 3.5 inch spinal 

needle in an anesthetized area in the inner aspect of the subject’s upper arm [52]. The 
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implants can be retrieved at sequential times such as 3, 5, 7 and 14 days after implantation 

and cut segments can be analyzed with respect to variations in the lipidome during the 

wound healing process (Figure 1). Using this technique, we have demonstrated that the 

sphingolipid ceramide-1-phosphate has a distinct variation during the human wound healing 

process and that it is likely acting as a master switch for the regulation eicosanoid signaling 

[17]. Additional and concurrent information can be gained by processing sections for 

histology, immuno-staining, matrix content, and with the use of an entropy-based automatic 

image analyzer system, specific cells and collagen deposition can also be quantified [53] as 

well as other signaling proteins that take part in the wound healing process [52].

Qualitative and Quantitative Analysis of the Human Skin Lipidome

Considering the fact that the lipidome is integrally involved in the function of the skin, its 

ability to heal and its various pathologies, the ability to quantitatively investigate its changes 

is highly describable. Furthermore, a majority of cosmetic products attempt to modulate the 

skin lipidome, and yet have ill-defined lipid compositions and is also worth investigating 

with respect to their claims in active lipid content [33, 39]. A significant body of information 

with respect to the quantitation of the skin lipidome has been obtained via analytical studies 

utilizing thin layer chromatography (TLC) [27, 28, 54, 54–59]. While TLC provides an 

affordable and low technology barrier method for analyzing the skin lipidome, it suffers 

from the inability to quantify individual lipid species. Furthermore the sensitivity of TLC 

towards determining the composition of the skin lipidome is also quite limited. Other 

analytical methods have been used over the years to obtain a more comprehensive 

understanding of the skin lipidome. These include p-nitrobenzoyl derivatization of skin 

ceramides followed by high-performance liquid chromatography with UV detection (HPLC-

UV) [60] as well as gas chromatography coupled to mass spectrometry (GC-MS) [61, 61–

63]. While better at quantitation of individual lipid species compared to TLC, these methods 

still suffer from limitations with respect to quantitatively capturing the full diversity of the 

skin lipidome. The most current technology for the analysis of the skin lipidome is 

atmospheric pressure ionization tandem mass spectrometry coupled to ultra-high 

performance liquid chromatography (UPLC API-MS/MS). Utilizing these methods, the 

human skin lipidome is currently being characterized extensively in many laboratories 

including ours [6, 17, 18, 56, 57, 64, 65, 65–70]. These studies have demonstrated unique 

changes in the skin lipidome during wound healing [17, 18, 67–70]. Application of such 

UPLC ESI-MS/MS methods have enabled our group to identify lipids that stimulate 

fibroblast growth in the presence of chronic wound fluid, a key requirement for cutaneous 

wound healing [19]. While, UPLC API-MS/MS methods are ideally suited for determination 

of the overall composition of the skin lipidome, these methods are not easily amenable for 

the investigation of the variations in the microscopic spatial distribution of the skin lipids. 

The most informative technique for determining the surface distribution of lipids of the skin 

surface is matrix associated laser desorption ionization mass spectrometry (MALDI-

MS/MS) [71, 72]. While excellent in determining the spatial distribution of skin lipids, this 

method suffers from the primary drawback of being unable to distinguish between many of 

the isobaric lipid species and being limited in sensitivity for low abundant and low ionizing 

lipids. Furthermore, the method is only applicable for the investigation of excised samples. 
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Techniques that enable the investigation of the spatial distribution of the human skin 

lipidome in vivo has great value in point of care diagnostics. In this regards, Raman 

Spectroscopy based methods have demonstrated great promise and have been demonstrated 

to be applicable for in vivo investigation of the human skin lipidome [73–75]. In summary, 

considering the diversity and variability of the human skin lipidome, a single analytical 

technique is insufficient to obtain a comprehensive understanding. A combination of 

methods utilizing UPLC ESI-MS/MS, MALDI MS/MS and Raman spectroscopy is needed 

for the most comprehensive understanding of the variations in the human skin lipidome with 

respect to cutaneous wound healing and other lipid related skin pathologies.

Conclusions

The bioactive lipids in the skin provide a critical function in protecting the skin and come 

into play when the skin is damaged to facilitate the repair process. Because of the 

uniqueness and complexity of the human skin lipidome, it has not been possible to 

investigate it using animal and cell culture model systems. Now with technological advances 

employing micro sampling plus the development of advanced analytical instrumentation we 

can now extensively explore the skin lipidome in humans. These new avenues of research 

are enabling for a more in-depth understanding of the skin bioactive lipids and foster the 

possibilities for new translational research to help develop broader and multi modal 

therapeutic strategies to treat skin disorder and repair.
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Figure 1. Alteration in the NS (Cer 2) ceramide profile during wound healing in humans
Lipids were extracted from a 1cm portion of PTFE implants inserted into the upper arm of 

healthy volunteers and removed on days 3, 5, 7 and 14. A 100 mm skin punch biopsy was 

used as the baseline (day 0). Lipids were extracted from those samples and subjected to 

targeted analysis via LC tandem mass spectrometry. The data shown is the average lipid 

content from 7 volunteers (n=7) normalized to total sphingolipids ± SD. The lipid content is 

depicted in pmol specific lipid/pmol total sphingolipids found in 1cm of PTFE insert.
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Table 1

Human skin ceramide structural variants identified to date. The different structural isomers of ceramides are 

depicted together with their commonly used names demonstrating the diversity of the human skein ceramides.
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