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Abstract

Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, 

including ATP production, intracellular Ca2+ regulation, reactive oxygen species production & 

scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. 

Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related 

neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been 

made in understanding mitochondrial structure, function and their physiology in metabolic 

syndromes such as diabetes, obesity, stroke and hypertension, heart disease. Further, progress has 

also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet 

and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These 

strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to 
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maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight 

the recent progress on the mitochondrial role in metabolic syndromes and also summarize the 

progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes.
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1. Introduction

Mitochondria are the intracellular organelles which play a significant role in the cells by 

metabolizing nutrients and producing the “energy currency” adenosine triphosphate (ATP) 

and responsible for various processes such as energy metabolism, generation of free radicals 

and calcium homeostasis, cell survival and death [1, 2]. Their principal function is to 

synthesize ATP via oxidative phosphorylation (OXPHOS) in concurrence with the oxidation 

of metabolites by Krebs’s cycle and β-oxidation of fatty acids. Currently, it is appreciated 

that pathophysiological alterations in mitochondria in aging and many other metabolic 

disorders are linked with impaired mitochondrial functions such as diminished oxidative 

capacity and antioxidant defense by the enhanced generation of reactive oxygen species 

(ROS), reduced OXPHOS, and decreased ATP production. Reduced mitochondrial 

biogenesis with age may be due to alterations in mitochondrial fission and fusion processes 

and the inhibition of mitophagy, a process which eliminates dysfunctional mitochondria [3]. 

ROS are a family of free radicals that includes superoxide anions, hydroxyl, peroxyl radicals 

and other non-radicals capable of generating free radicals [4]. Although the intracellular 

generation of ROS per se is an inevitable process, cells possess numerous defense systems to 

counter it. The overproduction of ROS has been associated with oxidative damage inflicted 
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on lipids, DNA, and proteins. [2, 5]. It is evident from the previous studies that oxidative 

stress is associated with various pathophysiological conditions involving aging, cancer and 

age-related metabolic disorders and neurodegenerative diseases [6-16].

Metabolic syndrome (MetS) is a constellation of many metabolic abnormalities including 

hypertension, hyperglycemia, abdominal obesity and dyslipidemia represented by low-HDL-

Cholesterol and hypertriglyceridemia. These conditions occurred together and increased the 

risk of type 2 diabetes and cardiovascular diseases (Figure 1). It has been emerged as a 

major health problem in the modern society, associated with enormous social, personal, and 

economic burden in the developing and developed world [17-20]. Earlier studies 

demonstrated the interaction of genetic variants and environmental factors that contribute to 

the escalating situation of metabolic syndrome [21-24]. Several lines of evidence indicate 

the role of oxidative stress and mitochondrial dysfunction in the pathogenesis of aging, age-

related neurodegenerative and metabolic diseases [5, 12, 13, 16, 25-38]. Nevertheless, the 

basic mechanisms underlying the pathogenesis of metabolic syndrome remain largely 

unknown.

The present review article is focused to overview the basic mechanism of mitochondrial 

dysfunction and the link between oxidative stress/mitochondrial dysfunction and various 

components of metabolic syndrome. We specifically focused on heart disease, stroke, 

diabetes, and obesity, which are intimately related to oxidative damage induced by the 

enhanced generation of ROS that leads to mitochondrial dysfunction. Then, pharmacologic 

strategies translated from the bench to bedside will be provided to target mitochondrial 

dysfunction for the prevention of risk associated with metabolic syndrome.

2. Mitochondria: Structure, function, and pathophysiology

Mitochondria are the double membrane, cytoplasmic organelles which contain their self-

replicating genome. Mitochondria perform key biochemical functions essential for metabolic 

homeostasis and are arbiters of cell death and survival. In eukaryotes, mitochondria 

generates energy in the form of ATP via oxidative metabolism of nutrients using two major 

steps, 1) oxidation of NADH or FADH2 produced during the glycolysis, TCA cycle or β-

oxidation of fatty acids 2) oxidative phosphorylation to generate ATP. All these processes 

are regulated by a complex of transcription factors in mitochondria. Each mitochondrion 

contains 800 to 1000 copies of mtDNA, which are maternally inherited and packaged in 

high-ordered nucleoprotein structures called nucleoids [39]. Although nucleoids are 

distributed throughout the mitochondrial matrix, they are often located in the proximity of 

the cristae, which carry the OXPHOS system. There is a small intermembrane space 

between the outer and inner mitochondrial membranes. Outer mitochondrial membrane and 

intermembrane space are relatively more permeable than the inner mitochondrial membrane. 

In contrast, the inner membrane has much more restricted permeability, contains enzymes 

involved in the process of electron transport chain and ATP generation. The inner membrane 

surrounds the mitochondrial matrix, wherein the electrons produced by TCA cycle are taken 

in by electron transport chain for the production of ATP. An electrochemical gradient 

generated across the inner membrane drives the process of OXPHOS [40]. Most of the 
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body’s cellular energy (>90%) is produced by mitochondria in the form of ATP via TCA 

cycle and the electron transport chain (ETC).

Mitochondrial ETC is composed of five multi-subunit enzyme complexes viz. I, II, III, IV 

and V located in the inner mitochondrial membrane [41]. The electrons donated by 

coenzymes, NADH and FADH2 in TCA cycle are accepted and transferred to components of 

ETC at complex I (NADH ubiquinone reductase) or complex II (Succinate dehydrogenase), 

and then consecutively to complex III (Ubiquinol-cytochrome c reductase), complex IV 

(Cytochrome c oxidase) and finally to oxygen through complex V (F0F1 ATP synthase). 

This transfer of electrons along the electron transport chain is coupled with the transport of 

protons across the inner membrane, establishing the electrochemical gradient that generated 

ATP [42]. Mitochondria continuously function to metabolize oxygen and generate ROS 

(Figure 2). However, either by accident or for a purpose, the flow of electrons through the 

ETC is an imperfect process in which 0.4 to 4% of oxygen consumed by mitochondria is 

incompletely reduced and leads to the production of ROS such as superoxide anion (•O2
−) 

designated as “primary” ROS [2, 43]. Excessive generation of superoxide anion further 

interact with many other compounds and generate “secondary” ROS [32, 44]. It is earlier 

established that the interactions of hydroxyl radical (•OH) with DNA molecule damages the 

nitrogenous bases, purine and pyrimidine and deoxyribose backbone of DNA [2]. Also, the 

overproduction of ROS damage the mitochondrial proteins/enzymes, membranes, and DNA, 

which leads to the interruption of ATP generation and other essential functions in 

mitochondria [32, 43]. Besides superoxide anion and hydroxyl radicals, the ETC also 

generates other reactive species such as nitric oxide (NO) and reactive nitrogen species 

(RNS). Most of the cellular proteins and glutathione are affected through nitration induced 

by RNS. Free radicals are fundamental to any biochemical process and are continuously 

produced in the body. The cells have many ways to counter the effects of oxidative damage 

induced by ROS, either by directly diminishing the generation of free radicals or by 

scavenging the free radicals by an array of antioxidants, both enzymatic and non-enzymatic 

mechanisms.

Several defense mechanisms are used to alleviate the oxidative stress induced by the 

excessive generation of free radicals in the cells. Enzymatic defense system includes the 

ameliorative action of various antioxidant enzymes such as superoxide dismutase (SOD), 

catalase (CAT), Glutathione Reductase (GR) and glutathione peroxidase (GPx). The other 

non-enzymatic defenses are the antioxidant compounds which protect the cells against 

oxidative stress. It includes Vitamin E and C, glutathione (GSH), various carotenoids and 

flavonoids. Under normal conditions, the overproduction of ROS is restricted in 

mitochondria to protect the cellular organelle from oxidative damage via enzymatic and non-

enzymatic defense systems. On the other hand, when the antioxidant defenses are 

overwhelmed, there is an overproduction of ROS which then leads to oxidative damage to 

the proteins, DNA, and lipids in mitochondria [45]. This impaired the enzyme functions in 

the respiratory chain and ultimately leading to mitochondrial dysfunction, reduced 

mitochondrial biogenesis and a broad range of pathologic conditions such as aging, various 

metabolic diseases and neurodegenerative disorders [5, 12, 44, 46-52]. Reduced 

mitochondrial number and capacity for oxidative phosphorylation in diabetes resulted in 

impaired mitochondrial biogenesis [53, 54]. Mitochondria plays very critical role in the 
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metabolic processes in mammalian cells and alterations in the mitochondrial structure and 

function lead to age-related neurodegenerative diseases as demonstrated by various studies 

in the past [34, 55, 56].

3. Regulation of mitochondrial biogenesis

Mitochondrial biogenesis maintains the number and size of mitochondria involving both 

nuclear and mitochondrial genomes. Several transcription factors are involved in the 

regulation of mitochondrial biogenesis, mediated by physiologic stimuli including physical 

exercise, dietary restrictions, temperature, and muscle myogenesis. Peroxisome proliferator-

activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a co-transcriptional regulation factor 

that regulate the process of mitochondrial biogenesis by interacting with many transcription 

factors/proteins such as nuclear respiratory factors (NRF-1 and NRF-2), mitochondrial 

transcription factor A (Tfam), uncoupling proteins (UCP2), PPARs, thyroid hormone, 

glucocorticoid, oestrogen and oestrogen related receptors (ERR) α and γ [57-59]. NRF-, 

NRF-2, and Tfam regulate the transcription of the main mitochondrial enzymes and mtDNA 

synthesis [60]. Besides these transcription factors, there are two important enzymes viewed 

as metabolic sensors that regulates mitochondrial biogenesis are AMP-activated protein 

kinase (AMPK) and the mammalian counterpart of silent information regulator 2 (SIRT1). 

In energy deprived state, AMPK and SIRT1 regulate PGC-1α through phosphorylation and 

deacetylation, respectively [61]. Figure 3 shows the role of PGC-1α and other 

transcriptional factors involved in mitochondrial biogenesis. Many experimental and clinical 

studies revealed the alterations in the morphology and number of mitochondria in heart, 

skeletal muscles and liver tissues in pathogenic conditions [1, 62-66].

4. Mitochondrial dynamics

Mitochondrial dynamics is a delicate physiological balance between fission and fusion 

events of mitochondria, which is essential for their maintenance in the growing cells, 

regulation of cell death pathway, and removal of damaged mitochondria [67, 68]. These 

mitochondrial events were first described in budding yeast [69]. Mitochondrial morphology 

varies tremendously in the cells and tissues in response to external stimuli and availability of 

nutrients. Mitophagy is an autophagy-lysosome system that removes dysfunctional 

mitochondria through fusion with lysosomes [70]. Mitochondrial fragmentation occurs in 

response to nutrient excess and cellular dysfunction escalates the prevalence of obesity, 

cancer, cardiovascular and neuromuscular disorders[71]. A mitochondrial defect leads to 

impaired oxidative capacity which then causes the overproduction of ROS. Over the past 

several years, many key regulators of fusion and fission have been identified. There are three 

GTPase genes that regulate the process of mitochondrial fusion viz. mitofusin 1 and 2 

(Mfn1/2) and optic atrophy1 (Opa1), localized in the outer and inner mitochondrial 

membranes, respectively [72, 73]. Mfn 1/2 are located on the outer mitochondrial 

membrane, whereas Opa 1 is localized to the inner mitochondrial membrane (Figure 4). 

Mitochondrial fission, on the other hand, is regulated by highly conserved two GTPase 

genes, Fis1 and Drp1, located on outer membrane and in the cytosol, respectively. In the 

fusion process, mitochondrial content is intermixed and electrical conductivity maintained 

throughout the mitochondria [74-76]. Disturbed mitochondrial dynamics includes abnormal 
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and/or impaired fission/fusion that occurs in response to nutrient excess and cellular 

dysfunction, directly impacts mitochondrial function, resulting in an excessive generation of 

ROS, altered mitochondrial enzymatic activities, impaired calcium homeostasis, diminished 

ATP production, and overall reduced energy metabolism in mammalian cells. Earlier studies 

documented the possible role of these mitochondrial alterations in escalation of metabolic 

and neurodegenerative disorders including aging, cancer, type 2 diabetes, obesity and 

dementia [34, 36, 56, 77-88]. It also plays a pivotal role in the age-dependent decline in 

mitochondrial biogenesis. Increased ROS has been documented in the aging process. This 

increase may be primarily due to enhanced accumulation of mtDNA mutations which in turn 

could damage the mitochondrial structure and functions, consequently, altering antioxidant 

defense system, disturbed calcium homeostasis, low ATP generation and ultimately leading 

to many pathogenic conditions.

5. Oxidative stress and mitochondrial dysfunction

Oxidative stress refers to the imbalance of two opposite and antagonistic forces, production 

of ROS and antioxidants, wherein the damaging effects of ROS is more powerful compared 

to the compensatory effect of antioxidants in the cells. Mitochondrial dysfunction is defined 

as diminished mitochondrial biogenesis, altered membrane potential, and the decrease in 

mitochondrial number and altered activities of oxidative proteins due to the accumulation of 

ROS in cells and tissues [89]. Regular metabolism of oxygen generates reactive oxygen 

species as a by-product. Indeed, mitochondria are the most important source of ROS in most 

of the mammalian cells [43]. ROS produced in mitochondria during OXPHOS process 

primarily triggered mitochondrial dysfunction by interacting with mitochondrial and cellular 

components such as DNA, proteins, lipids, and other molecules [90, 91].

Metabolic syndrome represent a constellation of many risk factors such as obesity, higher 

blood pressure, abnormal levels of triglycerides and cholesterol etc. which are involved in 

the higher prevalence of non-communicable diseases. Altered mitochondrial functioning has 

been implicated in the pathophysiology of type 2 diabetes, obesity, dyslipidemia, and 

cardiovascular diseases. The imbalance between energy production and its utilization - may 

leads to defective cell metabolism which is considered as the main culprits of metabolic 

syndrome [92]. Increased glucose levels enhance overproduction of ROS which leads to 

morphological changes in mitochondria [93]. Inhibition of insulin signaling pathway caused 

the accumulation of lipids and free fatty acids (FFA) contributes to the metabolic disorders 

[94-99]. Also, it is evident that aging, altered mitochondrial biogenesis and decreased 

antioxidant defense capacity along with genetic factors caused insulin resistance which is 

the major cause of many metabolic diseases. In the following sections, we have established 

the link between mitochondrial dysfunction and individual components of metabolic 

syndrome.

6. Mitochondrial dysfunction and Insulin Resistance

Insulin resistance (IR) is characterized by diminished capacity of the cells to respond to the 

physiological levels of insulin. Various risk factors including aging, physical inactivity, 

abdominal obesity, stress etc. contribute to the pathophysiology of insulin resistance. 
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Oxidative stress induced by an excess of ROS in mitochondria might also contribute to the 

development of insulin resistance [1, 16, 100]. It is evident from previous studies that 

oxidative stress and mitochondrial dysfunction are involved in the pathophysiology of many 

metabolic disease states such as insulin resistance, obesity diabetes, and many 

cardiovascular and neurodegenerative diseases [101-112]. However, it is still not clear 

whether insulin resistance is the primary cause of mitochondrial dysfunction or vice-versa. 

Nonetheless, many studies established the association of mitochondrial dysfunction with 

insulin resistance in various tissues [64, 113-117]. In skeletal muscle, altered mitochondrial 

functions, reduced ATP synthesis, and increased ROS generation leads to insulin resistance 

and obesity/diabetes [66, 118, 119]. The imbalance between energy production and its 

utilization may result in impaired cell metabolism which is considered as the main culprits 

of metabolic syndrome [92]. Increased glucose levels enhance overproduction of ROS which 

lead to morphological changes in mitochondria [93]. Inhibition of insulin signaling pathway 

caused the accumulation of lipids and free fatty acids (FFA) which contributes to insulin 

resistance and other metabolic disorders [94-99]. Over the past decade, many studies on 

human subjects and rodents provide evidences for alterations in markers of mitochondrial 

metabolism in insulin resistant individuals. These observations led to the theory that 

compromised mitochondrial oxidative functions, particularly in skeletal muscle, causes 

excess lipid deposition, and development of insulin resistance. Considerable research 

indicates that decrease in fatty acid oxidation causes the inhibition of insulin signaling, 

which consequently leads to FFA and insulin resistance and further reduces the 

mitochondrial oxidative capacity and ATP synthesis in obese and insulin resistance models 

[92, 100]. Indeed, further clinical research studies are necessary to investigate the role of 

antioxidants and antioxidant pathways that drive mitochondrial functions and insulin 

sensitivity in humans.

7. Mechanistic link between diabetes and oxidative stress/mitochondrial 

dysfunction

Over the past 20 years, there has been an explosive increase in the incidence and prevalence 

of type 2 diabetes and this increase becomes a major public health problem all over the 

world. Presently more than 382 million people are suffering from type 2 diabetes, and it is 

predicted that this number will rise to 438 million in 2030. India, China, and USA are the 

worst affected countries bearing the major burden of type 2 diabetes in the world. Although 

many experimental and clinical studies established the role of environmental and genetic 

factors associated with the pathophysiology of type 2 diabetes but the primary cause of this 

problem is still unknown. Both pancreatic β-cell dysfunction and Insulin resistance in 

insulin sensitive tissues including adipocytes, myocytes, and hepatocytes have been 

implicated in the etiology of diabetes and related complications. Also, recent studies have 

indicated abnormal mitochondrial dynamics along with overproduction of ROS in diabetic 

patients [93, 120]. T2DM results from a combination of reduced tissue sensitivity to insulin 

and inadequate insulin secretion. It usually develops in adults and is thought to stem from a 

complex interaction between obesity, physical inactivity, diet and genes [121]. A recent 

study done on diabetic and obese patients established the impaired glucose and lipid 

homeostasis in skeletal muscle [116]. Increased fat mass leads to several factors that inhibit 
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insulin action including decreased glucose transporter type 4 (GLUT4), increased free fatty 

acids and other circulating molecules [122, 123]. Due to reduced insulin response in 

sensitive tissues, excess glucose accumulates leading to chronic hyperglycemia [121].

Several studies have documented the role of mitochondrial dysfunction in the 

pathophysiology of T2DM [66, 88, 124-128]. Reduced mitochondrial respiration, ATP 

production and mitochondrial density and mRNA have been reported in the insulin 

resistance and type 2 diabetic patients [54, 96, 129-132]. A short-term high-calorie diet 

resulted in increased markers of oxidative stress and a transient increase in OXPHOS 

enzyme protein expression. The mtDNA is more predominantly susceptible to oxidative 

damage induced by the excess of ROS during OXPHOS process in mitochondria of the brain 

[133] in obesity and T2DM. Mitochondrial dysfunction inhibits insulin signaling pathway 

through the overproduction of ROS and interfering with oxidation of acetyl CoA, 

consequently resulting in increased lipid and diacylglycerol [1, 48, 66, 134]. Mitochondrial 

biogenesis is reduced in the condition of diabetes and obesity [116, 135, 136]. PGC-1α also 

regulates the process of mitochondrial biogenesis [137, 138]. Furthermore, mitochondrial 

dysfunction seems to play a vital role in the pathophysiology of IR and T2DM and may be 

considered as a target for therapeutic measures in metabolic diseases.

8. Mechanistic link between obesity and oxidative stress/mitochondrial 

dysfunction

Currently, obesity has become one of the major global health problems. It is one of the 

principal components of metabolic syndrome and known to be a major risk factor in the 

development of many metabolic disorders. Although obesity is caused by the interaction of 

genetic and environmental factors, the role of obesity in mitochondrial dysfunction has been 

revealed in many studies. Recent studies demonstrated the role of mitochondrial dysfunction 

in the pathogenesis of components of metabolic syndrome. There is an overproduction of 

ROS in adipose tissues with altered activities of NADPH oxidase and antioxidative enzymes 

in obese mice [139]. Intriguingly, abdominal obesity has been associated with defective 

mitochondrial biogenesis manifested by impaired mitochondrial dysfunction, oxidative 

metabolism, low mitochondrial gene expression and reduced ATP generation in rodents and 

humans [63, 140-142]. Also, mtDNA, respiratory protein, and mtDNA transcription factor A 

(Tfam) gene expressions were markedly reduced in obese mice. Also altered mitochondrial 

dynamics plays a pivotal role in mitochondrial dysfunction linked to obesity as evident from 

reduced expression of mitofusin 2 gene in skeletal muscle [143].

9. Mechanistic link between heart disease and oxidative stress/

mitochondrial dysfunction

Cardiovascular diseases (CVD) includes atherosclerosis, ischemic heart disease, 

cardiomyopathy, cardiac hypertrophy and heart failure are the leading cause of mortality, 

worldwide. CVD is multifactorial in nature involving the interactions of both environmental 

and genetic risk factors in cardiovascular diseases. It is evident from previous studies that 

oxidative stress may be associated with increased mtDNA damage in CAD patients. In the 
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heart, the ROS can be generated in cardiac myocytes, endothelial cells, and neutrophils. In 
vivo and ex vivo studies have established the role of oxidative stress induced by the excess 

of ROS in a wide range of cardiovascular diseases [6, 13, 25, 32, 144-148]. The majority of 

ROS in the heart are generated by uncoupling of mitochondrial ETC complexes I and III 

[49, 149]. However, there are other mechanisms such as NADPH oxidase, xanthine 

oxidoreductase, or NOS by which ROS are generated and induce oxidative damage in heart 

tissue. The excess of ROS leads to cellular injury and declined antioxidant capacity, which 

seems to be due to defects in mitochondrial functions and mtDNA damage, endothelial 

dysfunction and altered gene expression [6]. The reduced mitochondrial oxidative capacity 

contributes to cardiac dysfunction. The ROS are significantly enhanced in failing 

myocardium [51, 148, 150-152]. Recent findings have established the role of ROS, pro-

inflammatory cytokines, including tumor necrosis factor-α (TNF-α), altered mitochondrial 

biogenesis and mtDNA damage, structural and morphological changes in mitochondria 

contributing to the development and progression of heart diseases such as heart failure and 

cardiac dysfunction [147, 153, 154]. Moreover, ROS stimulate contractile function, activate 

a variety of enzymes, transcription factors, and induce apoptosis. Thus ROS play a central 

role in the pathophysiology of cardiovascular diseases.

10. Mechanistic link between stroke and oxidative stress/mitochondrial 

dysfunction

Stroke is the fourth leading cause of adult disability and mortality in the developing world, 

associated with social and economic problems [155]. Oxidative stress is one of the 

contributing factor leading to cellular damage during ischemic brain injury [156]. 

Mitochondrial dysfunctions have been demonstrated as a key player in the development of 

brain stroke as evident by reduced ATP production, the starvation of glucose and oxygen to 

the tissues and influence on cell death pathways [157]. In experimental models of stroke, the 

diminished supply of glucose and oxygen leads to impaired oxidative metabolism in brain 

tissue [158]. The resultant oxygen-glucose deprivation in the brain tissue causes the 

accumulation of reducing intermediates and leads to enhanced ROS formation [156]. During 

oxidative stress, the excess of ROS alter antioxidant defense mechanism by reducing the 

scavenging capacity of antioxidant enzymes that could lead to altered mitochondrial 

functions by interacting with mitochondrial and cellular components such as DNA, proteins, 

and lipids [91, 159]. In focal ischemia, the damaging action of oxidative stress in necrosis 

and apoptosis has been explained in previous studies [160, 161]. Peroxynitrite radical also 

plays a significant role in the pathogenesis of brain stroke. Thus overproduction of ROS in 

mitochondria significantly induces oxidative damage in the ischemic and post-ischemic 

brain [157, 162, 163].

11. Pharmacologic strategies to target mitochondrial dysfunction

Mitochondrial stress pathways have been implicated in disease manifestations of 

mitochondrial dysfunction and could highlight promising therapeutic targets [164-166]. 

Several lines of evidence imply that mitochondrial dysfunction plays a central role in the 

pathophysiology of metabolic disorders, age, and age-related neurodegenerative diseases. So 
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targeting mitochondria might be a promising strategy for potential therapeutic purposes in 

metabolic disorders and age-related neurodegenerative diseases. Following strategies might 

be employed to diminish the mitochondrial dysfunction caused by excessive generation of 

ROS that induced oxidative stress.

12. Lifestyle interventions

Mitochondrial dysfunction contributes to severity of many pathological conditions including 

skeletal muscle atrophy, diabetes, cardiovascular diseases and many metabolic disorders and 

neurodegenerative diseases. Recent studies indicated that physical activity offers many 

benefits through improved insulin sensitivity and mitochondrial biogenesis in skeletal 

muscles in T2D patients. Also, a significant increase in muscle mitochondrial respiration and 

mitochondrial content, oxidative enzyme activity and mitochondrial density were observed 

in T2D patients after exercise [61, 167-173]. Exercise stimulates AMPK, leading to 

activation of PGC 1 by direct phosphorylation of threonine and serine residues [174]. This 

phosphorylation event may ultimately promote mitochondrial biogenesis. Also, regular 

exercise triggers many other signalling pathways involved in skeletal muscle mitochondrial 

biogenesis, dynamics and metabolism in healthy and aged persons [174, 175]. Aging causes 

loss of muscle mass and structural changes in the neuromuscular components resulting in 

impaired contractile function. Exercise induces beneficial adaptations that slow down the 

progression of age-related muscle functional decline. Reduced physical activity and 

sedentary lifestyle are also the major contributing factors for escalating the prevalence of 

obesity, type 2 diabetes and many other metabolic disorders [176]. Several studies 

established the pleiotropic effect of physical exercise on mitochondrial dynamics in aging 

skeletal muscle [177]. Nutrients control the glucose homeostasis through a complex of 

PGC-1α and SIRT1 [178]. Reduced energy results increased AMP/ATP ratio and activate 

AMPK which then regulate PGC-1α through phosphorylation. Calorie restriction or exercise 

also increases tissue NAD+ content thereby activates SIRT1, which then activates PGC-1α 
through deacetylation [178]. Nitric oxide also appears to be an important regulator of 

mitochondrial biogenesis. Previous studies shows that defect in PGC-1α are associated with 

insulin sensitivity in type 2 diabetic patients [54].

In addition to regular exercise, calorie restriction (CR) without malnutrition is also a 

promising non-genetic and non-pharmacologic nutritional intervention that prolongs the 

lifespan of a variety of organisms and helps in the prevention of age-related metabolic 

disorders [179-181]. However, the molecular mechanisms of calorie restrictions induced 

benefits in aging and related disorders are still not clear. Indeed, earlier studies reported that 

CR reduces the over production of ROS and oxidative damage, leading to enhanced 

mitochondrial function in humans and be an effective remedy for the treatment of obesity 

and insulin resistance [182-185]. CR has been also been reported to substantially elevate the 

insulin sensitivity in many species including humans, nonhuman primates, dogs, mice, and 

rats [186, 187]. Recent studies demonstrated that CR leads to increased Akt2 activity and 

glucose uptake by insulin-stimulated skeletal muscle in aged rats [188, 189]. Finally, data 

from various epidemiological, clinical and experimental studies have shown that CR exerts 

additional beneficial health effects by inhibiting key nutrient-sensing and inflammatory 
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pathways and remains the cornerstone in the prevention and treatment of metabolic disorders 

[190].

13. Pharmacological interventions

The recent literature revealed that oxidative stress in the cell leads to structural and 

functional changes in the mitochondria. These mitochondrial changes triggers cell signaling 

pathways and generate uncontrollable ROS which ultimately leads to organ failure and 

diseases. Therefore pharmaceutical drugs that can limit the overproduction of ROS in the 

cells may be the potential therapeutic solution to improve mitochondrial health in a wide 

range of diseases. Although the molecular mechanisms of mitochondria-mediated diseases 

are uncertain, oxidative stress induced by overproduction ROS in mitochondria seems to be 

the major risk for development of metabolic and neurodegenerative diseases. Growing 

shreds of evidence demonstrated that NAD-dependent deacetylase family (Sirtuins), SIRT1 

is involved in many cellular processes including regulation of glucose and lipid metabolism, 

through insulin signaling in the liver, adipose tissue, and skeletal muscles [191-202]. Newer 

pharmacologic approaches have been proposed to improve mitochondrial function. 

Resveratrol, an activator of SIRT1, found in grapes have strong antioxidant properties and 

improves insulin resistance. Activation of SIRT1 gene protects the cells against 

inflammation and oxidative stress. It activates PGC-1α that promotes glucose uptake and 

mitochondrial biogenesis [195, 203, 204]. Mitochondrial fission has been implicated in 

various metabolic conditions, the inhibitors of mitochondrial fission may be used as 

therapeutic targets to treat patients with metabolic disorders [205]. Three inhibitors of 

mitochondrial fission have been identified as Mdivi 1, P110, and Dynasore [206-208] which 

play an ameliorative role against mitochondrial oxidative stress.

14. Mitochondria-targeted antioxidants

Metabolic syndrome affects 20%-30% of the world’s population. The involvement of 

oxidative stress and mitochondrial dysfunction in the pathophysiology of metabolic 

disorders has been widely established. The mitochondria targeted antioxidants therapies 

could be potential treatment for a number of pathologic conditions including 

neurodegenerative or metabolic diseases. Recently, in vivo and in vitro studies done in 

experimental animals and humans, reported ameliorative role of mitochondria targeted 

antioxidants against metabolic disorders [209-212]. The commonly used vitamins (vitamin E 

and C) and other chemical compounds with antioxidant properties such as coenzyme Q, a-

lipoic acid, N-acetylcysteine (NAC) have been used to reduce the excess generation of ROS 

in various metabolic conditions [213-215]. In the recent years, antioxidant compounds 

incorporating ubiquinone (MitoQ) or vitamin E (MitoVit E) specifically targeted to 

mitochondria have been successively used against mitochondrial dysfunctions [216] (Figure 

5). Recent studies have demonstrated that mitochondria-targeted antioxidants are far better 

in reducing oxidative damage in mitochondria [216-219].

MitoQ is a potent mitochondria-targeted therapeutic antioxidant in which lipophilic 

triphenylphosphonium (TPP) cation is bound to ubiquinone antioxidant moiety of the 

endogenous antioxidant co-enzyme Q10 [220]. The lipophilic nature of TPP-cation enables 
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MitoQ to cross phospholipid bilayers that leads to its accumulation many hundred-fold 

within mitochondria and reduce ROS in the mitochondria and protect against age-related 

mitochondrial insult in brain tissue [216, 217, 220]. Recent studies established the defensive 

action of MitoQ in metabolic syndrome by affecting the redox signaling pathways [221, 

222]. These findings support the understanding that increased ROS in mitochondria may 

contribute to the etiology of a wide variety of diseases [223-226]. Now a day MitoQ has 

been extensively used as a potential therapeutic molecule for the treatment of 

neurodegenerative diseases [227-229]. Like MitoQ, MitoVitE, a TPP-conjugated vitamin E 

is another mitochondria-targeted vitamin E derivative, which can easily pass through the 

lipid bilayers and accumulate 100-1000-fold within mitochondria [230, 231]. It also protects 

mitochondria against oxidative damage induced by the excess of ROS in many pathogenic 

conditions [217, 220, 230]. It also protects mitochondria against oxidative damage induced 

by the excess of ROS in many pathogenic conditions [217, 220, 230]. MitoVit E has been 

shown to be 350-fold more potent than untargeted vitamin E in protecting against cell death 

induced by mitochondrial oxidative damage [219].

15. Conclusions and future perspectives

Mitochondria are the cytoplasmic organelles responsible for cell survival and cell death. The 

major function of mitochondria is to ‘energy’ adenosine triphosphate (ATP) to the cells by 

metabolizing nutrients and responsible for cellular processes ranging from energy 

metabolism, generation of reactive oxygen species and Ca2+ homeostasis, cell survival, and 

death. Mitochondrial structural and functional changes are reported to involve in aging, 

cancer, metabolic syndromes, including stroke, ischemia, pre-diabetes, diabetes, obesity, 

hypertension, dyslipidemia, heart disease, alcohol injury, and neurodegenerative diseases. 

Recent research revealed that mitochondrial abnormalities, including impaired 

mitochondrial dynamics, defects in mitochondrial biogenesis, mitochondrial dysfunction, 

and oxidative stress are primarily involved in metabolic syndromes. Recent research also 

revealed that maintaining mitochondrial dynamics (fission-fusion balance) and 

mitochondrial function are necessary to treat patients with metabolic syndromes. To reduce 

and/or delay the progression of disease in metabolic syndromes, many therapeutic 

approaches are useful, including – lifestyle intervention (healthy diet & regular exercise), 

pharmaceutical strategies, and treating patients with mitochondrial-targeted molecules. 

However, molecular links between metabolic syndromes and mitochondrial structural/

functional changes are not well understood. Further genetics and genetic susceptibility to 

patients with metabolic syndromes, in relation to aging, are poorly understood. The role of 

epigenetics in patients with metabolic syndromes is unclear. Also, current generalized 

treatments to patients with metabolic syndromes may not be efficient and work because of 

body physiology different from population to population. Further research is urgently 

needed to answer these questions.
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Abbreviations

ATP Adenosine Triphosphate

OXPHOS Oxidative Phosphorylation

ROS Reactive Oxygen Species

RNS Reactive Nitrogen Species

TCA Tricarboxylic Acid

IR Insulin Resistance

MetS Metabolic Syndrome

ETC Electron Transport Chain

SOD Superoxide Dismutase

GPx Glutathione Peroxidase

GSH Glutathione

CAT Catalase

PGC1α Peroxisome Proliferator-Activated Receptor Gamma – Coactivator 1 alpha

TNF-α Tumor Necrosis Factor-Alpha

T2DM Type 2 Diabetes Mellitus

CR Caloric Restricted

MitoQ Mitochondria-Targeted Quinone

SS31 Szeto-Schiller Peptide 31

NAC N-acetylcysteine

mtDNA Mitochondrial DNA

ERR Oestrogen Related Receptors
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Highlights

• Mitochondrial dysfunction and oxidative stress are largely involved in aging, 

cancer, age-related neurodegenerative and metabolic syndrome.

• The overproduction of ROS has been associated with oxidative damage 

inflicted on lipids, DNA, and proteins.

• Mitochondrial stress pathways have been implicated in disease manifestations 

of mitochondrial dysfunction and could be the promising therapeutic targets 

for the prevention of metabolic diseases.
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Figure 1. 
Risk factors associated with metabolic syndrome.
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Figure 2. 
Generation of reactive oxygen species in mitochondrion
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Figure 3. 
Pathways involved in mitochondrial biogenesis
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Figure 4. 
(A). Mitochondrial fusion process

(B). Mitochondrial fission process
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Figure 5. 
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