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Abstract
Aims/hypothesis Transcription factor 7-like 2 (TCF7L2) is a
high mobility group (HMG) box-containing transcription
factor and downstream effector of theWnt signalling pathway.
SNPs in the TCF7L2 gene have previously been associated
with an increased risk of type 2 diabetes in genome-wide
association studies. In animal studies, loss of Tcf7l2 function
is associated with defective islet beta cell function and surviv-
al. Here, we explore the role of TCF7L2 in the control of the
counter-regulatory response to hypoglycaemia by generating
mice with selective deletion of the Tcf7l2 gene in pancreatic
alpha cells.
Methods Alpha cell-selective deletion of Tcf7l2 was achieved
by crossing mice with floxed Tcf7l2 alleles to mice bearing a
Cre recombinase transgene driven by the preproglucagon
promoter (PPGCre), resulting in Tcf7l2AKO mice. Glucose
homeostasis and hormone secretion in vivo and in vitro, and
islet cell mass were measured using standard techniques.
Results While glucose tolerance was unaffected in
Tcf7l2AKO mice, glucose infusion rates were increased
(AUC for glucose during the first 60 min period of
hyperinsulinaemic–hypoglycaemic clamp test was increased
by 1.98 ± 0.26-fold [p < 0.05; n = 6] in Tcf7l2AKO mice vs
wild-type mice) and glucagon secretion tended to be lower
(plasma glucagon: 0.40 ± 0.03-fold vs wild-type littermate

controls [p < 0.01; n = 6]). Tcf7l2AKO mice displayed
reduced fasted plasma glucose concentration. Glucagon
release at low glucose was impaired in islets isolated from
Tcf7l2AKO mice (0.37 ± 0.02-fold vs islets from wild-type
littermate control mice [p < 0.01; n = 6). Alpha cell mass was
also reduced (72.3 ± 20.3% [p < 0.05; n = 7) in Tcf7l2AKO
mice compared with wild-type mice.
Conclusions/interpretation The present findings demonstrate
an alpha cell-autonomous role for Tcf7l2 in the control of
pancreatic glucagon secretion and the maintenance of alpha
cell mass and function.
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Abbreviations
GLP-1 Glucagon-like peptide-1
GWAS Genome-wide association studies
PPG Preproglucagon
TCF7L2 Transcription factor 7 like-2
Tcf7l2fl/fl Mice carrying conditional null alleles of Tcf7l2
Tcf7l2AKO Alpha cell-specific deletion of Tcf7l2 in the

mouse
PPGCre Cre under the control of the a 0.6 kB fragment

of the preproglucagon promoter

Introduction

Personalised treatments for type 2 diabetes are moving closer
to reality with the information made available [1] through
genome-wide association studies (GWAS) and the technical
advances that are making genome sequencing much more
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affordable. One of the major challenges post-GWAS is in
understanding precisely how, at the cellular level, the risk
variants contribute to disease risk. Such information is likely
to be critical for the rational design of therapies [2].
Frequently, the implicated SNPs occur in non-coding regions
in the genome, making it difficult to assess how they lead to
disease [2]. A prime example is the intronic SNP rs7903146 in
the gene encoding transcription factor 7 like-2 (TCF7L2).
Risk allele carriers have a ~1.5-fold higher risk for type 2
diabetes per allele [3–6] and for latent autoimmune diabetes
in later life [7]. Individuals carrying the rs7903146 risk allele
display defective beta cell function, with evidence of reduced
beta cell mass and survival [3–14]. There is a growing body of
literature on TCF7L2 in the context of glucose homeostasis
and diabetes [1–35], with much effort dedicated to elucidating
how the SNP alters TCF7L2 expression and how a change in
TCF7L2 content in pancreatic islets affects beta cell function
[8, 10–16, 19–21, 26–30, 32, 34, 35]. Existing evidence
suggests that reduced levels of TCF7L2 in the beta cell [28]
lead to impaired insulin secretion [2]. Thus, although TCF7L2
variants have been proposed in one study to act through the
liver [10], both clinical data [4–6, 10, 14, 29] and our own
[15, 16, 28] and others’ [11, 20, 21] findings using gene
silencing in isolated islets, targeted recombination or
expression of dominant-negative TCF7L2 in mice are more
consistent with an action largely through the endocrine
pancreas. Taken together, the available literature thus points
to the SNP leading to a loss of TCF7L2 function in pancreatic
islets. This may be due to either the increased expression of a
tissue-specific, dominant-negative variant of TCF7L2
[26, 29–33], or a lowering in the expression of a more active
isoform, perhaps generated by alternative splicing between
exons 13 and 14 and expressed selectively in the beta
(and alpha) cell [19, 34, 35].

While extensive efforts have been made by us [15, 16, 28]
and others [8, 11, 12, 17–23, 25–27] to examine the role of
TCF7L2 in pancreatic beta cell function, little is known about
the role of this factor in the other pancreatic islet cell types.
Here, we describe the consequences of alpha cell-specific
deletion of Tcf7l2 in the mouse. We chose to use C57BL/6
mice for our study as this mouse strain has been extensively
used for the study of glucose homeostasis in the context of the
study of diabetes in humans. Our hypothesis is that Tcf7l2
function in the alpha cell is important for the control of
glucagon release and the maintenance of glucose homeostasis.

Methods

Materials

Unless otherwise stated all materials were obtained from
Sigma (Poole, UK).

Generation and maintenance of alpha cell-selective
Tcf7l2-knockout mice

Mice carrying conditional null alleles of Tcf7l2 (Tcf7l2fl/fl)
were generated as described in [16] and bred into a C57BL/6
background. Tcf7l2fl/fl mice were crossed with mice
expressing Cre under the control of the a 0.6 kB fragment of
the preproglucagon promoter (PPGCremice [36]; provided by
P. Herrera, University of Geneva, Switzerland), which had
been crossed into a C57BL/6 background to generate
PPGCre:Tcf7l2fl/fl mice (herein referred to as Tcf7l2AKO
mice), in which there is deletion of Tcf7l2 in pancreatic alpha
cells and limited expression of Tcf7l2 in extrapancreatic tissue
[36–39]. Tcf7l2AKO mice were born at the expected
Mendelian ratios and male mice were phenotyped at
8–20 weeks of age. Genotyping was performed by PCR using
DNA from ear biopsies.Wild-type littermate control (Tcf7l2fl/fl)
mice lacked the PPGCre allele. Possession of the latter allele
exerted no effects on glucose tolerance or glucagon secretion
compared with wild-type mice, as previously reported [38]. All
mouse lines were maintained on a C57BL/6 background. Mice
were housed in groups of two to five per individually ventilated
cage in a pathogen-free facility with 12 h light–dark cycle and
were fed ad libitum with a standard mouse chow diet. All
in vivo procedures described were performed at the Imperial
College Central Biomedical Service and approved by the local
ethical committee and UK Home Office according to the
Animals (Scientific Procedures) Act 1986 of the UK
(PPL 70/7971).

In vivo physiology

IPGTTand insulin tolerance testMice fasted for 16 h (with
free access to water) were injected intraperitoneally with 1 g
glucose/kg, and glucose levels in tail-vein blood were
measured with an automatic glucometer (Accuchek Compact
Plus; Roche, Burgess Hill, UK) [28]. Insulin tolerance was
assessed by i.p. injection of insulin (0.75 U/kg; ActRapid,
NovoNordisk, London, UK), which was administered to mice
that had been subjected to a 5 h fast. Plasma was collected and
centrifuged (2000 g, 5 min) in heparin-coated tubes
(Microvette; Sarstedt, Leicester, UK) and plasma glucagon
and glucagon-like peptide-1 (GLP-1) were assessed by
radioimmunoassay (Millipore/Linco, Watford, UK).
Hyperinsulinaemic–hypoglycaemic clamp tests were
performed by perfusion of insulin and glucose solutions
through a jugular catheter, as described [39].

Islet isolation, in vitro glucose-stimulated glucagon
secretion and real-time PCR analysis

After mice were euthanised by cervical dislocation, islets were
purified on histopaque gradients and hand-picked as described
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[40]. Islets were cultured in RPMI medium (Gibco, Paisley,
UK) supplemented with 2 mmol/l glutamine, 100 U/ml of
penicillin, 100 U/ml of streptomycin and 10% (vol./vol.)
heat-inactivated FBS for 24 h. Secretion from islets (10 per
condition, size-matched) was measured in 0.5 ml KRB
solution containing 3 or 10 mmol/l glucose as described
[41, 42].

Total RNA was extracted in Trizol (Invitrogen, Paisley,
UK) from 100 mouse islets and real-time PCR analysis of
Gcg and Mafb was conducted as previously described [43].

Immunohistochemistry

Beta and alpha cell masses were assessed as previously
described [43] in pancreases from 20-week-old mice.
Briefly, isolated pancreases were fixed in 10% buffered
formalin and embedded in paraffin wax within 24 h of
removal. Head-to-tail sections (5 μm lengthwise) were cut
and incubated overnight at 37°C on superfrost slides. Slides
were submerged sequentially in Histochoice followed by
decreasing concentrations of industrial methylated spirits for
removal of paraffin wax. TCF7L2 protein content in
pancreatic alpha cells was assessed by immunohistochemistry
(anti-TCF7L2 antibody [SC-8631]; 1:50 dilution; Santa Cruz,
Heidelberg, Germany), as per the manufacturer’s instructions.
Images were captured on a Zeiss Axio Observer.Z1
Motorised Inverted Widefield Microscope (Zeiss,
Cambridge, UK) fitted with a Hamamatsu Flash 4.0 Camera
(Hamamatsu Photonics, Welwyn Garden City, UK) using
Plan-Apochromat 20×/0.8 M27 air objective (Zeiss) with
Colibri.2 LED illumination. Data acquisition was controlled
by Zeiss Zen Blue 2012 software configured at a bit depth of
16-bit and binning mode 2 × 2 (Zeiss). Whole-tissue tiled
preview scans were obtained using an EC Plan-Neofluar
10x/0.3 Ph1 air objective with phase contrast (Zeiss).
Excitation intensities and exposure times were kept constant
for all images. Image analysis was performed using Volocity
(PerkinElmer, Beaconsfield, UK) and Fiji (https://fiji.sc/,
accessed 25 June 2015) [43]. Experimenters were blinded to
the group assignment for assessment of islet cell mass.

Laser capture microdissection and real-time PCR analysis

Laser capture microdissection was performed on pancreatic
slices essentially as described [44]. Alpha and beta cells were
identified by fluorescent staining as described in the methods
for ‘immunohistochemistry’. Cells were extracted from ten
pancreatic slices from three separate pancreases from
Tcf7l2AKO or wild-type littermate control mice, and pooled
for RNA extraction. Real-time quantitative PCR was
conducted to analyseTcf7l2, Gcg, Ins2 and Mafb expression,
as previously described [43].

Statistical analysis

Samples were not randomised. No data, samples or animals
were excluded. Data are expressed as means ± SEM.
Significance was tested by two sample unpaired or paired
Student’s t test using Excel (Microsoft, Reading, UK). Avalue
of p < 0.05 was considered significant.

Results

Generation of mice deleted for Tcf7l2 selectively
in the pancreatic alpha cell

Cross-breeding of mice with floxed Tcf7l2 alleles with mice
expressing Cre recombinase under the control of the
preproglucagon (PPG) gene promoter [36] was predicted to
lead to recombination selectively in pancreatic islet
alpha cells (generating Tcf7l2AKO mice). We used
immunohistochemistry to assess TCF7L2 protein content in
alpha cells because of the low abundance of alpha cells in
rodent islets (~20% of all cells) [45, 46], and expected
20–50% deletion with the PPGCre used here [46].
Correspondingly, immunohistochemical analysis revealed a
56.7 ± 9.5% overlap (vs 83.4 ± 10.6% in pancreases from
wild-type littermate control mice) of signal from anti-TCF7L2
antibody with the signal from glucagon in Tcf7l2AKO islets
(Fig. 1a, c).

Pancreatic alpha cell-selective deletion of Tcf7l2 leads
to reduced fasting glucose, normal insulin tolerance
but impaired counter-regulatory response

There were no significant differences in weight between
Tcf7l2AKO mice and wild-type littermate control mice
(Fig. 1d). Fasting plasma glucose (measured at 09:00 hours
following a 16 h fast, Fig. 1e, f) was lower in Tcf7l2AKOmice
compared with wild-type littermate control mice, while
glucose tolerance (as assessed by IPGTT) was unaffected
(Fig. 1f). Tcf7l2AKO mice exhibited normal tolerance to i.p
insulin (Fig. 1g). While plasma glucose levels were
significantly higher at all except one time point sampled
during the period of the test, there was no significant
difference between genotypes in the area under the curve
(AUC) for the period of the test (Fig. 1g, inset). Tcf7l2AKO
mice exhibited reduced fasting plasma glucagon levels
(Fig. 1h), suggestive of defective counter-regulatory
responses. Plasma GLP-1 levels were unchanged (Fig. 1i),
while islet glucagon (Gcg) and Mafb gene expression were
significantly reduced in islets from Tcf7l2AKO vs wild-type
littermate control mice (Fig. 1j). Gene expression analysis of
pooled glucagon-positive cells captured by laser capture
microdissection demonstrated a 56.8 ± 5.45% and
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Fig. 1 Tcf7l2AKOmice display reduced blood glucose, insulin intolerance
and plasma glucagon concentration. Tcf7l2was knocked out using an alpha
cell-selective Cre [36]. (a) Representative images of immunohistochemical
analysis are shown to confirm knockout by labelling pancreases from
wild-type (WT; panels i–vi) and Tcf7l2AKO (panels vii–xii) mice with
anti-glucagon (red), anti-insulin (green) and anti-TCF7L2 (magenta)
antibodies. Images i and vii show overlay of all three channels, ii and viii
show overlay of insulin with TCF7L2, iii and ix show overlay of glucagon
with TCF7L2, and iv–vi and x–xii show the individual channels. Inset
panels show magnified images of the indicated areas. Scale bar, 50 μm
and applies to all micrographs in part (a). (b) PCR genotyping gel to
confirm the presence of the wild-type (WT; 174 bp) and conditional
knockout (AKO; 297 bp) allele. (c) Graph showing quantification of
the degree of overlap between glucagon-positive alpha cells and
TCF7L2-positive cells in pancreases from WT and Tcf7l2AKO mice. (d)
Tcf7l2AKO mice exhibit normal weight. (e–g) i.p. glucose and insulin

tolerance tests were conducted on 8–9-week-old mice on a normal chow
diet. (e) Fasting glucose but not (f) overall glucose tolerance was altered in
Tcf7l2AKOmice comparedwithWTmice. (g) Insulin tolerance, (h) fasting
(16 h) plasma glucagon and (i) plasma GLP-1 were also measured in
Tcf7l2AKO mice. (j) Real-time PCR analysis of islets of Langerhans from
20-week-old Tcf7l2AKO mice and WT littermate control mice on normal
chow diet. (k) Real-time quantitative PCR analysis of cells captured by
laser microdissection for measurements of the indicated genes. In (a–j):
white bars and solid lines, WT mice; black bars and dashed lines,
Tcf7l2AKO mice. In (k): white bars, glucagon-positive cells from WT
mice; black bars, glucagon-positive cells from Tcf7l2AKOmice; light grey
bars, insulin-positive cells from WT mice; dark grey bars, insulin-positive
cells from Tcf7l2AKO mice. For (a–i), n = 5; for (j) and (k), n = 3. ND,
non-detectable (i.e.Gcg and Ins expressionwas undetectable in insulin- and
glucagon-positive cells, respectively), NS, non-significant. *p < 0.05
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37.2 ± 6.52% decrease in Tcf7l2 and Gcg gene expression,
respectively, in cells from Tcf7l2AKO vs wild-type littermate
control mice (Fig. 1k). In contrast, neither Tcf7l2 nor Ins gene
expression were significantly affected in insulin-positive cells
captured by laser capture microdissection (Fig. 1k).

To determine whether the above changes result in impaired
glucagon release in vivo we performed hyperinsulinaemic–
hypoglycaemic clamp tests. During the time period
20–120 min after the start of insulin infusion, when blood

glucose levels were similar in both groups (Fig. 2a), it was
necessary to infuse glucose more rapidly into Tcf7l2AKO vs
wild-type littermate control mice to maintain blood glucose
levels (Fig. 2b). Thus, a significant increase (1.98 ± 0.26-fold;
p < 0.05) in the AUC for glucose was observed during the first
60 min period (Fig. 2b [inset]), and plasma glucagon was
reduced at 120 min (0.40 ± 0.03 fold; p < 0.01; Fig. 2c) vs
wild-type littermate control mice following glucose infusion,
confirming a defective counter-regulatory response in these
mice. Likewise, glucagon secretion from isolated islets was
significantly reduced in response to low glucose (3 mmol/l;
Fig. 2d), while total islet glucagon content was not
significantly different between Tcf7l2AKO vs islets from
wild-type littermate control mice (12.1 ± 0.8 vs 13.6 ± 0.9 ng
per ten islets, respectively).

Pancreatic alpha cell mass is reduced in Tcf7l2AKO mice

Immunohistochemical analysis revealed no change in beta cell
mass (Fig. 3b) but a 72.3 ± 20.3% (p < 0.05) decrease in alpha
cell mass in Tcf7l2AKO vs wild-type littermate control mice
(Fig. 3c), resulting in a 2.8 ± 0.09-fold increase in beta/alpha
cell mass ratio (Fig. 3d).
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Discussion

It was recently demonstrated that individuals without diabetes
bearing rs7903146 risk variants display an increased
pancreatic alpha/beta cell ratio [10].We [15, 16, 28] and others
[8, 11, 12, 17–23, 25–27], have previously demonstrated that
loss of Tcf7l2 from pancreatic islets [16] or selectively from
beta cells [28] leads to decreased beta cell mass and increased
beta cell apoptosis [11–13, 16, 21, 28, 29, 32, 47]. The
observation that alpha cell mass was not altered in mice with
beta cell-specific deletions in Tcf7l2 and glucose intolerance
[28] suggests that the increase in this variable in risk allele
carriers may be due to a cell-autonomous role for TCF7L2
in the alpha cell.

As a means of testing this hypothesis directly, we provide
here the first description of mice with pancreatic alpha
cell-specific deletion of Tcf7l2. Tcf7l2AKO mice present with
a robust reduction of TCF7L2 protein content (Fig. 1a, c) and
Tcf7l2 expression (Fig. 1k) in alpha cells, reflecting the
expected efficiency of the PPGCre strain (which recombines
in 20–50% of alpha cells; see [39] and references therein). In
addition, we demonstrated that the expression of two alpha
cell-specific genes, Gcg and Mafb, was reduced in pancreatic
islets (Fig. 1j), although interestingly these changes did not
result in an apparent lowering of islet glucagon content
(described further below). The reason(s) for this discordance
between changes at the mRNA and protein level are unclear.

We note that although other Cre driver lines under the
control of the glucagon promoter result in more complete
recombination in alpha cells [48, 49]. However, these also
recombine in the brain and in intestinal L cells, complicating
the interpretation of results obtained through their use. This is
particularly relevant as TCF7L2 has recently been shown to
regulate gut and brain proglucagon gene expression and
glucose homeostasis [22]. However, unlike the Gcg promoter
used in the Shao study [22], the PPGCre strain we use in this
study has previously been shown to exhibit no recombination
in the brain and <5% recombination in the small intestine,
with no effect on plasma GLP-1 content [37]. Here, we show
that plasma GLP-1 levels were unchanged (Fig. 1i) in
Tcf7l2AKO mice in comparison with wild-type littermate
controls, indicating that deletion of Tcf7l2 in cells in which
the PPG promoter is active did not significantly alter GLP-1
production or release.

One of our key findings was that 8–9-week-old Tcf7l2AKO
mice have lower fasted (Fig. 1e, f) blood glucose
concentrations. While glucose (Fig. 1f) and insulin tolerance
(Fig. 1g) was unaffected in Tcf7l2AKO mice, Tcf7l2AKO
mice displayed lower fasting plasma glucagon (Fig. 1h)
compared with wild-type littermate controls. These data point
to a defective counter-regulatory response (where, in health,
an increase in glucagon release from pancreatic alpha cells
leads to avoidance of hypoglycaemia) which we confirmed

by performing hyperinsulinaemic–hypoglycaemic clamps
(Fig. 2). Glucagon secretion from isolated islets in response
to low glucose levels (3 mmol/l) was similarly impaired
(Fig. 2d), while islet glucagon content was unaltered in
Tcf7l2AKO vs islets from wild-type littermate control mice,
and alpha cell mass was decreased (Fig. 3). Thus, the loss of
counter-regulatory response in Tcf7l2AKOmicewould appear
to reflect, at least in large part, decreases in both alpha cell
mass and function. The downstream targets of Tcf7l2 that may
mediate the molecular mechanisms that lead to the loss of
alpha cell mass and function remain to be determined.

The present findings thus extend our published data on
Tcf7l2 function in pancreatic beta cells [28], indicating that
TCF7L2 has a cell-autonomous function in pancreatic
islet alpha cells through modulation of cell mass, function
and the expression of Gcg and other genes in these cells.
The molecular mechanisms that underlie these changes
remain, however, to be characterised in detail, though actions
on membrane potential or calcium dynamics, as reported in
beta cells deficient in Tcf7l2 [15], are likely possibilities.

Intriguingly, the present and previous [14] data indicate that
loss of TCF7L2 function, as anticipated in carriers of the risk
allele rs7903146 as a result of increases in the expression of
dominant-negative isoforms of the protein, leads to decreases
in both alpha and beta [28] cell mass. The combined effect is
an overall larger impact on islet function, potentially having
an impact on pathways that are involved in islet cell
regeneration in disease conditions. Importantly a decrease of
similar magnitude in the functional mass of both cell types is
expected to reduce antihyperglycaemic drives postprandially,
when alpha cells are largely inactive in individuals without
diabetes, thus increasing diabetes risk. Data are currently
unavailable on the effect of risk alleles on the expression of
Tcf7l2 mRNA levels and splicing in alpha cells. Of note, we
have previously hypothesised that risk variants may not act on
TCF7L2 activity in the liver if the affected splice variant
containing exons 13, 13b and 14 is not present in this tissue
[19, 28, 34, 35, 50]. Studies on purified human alpha cell
populations will be required to address this question.

Interestingly, we have also recently shown [39] that loss of
the secretory granule zinc transporter ZnT8, encoded by the
type 2 diabetes GWAS gene SLC30A8 [5] from the murine
alpha cell, leads to exaggerated glucagon release in response
to low glucose levels, though alpha cell mass was not altered
in the latter model. Conversely, overexpression of ZnT8 in
alpha cells stimulates glucagon secretion [51]. The latter
findings demonstrate that the increased abundance of type 2
diabetes in risk allele carriers might, in both cases, involve
alterations in glucagon release, consistent with the ‘dual
hormone’ model for this disease [52]. Whether personalised
treatments of type 2 diabetes based on genotype at either locus
may usefully target these changes in glucagon release may be
worthy of exploration in the future. Likewise, variation in the
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association SNPs in both alleles might be useful in the context
of type 1 diabetes as a predictor of counter-regulatory
responses to hypoglycaemia.
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