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Tradict enables accurate prediction of eukaryotic
transcriptional states from 100 marker genes
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Transcript levels are a critical determinant of the proteome and hence cellular function.
Because the transcriptome is an outcome of the interactions between genes and their
products, it may be accurately represented by a subset of transcript abundances. We develop
a method, Tradict (transcriptome predict), capable of learning and using the expression
measurements of a small subset of 100 marker genes to predict transcriptome-wide gene
abundances and the expression of a comprehensive, but interpretable list of transcriptional
programs that represent the major biological processes and pathways of the cell. By analyzing
over 23,000 publicly available RNA-Seq data sets, we show that Tradict is robust to noise and
accurate. Coupled with targeted RNA sequencing, Tradict may therefore enable simultaneous
transcriptome-wide screening and mechanistic investigation at large scales.
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s the critical determinant of the proteome and therefore

cellular status, the transcriptome represents a key node of

regulation for all life!. Transcriptional control is managed
by a finely tuned network of transcription factors that integrate
environmental and developmental cues in order to actuate the
appropriate responses in gene expression2'4. Importantly, the
transcriptomic state space is constrained. Pareto efficiency
constraints suggest that no gene expression profile or
phenotype can be optimal for all tasks, and consequently, that
some expression profiles or phenotypes must come at the expense
of others™S. Furthermore, across all major studied kingdoms of
life, cellular networks demonstrate remarkably conserved scale-
free properties that are topologically characterized by a small
minority of highly connected regulatory nodes that link the
remaining majority of sparsely connected nodes to the network’~
9. These theories suggest that the effective dimension of the
transcriptome should be far less than the total number of genes it
contains. If true to a large enough extent, it may be possible to
faithfully compress and prospectively summarize entire
transcriptomes by measuring only a small, carefully chosen
subset of it.

Indeed, previous studies have exploited this reduced dimension-
ality to perform gene expression imputation for missing or
corrupted values in microarray data.!%~!2. Others have extended
these intuitions to }fredict expression from probe sets containing a
few hundred genes'>!4. However, prediction accuracies have been
modest and usually limited to 4,000 target probes/genes. Recently,
several studies examined the transcriptomic information
recoverable by shallow sequencing especially as it applies to
single-cell experiments!>18, Jaitin et al'® and Pollen et al.l®
demonstrated that only tens of thousands of reads are required
per cell to learn and classify cell types ab initio'®'8, Heimberg
et al.'® extended these findings and demonstrated that the major
principal components of a typically sequenced mouse bulk or
single-cell expression data set may be estimated with little error at
even 1% of the depth!®. Though these approaches, advance the
notion of strategic transcriptome undersampling, they only recover
broad transcriptional states and are restricted to measuring only the
most abundant genes. During sample preparation—arguably the
most expensive cost of a multiplexed-sequencing experiment—
shallow sequencing-based approaches still utilize protocols meant
for sampling the entire transcriptome and therefore consume more
resources than necessary. Furthermore, given that the expression of
even the most abundant genes is highly skewed, sequencing effort is
wastefully distributed compared to an approach that chooses which
genes to measure more wisely. Finally, it is still not clear from
sample sizes and biological contexts previously studied whether the
low dimensionality of the transcriptome may be leveraged
unconditionally (or nearly so) across organism and application.
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In this work, we introduce Tradict (transcriptome predict), a
robust-to-noise and probabilistically sound algorithm, for infer-
ring gene abundances transcriptome-wide, and predicting the
expression of a transcriptomically comprehensive, but interpre-
table list of transcriptional programs that represent the major
biological processes and pathways of the cell. Tradict makes its
predictions using only the expression measurement of a single,
context-independent, machine-learned subset of 100 marker
genes. Importantly, Tradict’s predictions are formulated as
posterior distributions over unmeasured genes and programs,
and therefore simultaneously provide point and credible interval
estimates over predicted expression. Using a representative
sampling of over 23,000 publicly available, transcriptome-wide
RNA-Seq data sets for Arabidopsis thaliana and Mus musculus,
we show Tradict prospectively models program expression with
striking accuracy. Our work demonstrates the development
and large-scale application of a probabilistically reasonable
multivariate count/non-negative data model, and highlights the
power of directly modelling the expression of a comprehensive
list of transcriptional programs in a supervised manner.
Consequently, we believe that Tradict, coupled with targeted
RNA sequencing'®?%, can rapidly illuminate biological
mechanism and improve the time and cost of performing large
forward genetic, breeding, or chemogenomic screens.

Results
Assembly of a deep training collection of transcriptomes. We
downloaded all available Illumina sequenced publicly deposited
RNA-Seq samples (transcriptomes) for A. thaliana and
M. musculus from NCBI’s Sequence Read Archive (SRA). Among
samples with at least 4 million reads, we successfully downloaded
and quantified the raw sequence data of 3,621 and 27,450 tran-
scriptomes for A. thaliana and M. musculus, respectively. After
stringent quality filtering, we retained 2,597 (71.7%) and 20,847
(76.0%) transcriptomes comprising 225 and 732 unique SRA
submissions for A. thaliana and M. musculus, respectively. An
SRA ‘submission’ consists of multiple, experimentally linked
samples submitted concurrently by an individual or lab. We
defined 21,277 (A. thaliana) and 21,176 (M. musculus) measur-
able genes with reproducibly detectable expression in transcripts
per million (t.p.m.) given our tolerated minimum-sequencing
depth and mapping rates (see Methods section for further
information regarding data acquisition, transcript quantification,
quality filtering and expression filtering). We hereafter refer to the
collection of quality and expression filtered transcriptomes as our
training transcriptome collection.

To assess the quality and comprehensiveness of our training
collection, we performed a deep characterization of the expression
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Figure 1 | The primary drivers of transcriptomic variation are developmental stage and tissue. (a) A. thaliana, (b) M. musculus. Also shown are plots of

PC3 versus PC1 to provide additional perspective.
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space spanned by these transcriptomes. We found that the
transcriptome of both organisms was highly compressible and
that the primary drivers of variation were tissue and develop-
mental stage (Fig. lab, Supplementary Fig. 1), with many
biologically realistic trends within each cluster (Supplementary
Note 1). We additionally examined the distribution of submis-
sions across the expression space, compared inter-submission
variability within and between tissues, inspected expression
correlations among genes with well-established regulatory
relationships and assessed the evolution of the expression space
across time. These investigations revealed our training collection
is of high and reproducible technical quality, reflective of
known biology, stable, and increasing exponentially in size
(Supplementary Note 1, Supplementary Figs 2-4). Given
additionally the diversity of tissues, genetic perturbations and
environmental stimuli represented in the SRA, these results, taken
together, suggest that our training collection is an accurate and
representative sampling of the transcriptomic state space that is of
experimental interest for both organisms.

Tradict—algorithm overview. Given a training transcriptome
collection, Tradict encodes the transcriptome into a single subset
of globally representative marker genes and learns their predictive
relationship to the expression of a comprehensive collection of
transcriptional programs (for example, pathways, biological
processes) and to the rest of the genes in the transcriptome.
Tradict’s key innovation lies in using a Multivariate Normal
Continuous-Poisson (MVN-CP) hierarchical model to model
marker latent abundances—rather than their measured, noisy
abundances—jointly with the expression of transcriptional pro-
grams and the abundances of the remaining non-marker genes in
the transcriptome. In so doing, Tradict is able to (1) efficiently
capture covariance structure within the non-negative, right-skewed
output typical of sequencing experiments, and (2) perform robust
inference of transcriptional program and non-marker expression
even in the presence of significant noise.

Figure 2 illustrates Tradict’s general workflow. Estimates of
expression are noisy, especially for low to moderately expressed
genes. Given samples are often explored unevenly and that the
a priori abundance of each gene differs, the level of noise in a
gene’s measured expression for a given sample varies, but it can
be estimated. Therefore, during training, Tradict first learns the
log-latent, denoised abundances for each gene in every sample in
the training collection using the lag transformation®®. It then
collapses this latent transcriptome into a collection of predefined,
comprehensive collection of transcriptional programs that
represent the major processes and pathways of the cell related
to growth, development and response to the environment
(Supplementary Data Tables 3 and 4). In this work, we
focus on creating a Gene Ontology (GO)-derived panel of
transcriptional programs, in which the first principal component
of all genes contained within an appropriately sized and
representative GO term is used to define an accordingly
named transcriptional program?®?’. The expression values of
these programs are then encoded using an adapted version of the
Simultaneous Orthogonal Matching Pursuit algorithm into a
small subset of marker genes selected from the transcriptome®®2%,
Tradict finally stores the mean and covariance relationships
between the log-latent expression of the selected markers, the
transcriptional programs and the log-latent expression of the
remaining non-marker genes at the Multivariate Normal layer of
the MVN-CP hierarchical model (Fig. 2a).

Prospectively, only the expression of these marker genes needs
to be measured and the expression of genes and/or transcriptional
programs can be inferred as needed. During prediction, Tradict

uses the observed marker measurements as well as their log-latent
mean and covariance learned during training, to estimate—via
Markov Chain Monte Carlo (MCMC) sampling—the posterior
distribution over the log-latent abundances of the markers.
Though a simply a consequence of proper inference of our model,
this denoising step adds considerable robustness to Tradict’s
predictions. From this estimate, Tradict uses covariance
relationships learned during training to estimate the conditional
posterior distributions over the remaining non-marker genes and
transcriptional programs (Fig. 2b). From these distributions, the
user can derive point estimates (for example, posterior mean or
mode), as well as measures of confidence (for example, credible
intervals). In this work, we report maximum a posteriori (MAP)
point estimates and 95% credible intervals unless otherwise noted.
A complete textual and mathematical description of the entire
algorithm can be found in the Methods section and in
Supplementary Note 6, respectively.

Tradict prospectively predicts expression patterns with accuracy.
To understand Tradict’s prospective predictive performance, we
performed 20-fold cross validation on the training transcriptome
collections for both A. thaliana and M. musculus and evaluated
Pearson correlation coefficients (PCC) between predicted and
actual expression for each fold when the remaining 95% of folds
were used for training. To make this experiment as reflective of
reality as possible, folds were divided by submission so that
samples from the same set of experiments would not appear both
in training and test sets. Because submissions to the SRA span a
broad array of biological contexts, the total biological signal
contained in any given test set likely exceeds that of what would
be expected for typical application, which in turn would lead to
overly optimistic estimates of prediction accuracy. We therefore
evaluated intra-submission accuracy, in which PCC calculations
were performed on ‘submission-adjusted’ expression values. To
do this, for each gene and program, each test-set submission’s
mean expression was subtracted from the expression values for all
samples associated with that submission. In effect, this regresses
out between-submission effects, and allows us to assess Tradict’s
predictive performance one experiment at a time, as one would
do in practice.

Figure 3a,c illustrate that the reconstruction performance for
transcriptional programs in both organisms is strikingly accurate
across all collected submissions. Quantitatively speaking, the
average intra-submission PCCs for transcriptional programs are
0.94 and 0.93 for A. thaliana and M. musculus, respectively. This
is despite lower prediction performance on gene expression
(Fig. 3b,d). Intuitively, this is because transcriptional programs
are measured as linear combinations of the log-latent t.p.m.’s of
the genes that comprise them, effectively smoothing over the
orthogonal noise present in each gene’s expression prediction.

We also found Tradict’s performance to be superior to several
baselines. These include two successful approaches developed
in Donner et al for microarray!4, and a version of Tradict
that uses the 100 most abundant genes as its selected markers
(Fig. 3e, Supplementary Fig. 5, Supplementary Note 2). The
former baselines rely on structured regression (SR) and
locally weighted averaging (LWA), linear/parametric and non-
parametric methods, respectively. The latter-most baseline
examines the utility of simple shallow sequencing by using the
most abundant genes as markers for Tradict (see Supplementary
Note 2 for a more detailed description). Figure 3e illustrates test-
set intra-submission performance of each method as a function of
the number of markers entered into the model. LWA
demonstrates the quickest performance gain, but then saturates
after ten markers. This is likely because a non-linear kernel-based
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Figure 2 | Tradict's algorithmic workflow. (a) During training, the transcriptome is first quantitatively summarized in terms of a collection of a few
hundred, biologically comprehensive transcriptional programs. These are then decomposed into a subset of marker genes using an adaptation of the
Simultaneous Orthogonal Matching Pursuit algorithm. A MVN-CP hierarchical model is used as a predictive model to capture covariance relationships
between markers, transcriptional programs and all genes. (b) During prediction, Tradict predicts the expression of transcriptional programs and all genes in
the transcriptome using the expression measurements of the marker genes. (¢) The MVN-CP hierarchy enables Tradict to efficiently model statistical
coupling between the non-negative expression measurements typical of sequencing experiments. This is done by assuming that associated with each
observed, noisy t.p.m. measurement, there is an unmeasured (denoised), latent abundance the logarithm of which comes from a MVN distribution over all

genes and transcriptional programs.

approach makes the most efficient use of a few markers, but is
adversely impacted by the curse of dimensionality as more
markers are added. The parametric methods (Tradict, SR)
navigate this dimensionality increase more efficiently and
ultimately realize better performance for a still reasonable
number of markers. Tradict outperforms SR and Tradict
Shallow-Seq, ultimately obtaining a PCC between predicted and
actual expression of 0.71 for genes and 0.96 for transcriptional
programs. This suggests Tradict’s probabilistic framework is more
reasonable than SR’s and that Tradict’s marker selection is more
optimal than picking the most abundant genes. We additionally
found Tradict’s predictions were robust to noise in the form of
low-sequencing depth and/or corrupt marker measurements
(Supplementary Figs 5 and 10, Supplementary Notes 2 and 5),
which we attribute to its probabilistic framework, in which
training and prediction are performed in the space of denoised
latent abundances.

To further assess the validity of Tradict’s modelling assump-
tions, we examined how Tradict’s posterior predictive distribu-
tion matched the distribution of test-set gene and program
expression values. Specifically, we performed a posterior
predictive check in which we asked what percent of test-set gene
or program expression values fall within an X% credible interval,
where a unique interval is defined for each gene/program®. If
Tradict’s posterior predictive distribution is reasonable then X%
of the true expression values should fall within this interval for
any X. Figure 3f illustrates the results of this analysis as performed
on disjoint test-sets from a 20-fold cross validation on the A.
thaliana data set. On average, the X% credible interval captures
X% of test-set observations for any choice of X. The posterior

predictive distribution for transcriptional programs may be
slightly too wide at moderate interval sizes (30-70%), which
would make Tradict more conservative (higher type II error rate)
than it should be. However, in practice Tradict is accurate
(P value=0.24, t-test) for larger, more standard interval sizes
(for example, 95%). We conclude that Tradict’s probabilistic
modelling assumptions capture unseen data well.

We next characterized Tradict’s limitations through error,
power, program annotation robustness analyses and a timing and
memory analysis (Supplementary Figs 6-9, Supplementary Notes
3 and 4). These analyses revealed that training-set expression
variance and mean abundance correlated positively with
both program and gene expression prediction performance
(Supplementary Note 3.1, Supplementary Data Tables 3 and 4).
Combined with program size as another predictor, these variables
could account for most of the error (60% of total variance) in
program expression prediction. A power analysis revealed that for
both A. thaliana and M. musculus, 1,000 samples—comprising
approximately 100 submissions—were sufficient for optimum
performance (Supplementary Note 3.IT). An examination of how
gene-to-program mis-annotation rates influenced predictive
performance revealed that program expression prediction per-
fromance was robust up to a 20% mis-annotation rate and that
gene expression prediction performance was completely robust to
any level of mis-annotation. The latter result is a consequence of a
statistical decoupling between gene and program expression
prediction (Supplementary Note 3.III). Finally, Tradict’s training
time and peak memory requirements scaled linearly with training
set size, and increased 0.26s and 1.1 Mb per sample. Prediction
time was limited by MCMC sampling from the conditional
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Figure 3 | Tradict prospectively predicts gene and transcriptional program expression with superior and robust accuracy. Tradict's prospective
prediction accuracy during 20-fold cross validation of the entire training collection for both organisms. (a) Heatmaps illustrating test-set reconstruction
performance of all transcriptional programs for A. thaliana. Shown is the reconstruction performance for all samples in our transcriptome collection when
they were in the test-set. (b) Density plots of predicted versus actual test-set expression for all genes (left) and transcriptional programs (right) for

A. thaliana, after controlling for inter-sumbission biological signal. The intra-submission expression of each gene and transcriptional program was z-score
transformed to make their expression comparable. (¢,d) Same as (a,b), but for M. musculus. () Comparison of Tradict's performance versus several
baselines: SR, LWA and Tradict Shallow-Seq. (f) A posterior predictive check illustrating the concordance between Tradict's posterior predictive distribution
and the distribution of test-set expression values for genes (left) and transcriptional programs (right). Plotted is the percent of test-set observations
contained within a credible interval versus the size of the credible interval. A unique credible interval is derived for each gene/program. The ‘x =y’ line is
illustrated as a dotted black line. Shaded error bands depict the sampling distribution of this analysis across test-sets from a 20-fold cross validation on the

A. thaliana data set.

posterior distributions of gene and program expression, and
required 3.1s per sample on average (Supplementary Fig. 9,
Supplementary Note 4). Taken together, we conclude that the
causes of Tradict’s errors are well understood and intuitive, and
that Tradict’s sample requirements are reasonable, especially for
major model organisms (Supplementary Data Table 5,
Supplementary Note 3.II). Furthermore, Tradict is robust to
noisily defined transcriptional programs, and its computational
requirements scale well to large data sets.

The utility of predicting transcriptional program expression.
To demonstrate how Tradict may be applied in practice, we
focused on two case studies related to innate immune signaling—
one performed using bulk A. thaliana seedlings (detailed below),
and the other using primary immune M. musculus cell lines

(detailed in Supplementary Note 5, Supplementary Fig. 10). We
trained Tradict on our full collection of training transcriptomes
for each organism to produce two organism-specific Tradict
models. Each was based on the selection of 100 markers learned
from the full training transcriptome collection (Supplementary
Data Tables 7 and 8) that we assert are globally representative,
and context-independent. The case study samples do not appear
in the collection of training transcriptomes.

A. thaliana innate immune signaling. The hormones salicylic
acid (SA) and jasmonic acid (JA) play a major, predominantly
antagonistic regulatory role in the activation of plant defense
responses to pathogens. Yang et al®! investigated the effect of a
transgenically expressed bacterial effector, HopBB1, on immune
signaling in A. thaliana®'. In their study, they performed a time
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Figure 4 | Tradict accurately predicts transcriptional responses across time in response to hormone perturbation in an A. thaliana innate immune
signaling data set. After being trained on the full A. thaliana training transcriptome collection, the selected set of 100 globally representative and context-
independent markers were used to predict the expression of transcriptional programs and all genes for the transcriptomes presented in Yang et al3".
(a) Actual versus predicted heatmaps for the expression of all 150 transcriptional programs in A. thaliana across genotype, time and hormone treatment.
(b) Predicted versus actual expression of (i) the JA response transcriptional program, and (ii) the genes involved in the JA response program.

(e) (i-ii) Same as b, but for the SA response transcriptional program. (d) Hypothesis free, differential transcriptional program expression analysis as
performed on the actual expression of transcriptional programs versus those predicted by Tradict. Blue circles represent the actual and orange represent
the predicted. All heatmaps are clustered in the same order across time, treatment, genotype and between predicted and actual.

course experiment, treating plants with MeJA (a JA response
inducer), BTH (an SA mimic and SA response inducer) or mock
buffer and monitored the transcriptome of bulk seedlings at 0, 1, 5
and 8 h post treatment. These experiments included several immune
signaling mutants with differing degrees of response efficiency to
MeJA and BTH treatment. Among other findings, they conclude
that HopBB1 enhances the JA response, thereby repressing the SA
response and facilitating biotrophic pathogen infection.

We asked to what extent strategic undersampling of the
transcriptome and application of Tradict could quantitatively
recapitulate the findings of Yang et al!. Given Tradict’s near
perfect accuracy on predicting the expression of transcriptional
programs, we took a top down, but hypothesis driven approach
to our analysis which first examined the expression of all
transcriptional programs. Figure 4a illustrates the actual and
predicted expression of all transcriptional programs in
A. thaliana as a function of time and treatment. Here, Tradict

reconstructs the expression of all transcriptional programs with
an average PCC of 0.91.

Recall that the genes participating in each of our transcrip-
tional programs are pre-defined, in this work, by a carefully
chosen, interpretable, but maximally representative set of GO
biological processes. Therefore, given the goals of this study, we
next examined the expression of the ‘response to jasmonic acid’
and ‘response to salicylic acid’ transcriptional programs.
Figure 4b shows the expression behaviour for the ‘response to
jasmonic acid’ transcriptional program across all the genotypes
and time points upon MeJA treatment. More specifically, part (i)
shows that the predicted expression and actual expression are
qualitatively and quantitatively in agreement, both in magnitude
and rank across the different genotypes. For example, as expected,
coil-16, which cannot sense JA, does not respond to the MeJA
stimulus, while wildtype Col-0 does. However, even more subtle
expression dynamics are captured by Tradict’s predictions. For
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example, eds16-1 and nprl-1—slightly and strongly impaired SA
responders, respectively—are slightly and strongly hyper-respon-
sive to MeJA, respectively—just as expected from the JA-SA
antagonism. Furthermore, as demonstrated in Yang et al.!, the
358::HopBBI transgenic line exhibits a prolonged and sustained
JA response for both the actual and predicted expression for
this transcriptional program. Part (ii) of Fig. 4b illustrates the
expression of all the MeJA responsive genes in this transcriptional
program. Again Tradict’s predictions are in good agreement with
actuality, achieving a PCC of 0.72, and it’s visually clear that the
expression magnitude of these genes positively correlates with
the registered expression magnitude of the ‘response to jasmonic
acid’ transcriptional program. Figure 4c parts (i) and (ii) are
presented in the same manner as Fig. 4b, but are instead
illustrated for the SA response transcriptional program and
constituent genes under BTH treatment. Again predictions match
actuality, and the observed trends make biological sense2.

To illustrate Tradict’s use in hypothesis-free investigation, we
performed a differential transcriptional program expression
analysis for transcriptional programs affected by MeJA or BTH
treatment (Fig. 4d). Differentially expressed transcriptional
programs based on Tradict’s predictions versus actual measure-
ments were highly concordant and biologically reasonable.
Transcriptional programs differentially expressed with respect
to MeJA treatment included ‘response to bacterium, ‘defense
response to fungus, ‘response to wounding’ and ‘response to
jasmonic acid’ as expected. Transcriptional programs differen-
tially expressed with respect to BTH treatment included various
abiotic stress responses, ‘defense response to fungus’, ‘response to
jasmonic acid’ (via antagonism) and ‘response to salicylic acid,’
again, as expected.

Discussion

Tradict is an accurate, robust-to-noise method for predicting the
expression of a comprehensive, but interpretable list of
transcriptional programs that represent the major biological
processes and pathways of the cell. Given the comprehensiveness,
stability and exponentially growing size of the training data sets
we have assembled from publicly available sources, and as
evidenced by our extensive cross validation experiments, the 100
markers Tradict learns are likely to be predictive independent of
most contexts and applications. As illustrated through our case
studies, examining the expression of these predicted transcrip-
tional programs makes intuitive sense and provides a neat
summary of underlying gene expression patterns.

Tradict additionally provides expression predictions for all
genes in the transcriptome. However, Tradict’s accuracy in this
context is less than ideal for most applications. Perhaps most
simply, one hundred marker genes does not capture enough
information about the transcriptome to predict it at the gene
level. It is also important to consider that we are taking the
observed RNA-Seq measurement as the gene’s true measurement.
However, like all measurement technologies, there is a technical
noise to consider, and so Tradict’s reported prediction error of
true gene-level abundances is likely slightly overestimated.

Though its current gene expression prediction accuracy is less
than ideal for most applications, Tradict’s performance is
superior to previous efforts and is improving logarithmically in
the number of samples. We attribute Tradict’s performance gains
over previous methods first to improved measurement technol-
ogy. Previous methods were developed for microarray, a
substantially more noisy technology than RNA sequencing!®-14,
Consequently, training efficiency and measurement accuracy of
true expression was lower, thus leading to modest prediction
accuracy. By contrast, Tradict is meant to interface with

sequencing-based readouts of gene expression, a data type that
is popular and proliferating exponentially as the time and price of
sequencing continues to fall. Second, we believe Tradict’s
probabilistic framework goes a step beyond previous efforts by
modelling marker-gene and marker-program relationships not at
the level of measured abundances, which are noisy, but at the
level of latent abundances. Working in this denoised space
naturally improves accuracy and affords robustness.

Taken together, we believe that Tradict coupled with targeted
RNA sequencing can enable transcriptome-wide screening
cheaply and at scale. Well-established commercial'®?° and non-
commercial?!3? methods exist for targeted RNA sequencing in a
multiplexed manner, and they are able to measure the expression
of 10’s-100’s of genes with accuracy, making their use
immediately compatible with Tradict. One method in
particular, RASL-Seq*>~24, does so cheaply with high precision
and multiplexibility by directly probing cell lysates or total RNA
and making efficient use of dual-indexing. We estimate that
Tradict coupled with a time and resource efficient targeted RNA-
sequencing protocol such as RASL-Seq could bring the cost of
obtaining actionable  transcriptome-wide information
simultaneously for thousands to tens of thousands of samples
to close to $1 per sample.

This scale could greatly benefit high-throughput breeding and
screening applications. Forward genetic screens in most eukyaro-
tic organisms require assaying 10°~10* mutants. Small molecule,
or more generally chemogenomic, drug screens often require
screening thousands of molecules against multiple cell lines in
multiple conditions. Agricultural screens—whether for breeding
or field phenotyping—also require measuring thousands of
individuals. Though in these cases a screen is made cheap and
scalable by monitoring an easily selectable phenotype, new
phenotyping architectures must be developed and optimized for
each new screen (for example, reporter lines, imaging hardware/
software). Given the ubiquity of RNA, a transcriptome-wide
screening approach would not suffer from such a drawback.
Furthermore, and more importantly, though quickly interpreta-
ble, the phenotype being screened for is usually a uni-dimensional
datum that offers little immediate insight into mechanism. In
contrast, using Tradict to help perform transcriptome-wide
screening could couple the process of hypothesis generation
and mechanistic investigation. Here, we argue that the scalable
monitoring of the expression of a comprehensive list of just
a few hundred transcriptional programs affords an attractive
balance of nuance and interpretability. Consequently, this
efficient investigation, largely facilitated by Tradict, could
accelerate the pace of genetic dissection, breeding and drug
discovery.

Methods
Data acquisition and transcript quantification. Data acquisition and transcript
quantification were managed using a custom script, srafish.pl. The srafish.pl
algorithm and its dependencies are described below. Complete instructions for
installing (including all dependencies) and using srafish.pl are available on our
GitHub page:
https://github.com/surgebiswas/transcriptome_compression/tree/master/
data_download.

Supplementary Figure 11 illustrates the workflow of srafish.pl. Briefly, after
checking an SRA file meets certain quality requirements, srafish.pl uses the ascp
fasp transfer program to download the raw SRA (.sra file) for an SRA RNA-Seq
sample. Transfers made using ascp are substantially faster than traditional FTP.
The .sra file is then unpacked to FASTQ format using the fastq-dump program
provided with the SRA Toolkit (NCBI)*4, The raw FASTQ read data is then passed
to Sailfish®®, which uses a fast alignment-free algorithm to quantify transcript
abundances. To preserve memory, files with more than 40 million reads for
A. thaliana and 70 million reads for M. musculus were downsampled before
running Sailfish. Samples with fewer than 4 million reads are not downloaded at all.
This workflow is then iterated for each SRA RNA-Seq sample available for the
organism of interest.
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The main inputs into srafish.pl are a query table, output directory, Sailfish index
and ascp SSH key, which comes with each download of the aspera ascp client.
srafish.pl depends on Perl (v5.8.9 for Linux x86-64), the aspera ascp client
(v3.5.4 for Linux x86-64), SRA Toolkit (v2.5.0 for CentOS Linux x86-64) and
Sailfish (v0.6.3 for Linux x86-64).

Query table construction. For each organism, using the following (Unix) com-
mands, we first prepared a ‘query table’ that contained all SRA sample ID’s as well
as various metadata required for the download:

qt_name = <query_table_file_name>

sra_url = http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?save=efetch&db=sra
&rettype=runinfo&term=

organism = < organism_name >

wget -O $qt_name ‘$url($organism[Organism]) AND ‘strategy rna seq’[Properties]’

Where fields in between < > indicate input arguments. As an example,

qt_name = Athaliana_query_table.csv

sra_url = http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?save=efetch&db=sra
&rettype=runinfo&term=

organism =Arabidopsis thaliana’

wget -O $qt_name ‘$url($organism[Organism]) AND ‘strategy rna seq’[Properties]’

Reference transcriptomes and index construction. Sailfish requires a reference
transcriptome—a FASTA file of cDNA sequences—from which it builds an index it
can query during transcript quantification. For the A. thaliana transcriptome
reference we used cDNA sequences of all isoforms from the TAIR10 reference. For
the M. musculus transcriptome reference we used all protein-coding and long non-
coding RNA transcript sequences from the Gencode vM5 reference.

Sailfish indices were created using the following command:

sailfish index -t <ref_transcriptome.fasta> -k 20 -p 6 -0 .

Here, <ref_transcriptome.fasta> refers to the reference transcriptome FASTA
file. Copies of the reference transcriptome FASTA files used in this study are
available upon request.

Quality and expression filtering. In addition to the read count filtering men-
tioned above, we also removed samples with mapping rates below 0.7 and 0.75 for
A. thaliana and M. musculus, respectively (Supplementary Fig. 12). The resulting
isoform expression table was then collapsed into a gene expression table by setting
a gene’s expression to be the sum of expression values for all isoforms of that gene.
We next removed all non-protein coding transcripts except for long non-coding
RNAs, and removed samples with large amounts (>30%) of non-protein coding
contamination (for example, rRNA). The data set was then expression filtered by
only keeping genes with expression greater than 1 t.p.m. in at least 5% of all
samples. The latter requirement ensured that outlier or extreme expression in just a
few samples was not enough to keep the gene for analysis.

We then removed samples with an abnormally large number of genes with
expression values of zero. To do this we calculated the mean and s.d. of the number
of genes with zero expression across all samples. Samples with the number of zero
expressed genes greater than the mean plus two times the s.d. were removed.
Finally, we removed outlier samples by first examining the proportion of zeros
contained in each sample and by computing the pairwise PCC between the gene
expression profiles of all samples. To improve heteroscedasticity, raw t.p.m. values
for each gene were converted to a log-scale (log;o(t.p.m. +0.1)) before calculating
correlations. For A. thaliana, the majority of samples had an average correlation
with other samples of greater than 0.45 and fewer than 20% percent zero values.
Samples with lower correlation or a greater percentage of zeros were removed
(Supplementary Fig. 12). By similar arguments, samples with less average
correlation than 0.55 with other samples and greater than 30% zeros were removed
for M. musculus (Supplementary Fig. 12). Manual inspection of ~ 100 of these
samples revealed they were highly enriched for non-polyA selected samples and
samples made from low-input RNA (for example, single cells).

Metadata annotation. RNA-Seq samples are submitted to the SRA with non-
standardized metadata annotations. For example, for some samples tissue and
developmental stage are clearly noted as separate fields, whereas in others such
information can only be found the associated paper’s abstract or sometimes only in
its main text. To ensure the maximum accuracy when performing metadata
annotations, we annotated samples manually until the structure of the gene
expression space represented by the first three principal components was clear.
Annotation was accomplished by first finding those few submissions with samples
in multiple clusters. These submissions revealed that the likely separating variables
of interest were tissue and developmental context. For each major cluster in the
PCA (determined visually) we then annotated samples by size of their submission
until the tissue or developmental context of that cluster became qualitatively clear.

Tradict algorithm. Tradict’s usage can be broken down into two parts: (1)
Training and (2) Prediction. Training is the process of learning, from training data,
the marker panel and its predictive relationship to the expression of transcriptional
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programs and to the remaining genes in the transcriptome. In essence, during
training we begin with full transcriptome data and collapse its information into a
subset of marker genes. Prediction is the reverse process of predicting the
expression of transcriptional programs and non-marker genes from the expression
measurements of just the selected markers.

Our training algorithm can be broken down into several steps: (1) Computing
the latent logarithm of the training transcriptome collection, (2) defining
transcriptional programs, (3) marker selection via Simultaneous Orthogonal
Matching Pursuit and (4) building a predictive MVN-CP hierarchical model.

Computing the latent logarithm of the transcriptome. Expression values in our
training data set are stored as t.p.m., which are non-negative, variably scaled and
strongly heteroscedastic, similar to read counts. For subsequent steps in our
algorithm and analysis it will be important transform this data to improve its
scaling and heteroscedasticity.

Often, one log transforms such data. However, to avoid undefined values where
the data are zeros, one also adds a pseudocount (for example, 1). This pseudocount
considers neither the gene’s a priori abundance nor the confidence with which the
measurement was made, making this practice convenient but statistically
unfounded. In previous work, we introduced the latent logarithm, or lag’?>. lag
assumes that each observed expression value is actually a noisy realization of an
unmeasured latent abundance. By taking the logarithm of this latent abundance,
which considers both sampling depth and the gene’s a priori abundance, lag
provides a more nuanced and statistically principled alternative to the conventional
‘log(x + pseudocount)’. In increasing data, lag quickly converges to log, but in the
absence of it, lag relies on both sampling depth and the gene’s a priori abundance
to make a non-zero estimate of the gene’s latent abundance.

With these intuitions in mind, we applied the lag transformation to our entire
training data set. The lag-transformed expression matrix demonstrated a Pearson
correlation of 0.98 to the log(t.p.m. + 0.1) transformed expression matrix for both
A. thaliana and M. musculus. However, again, especially for samples with 0
expression, lag was able to make better estimates of their true abundance in the log-
domain. Availibility: https://github.com/surgebiswas/latent_log.git

Defining transcriptional programs. We define a transcriptional program to be
the first principal component of the z-score standardized lag expression of the set
of genes involved in a certain response or pathway?®?’. This virtual program
marker maximally captures (in one dimension) the information contained in the
transcriptional program. We considered three criteria for defining a globally
comprehensive, but interpretable list of transcriptional programs for A. thaliana
and M. musculus:

(a) To capture as much information about the transcriptome as possible, we
wanted to maximize the number of genes covered by the transcriptional
programs.

(b) To improve interpretability, we wanted to minimize the total number of
transcriptional programs.

(c) The number of genes in a transcriptional program should not be too large or
too small—genes in a transcriptional program should be in the same pathway.

Rather than defining these transcriptional programs de novo, we took a
knowledge-based approach and defined them using GO. We also tried using KEGG
pathways, but found these were less complete and nuanced than GO annotations.
GO is made of three sub-ontologies or aspects: molecular function, biological
process and cellular component. Each of these ontologies contains terms that are
arranged as a directed acyclic graph with the above three terms as roots. Terms
higher in the graph are less specific than those near the leaves’®37. Thus, with
respect to the three criteria above, we wanted to find GO terms with low-to-
moderate height in the graph such that they were neither too specific nor too
general. Given we were interested in monitoring the status of different processes in
the organism, we focused on the Biological Process ontology.

We downloaded gene association files for A. thaliana and M. musculus from the
Gene Ontology Consortium (http://geneontology.org/page/download-
annotations). We then examined for each of several minimum and maximum
GO term sizes (defined by the number of genes annotated with that GO term) the
number of GO terms that fit this size criterion and the number of genes covered by
these GO terms.

Supplementary Data Tables 1 and 2 contain the results of this analysis for
A. thaliana and M. musculus, respectively. A. thaliana has 3,333 GO annotations
for 27,671 genes. We noticed that when the minimum GO term size was as small as
it could be (1) and we moved from a maximum GO term size of 5,000-10,000, we
jumped from covering 18,432 genes (67% of the transcriptome) to covering the full
transcriptome (black-bolded two rows of Supplementary Data Table 1). This is due
to the addition of one GO term, which was the most general, ‘Biological Process,’
term. Thus, we concluded that 33% of the genes in the transcriptome had only
‘Biological Process’ as a GO annotation, and therefore that we did not need to
capture these genes in our GO-term-derived gene sets. Though these genes are not
informatively annotated, Tradict still models their expression all the same. We
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hereafter refer to the set of genes annotated with more than just the ‘Biological
Process’ term as informatively annotated.

We reasoned that a minimum GO term size of 50 and a maximum size of 2,000,
best met our aforementioned criteria for defining globally representative GO term
derived gene sets. These size thresholds defined 150 GO terms, which in total
covered 15,124 genes (82.1% of the informatively annotated genes, and 54.7% of
the full transcriptome). These 150 GO-term derived, globally comprehensive
transcriptional programs covered the major pathways related to growth,
development and response to the environment.

We performed a similar GO term size analysis for M. musculus (Supplementary
Data Table 2). M. musculus has 10,990 GO annotations for 23,566 genes. Of these
genes, 6,832 (29.0%) had only the ‘Biological Process’ term annotation and were
considered not informatively annotated. As we did for A. thaliana, we selected a
GO term size minimum of 50 and a maximum size of 2,000. These size thresholds
defined 368 GO terms, which in total covered 14,873 genes (88.9% of the
informatively annotated, 63% of the full transcriptome). As we found for
A. thaliana, these 368 GO-term derived, globally comprehensive transcriptional
programs covered the major pathways related to growth, development and
response to the environment.

Supplementary Data Tables 3 and 4 contain the lists of the globally
comprehensive transcriptional programs as defined by the criteria above. For each
of these programs, we then computed its first principal component over all
constituent genes.

Marker selection via simultaneous orthogonal matching pursuit. After defining
transcriptional programs we have a #-training-samples X #-transcriptional-pro-
grams table of expression values. We decompose this matrix using an adapted
version of the Simultaneous Orthogonal Matching Pursuit algorithm, using

the #-training-samples x #-genes table as a dictionary?®?°, Because transcriptional
programs are often correlated with other programs, we first cluster them using
consensus clustering®®3%, which produces a robust and stable clustering by taking
the consensus of many clusterings performed by a base clustering algorithm. In
total, 100 independent iterations of K-means are used as the base-clusterings, and
the number of clusters is determined using the Davies-Bouldin criterion’. The
decomposition is greedy, such that in each iteration the algorithm first finds the
transcriptional program cluster with the largest unexplained variance. It then finds
the gene contained within this cluster of transcriptional programs with the
maximum average absolute correlation to the expression of all transcriptional
programs. This gene is then added to an ‘active set,” onto which the transcriptional
program expression matrix is orthogonally projected. This fit is subtracted to
produce a residual, on which the above steps are repeated until a predefined
number of genes have been added to the active set or the residual variance of the
transcriptional program expression matrix falls below some predefined threshold.

Building a predictive MVN-CP hierarchical model. Here we describe
conceptually how we fit a predictive model that allows us to predict gene and
transcriptional program expression from expression measurements of our selected
markers. Readers interested in the full mathematical details of the MVN-CP
hierarchical model are referred to Supplementary Note 6.

The MVN-CP distribution offers us a way of modelling statistically coupled
count based or, more generally, non-negative random variables, such as the t.p.m.
or count-based expression values of genes*!~44. Here it is assumed the t.p.m.
expression of each gene in a given sample is a noisy, CP realization of some
unmeasured latent abundance, the logarithm of which comes from MVN
distribution over the log-latent abundances of all genes in the transcriptome.

Given the marginalization properties of the MVN distribution, we are only
interested in learning relationships between the selected markers and non-marker
genes. For the purposes of prediction, we need to estimate (1) the mean vector and
(2) covariance matrix over the log-latent t.p.m.’s of the markers, (3) the mean
vector of the log-latent t.p.m.’s of the non-markers and (4) cross-covariance matrix
between the log-latent t.p.m.’s of markers and non-markers.

Note that before we can estimate these parameters, we must learn the log-latent
t.p.m.’s of all genes. To do this we first lag-transform the entire training data set.
We then learn the marker log-latent t.p.m.’s, and their associated mean vector and
covariance matrix using an iterative conditional modes algorithm. Specifically, we
initialize our estimate of the marker log-latent t.p.m.’s to be the lag-transformed
expression values, which by virtue of the lag’s probabilistic assumptions are also
derived from a Normal CP hierarchical model. We then iterate (1) estimation of
the mean vector and the covariance matrix given the current estimate of log-latent
t.p.m.’s, and (2) maximum a posteriori estimation of log-latent t.p.m.’s given the
estimated mean vector, covariance matrix, and the measured t.p.m. values of the
selected markers. A small regularization is added during estimation of the
covariance matrix to ensure stability and to avoid infinite-data-likelihood
singularities that arise from singular covariance matrices. This is most often
happens when a gene’s t.p.m. abundance is mostly zero (that is, there is little data
for the gene), giving the MVN layer an opportunity to tightly couple this gene’s
latent abundance to that of another gene, thereby producing a nearly singular
covariance matrix.

Learning the mean vector of the non-marker genes and the marker x non-
marker cross-covariance matrix is considerably easier. For the mean vector, we

simply take the sample mean of the lag-transformed t.p.m. values. For the cross-
covarjance matrix we compute sample cross-covariance between the learned log-
latent marker t.p.m.’s and the log-latent non-marker t.p.m.’s obtained from the lag
transformation. We find that these simple sample estimates are highly stable given
that our training collection includes thousands to tens of thousands of
transcriptomes.

Using similar ideas, we can also encode the expression of the transcriptional
programs. Recall that a principal component output by PCA is a linear
combination of input features. Thus by central limit theorem, the expression of
these transcriptional programs should behave like normal random variables.
Indeed, after regressing out the first three principal components computed on the
entire training samples x genes expression matrix from the expression values of
the transcriptional programs (to remove the large effects of tissue and
developmental stage), 85-90% of the transcriptional programs had expression that
was consistent with a normal distribution (average P value = 0.43, Pearson’s xz
test). Consequently, as was done for non-marker genes and as will be needed for
decoding, we compute the mean vector of the transcriptional programs and the
markers x transcriptional programs cross covariance matrix. These are given by
the standard sample mean of the training transcriptional program expression
values and sample cross-covariance between the learned log-latent t.p.m.’s of the
markers and the transcriptional program expression values.

Prediction. To perform prediction, we must translate newly obtained t.p.m.
measurements of our marker genes into expression predictions for transcriptional
programs and the remaining non-marker genes. More specifically, we’d like to
formulate these predictions in the form of conditional posterior distributions,
which simultaneously provide an estimate of expression magnitude and our con-
fidence in that estimate. To do this, we first sample the latent abundances of our
markers from their posterior distribution using the measured t.p.m.’s, and the 1 x
markers mean vector and markers x markers covariance matrix previously
learned from the training data. This is done using Metropolis-Hastings Markov
Chain Monte Carlo sampling (see Supplementary Note 6 for further details on
tuning the proposal distribution, sample thinning, sampling depth and burn-in
lengths). Using these sampled latent abundances and the previously estimated
mean vectors and cross-covariance matrices, we then can use standard Gaussian
conditioning to sample the log-latent expression of the transcriptional programs
and the remaining genes in the transcriptome from their conditional distribution.
These samples, in aggregate, are samples from the conditional posterior distribu-
tion of each gene and program and can be used to approximate properties of this
distribution (for example, posterior mode (MAP) estimates, and/or credible
intervals).

Code availability. Tradict is available at https://github.com/surgebiswas/tradict.
All code to perform data downloads, analysis, and generate figures are available at
https://github.com/surgebiswas/transcriptome_compression.

Data availability. Raw or filtered transcript-quantified training transcriptomes, as
well as any other processed data forms are available upon request. Raw read data is
directly accessible through NCBI SRA.
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