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Abstract

N-glycosylation, a post-translational modification whereby glycans are covalently linked to select 

Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked 

glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with 

polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this 

function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be 

distinguished on the basis of their length, degree of saturation and by other traits. As is true for 

many facets of their biology, Archaea, best known in their capacity as extremophiles, present 

unique approaches for synthesizing phosphodolichols. At the same time, general insight into the 

assembly and processing of glycan-bearing phosphodolichols has come from studies of the 

archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol 

biology are addressed.
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1. Introduction

Life on Earth can be divided into three domains, namely Eukarya, Bacteria and Archaea, [1]. 

The Archaea, first reported in 1977 [2], were initially thought of as extremophiles, given 

their abilities to thrive in some of the harshest environments on the planet, including those 

characterized by extremes of temperature, pH or salinity. However, it has since become clear 

that Archaea are major residents of so-called ‘normal niches’, such as ocean waters, soil and 

even intestinal flora [3–5]. In terms of their biology, Archaea can be considered a mosaic, 

presenting traits shared by Eukarya and/or Bacteria, together with elements that distinguish 

this form of life, such as the unique lipids comprising the archaeal membrane [6].
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As in Eukarya and Bacteria, the archaeal cell is also surrounded by a phospholipid-based 

membrane. Yet, whereas eukaryal and bacterial phospholipids essentially comprise fatty acid 

side chains linked to a 1,2-sn-glycerol-3-phosphate backbone via ester bonds, their archaeal 

counterparts instead correspond to isoprenoid hydrocarbon side chains linked to a 2,3-sn-

glycerol-1-phosphate backbone via ether bonds [6]. While such lipids are organized into the 

bilayer structure that delineates most archaeal cells, some Archaea are instead surrounded by 

membranes based on a lipid monolayer comprising tetraether lipids in which both ends of 

the isoprenoid side chains are ether-bound to glycerol phosphate backbones [7]. It is thought 

that the unusual physicochemical properties of their membrane lipids contribute to the 

abilities of Archaea to withstand the physical challenges presented by the hostile 

surroundings that they often inhabit, although how such distinctive phospholipid 

composition would benefit non-extremophilic archaea remains unclear [8–10]. For more 

information on archaeal phospholipids, the reader is directed to reviews on the topic [6,7,11–

13].

In addition to isoprenoid-based phospholipids and glycolipids, the archaeal plasma 

membrane also includes isoprenoid-based non-bilayer-forming lipids. These include 

carotenoids, such as C50 bacterioruberins and C40 carotenes [14], retinals, such as those 

associated with bacteriorhodopsin and other sensory and transport rhodopsins [15], and 

phosphodolichols, lipids involved in protein N-glycosylation [16,17]. In the following, 

current knowledge on the phosphodolichols that participate in archaeal N-glycosylation is 

reviewed.

2. The lipid glycan carriers of N-glycosylation across evolution

Long held to be an exclusively eukaryal post-translational modification, it is now clear that 

both Bacteria and Archaea can also perform N-glycosylation, i.e., the covalent attachment of 

mono- to polysaccharides to select Asn residues of target proteins [18]. Archaea, however, 

display a degree of diversity in all aspects of N-glycosylation that is unparalleled in either 

Eukarya or Bacteria [19]. Such diversity is evident at the level of the lipid carrier upon 

which N-linked glycans are assembled.

At present, the process of N-glycosylation is best understood in higher Eukarya [20,21]. 

Here, the sugar N-acetylglucosamine (GlcNAc)-1-phosphate, donated by UDP-GlcNAc, is 

first added to dolichol phosphate (DolP) to yield dolichol pyrophosphate (DolPP)-bound 

GlcNAc-1-phosphate. Six additional nucleotide-activated sugars are next added to yield 

heptasaccharide-charged DolPP. This moiety is then flipped across the endoplasmic 

reticulum (ER) membrane to face the ER lumen by an ATP-independent flippase that 

remains to be described. At this point, seven additional sugars, each delivered from a distinct 

DolP carrier charged on the cytoplasmic face of the ER membrane and flipped to face the 

ER lumen, are added to yield a 14-member branched oligosaccharide that is ultimately 

transferred to select Asn residues of a nascent polypeptide entering the ER lumen by the 

multimeric oligosaccharyltransferase, with Stt3 serving as the catalytic subunit of the 

complex.
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In Bacteria, where N-glycosylation is apparently restricted to only certain groups, the 

process involved has been best described in the pathogen Campylobacter jejuni [22,23]. 

Here, some 60 different proteins are modified by a heptasaccharide assembled by a pathway 

reminiscent of its eukaryal counterpart. In C. jejuni, N-glycosylation begins with the 

generation of di-N-acetylbacillosamine-charged undecaprenol pyrophosphate (UndPP) via 

the fusion of a UDP-charged version of the sugar with undecaprenol phosphate on the 

cytoplasmic face of the plasma membrane. Following glycan extension through the addition 

of six more sugars, the UndPP-linked heptasaccharide is flipped across the membrane in a 

reaction involving the ABC transporter PglK. Once on the outer surface of the plasma 

membrane, the glycan is delivered to select Asn residues of target proteins by PglB, the 

bacterial oligosaccharyltransferase.

In Archaea, where the first example of non-eukaryal N-glycosylation was reported [24], the 

process remains the least well understood. In part, this is due to the fact that the vast 

majority of identified strains cannot be grown in the laboratory, and of the small number of 

cultivatable strains, genetic tools are only available for few. Furthermore, the N-linked 

glycans decorating archaeal glycoproteins demonstrate enormous variability in terms of 

composition and architecture, reflecting the variety of N-glycosylation processes employed 

in Archaea [19,25]. Still, what is known reveals that as in the other two domains, N-

glycosylation in Archaea begins with the assembly of a glycan on one or more 

phosphorylated dolichol carriers. For instance, the first four sugars of the N-linked 

pentasaccharide decorating glycoproteins in the halophile (‘salt-loving’ organism) Haloferax 
volcanii (optimal growth in 1.5–2.5 M NaCl [26]) are assembled on a common DolP carrier, 

while the final sugar is delivered from a distinct DolP [27]. As such, DolP serves both as 

lipid glycan carrier and glycan donor in this organism. By contrast, the similar N-linked 

pentasaccharide attached to glycoproteins of a second haloarchaea also originating from the 

Dead Sea, Haloarcula marismortui (optimal growth in 3.5–4 M NaCl [28]), is completely 

assembled on a single DolP carrier [29]. In yet another halophilic archaea, Halobacterium 
salinarum (optimal growth in 3.9 M NaCl [30]), the surface (S)-layer glycoprotein, the 

building block of the S-layer surrounding the cell, is simultaneously modified by two 

distinct N-linked glycans, one initially assembled on DolP, the second on DolPP [31,32]. In 

the thermoacidophile Sulfolobus acidocaldarius (optimal growth at 80°C and pH 2 [33]), 

DolPP is charged with the same hexasaccharide as N-linked to glycoproteins in this 

organism, as well as its derivatives, although DolP and hexose-charged DolP have also been 

detected [34,35]. In the related species Sulfolobus solfataricus (optimal growth at 87°C and 

pH 3.5–5 [36]), DolPP is charged with the first six sugars of the heptasaccharide N-linked to 

glycoproteins in this organism; the final sugar could thus be derived from hexose-charged 

DolP [37]. As such, it appears that N-glycosylation in Archaea relies on a variety of lipid-

linked glycan processing strategies.

The dolichols and polyprenols that serve as lipid glycan carriers across evolution (Fig 1; 

Table 1) are examples of polyisoprenoids, a family of hydrophobic polymers containing 

linearly linked isoprene subunits, members of which are found in all organisms [38,39]. 

While both contain up to 25 isoprene subunits and present a hydroxyl group at the so-called 

α end, dolichols include a saturated α position isoprene subunit, whereas polyprenols, 

including C55 undecaprenol, do not. The dolichols used in eukaryal N-glycosylation can, 
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however, be distinguished from their archaeal counterparts in that all of the dolichols shown 

to participate in archaeal N-glycosylation to date also present an additional saturated 

isoprene subunit at the ω position, namely that isoprene farthest from the α end of the 

molecule [27,29,32,34,35,37,40,41]. The significance of saturation of the ω position 

isoprene is not clear, since in vitro studies revealed how C55,60 DolP saturated solely at the α 
position could be glycan-charged using enzymes involved in N-glycosylation in the 

methanogen Methanococcus voltae (grown in the laboratory in a 80%H2/20% CO2 

atmosphere [42]). Moreover, this glycan-charged lipid could serve as substrate for the 

archaeal oligosaccharyltransfase AglB. At the same time, in the thermophile Pyrococcus 
horikoshii (optimal growth at 98°C [43]), both undecaprenol phosphate and dolichol 

phosphate were reported to serve as substrates for DolP mannose synthase, the enzyme that 

charges DolP with mannose, raising questions as to the importance of α position isoprene 

saturation in archaeal N-glycosylation [44].

3. The diversity of archaeal phosphodolichols

In addition to the saturated ω position isoprene subunit that differentiates archaeal dolichol 

from the eukaryal version of this lipid, the dolichols employed in archaeal N-glycosylation 

also present various species-specific characteristics. These differences are mostly manifested 

in terms of dolichol length, degree of phosphorylation and the extent of internal isoprene 

subunit saturation (Fig 2).

To date, phosphorylated dolichols, many charged with the same glycans as N-linked to 

glycoproteins in the same species, have been detected in Archaea representing several 

phenotypes and belonging to different phyla. The first phosphorylated dolichols detected in 

Archaea were in Hbt. salinarum, soon after this halophile provided the first example of non-

eukaryal N-glycosylation, namely the S-layer glycoprotein [24,45,46]. Here, C55,60 DolP is 

modified by a sulfated tetra/pentasaccharide N-linked to ten N-glycosylation sites of the 

protein, while C55–60 DolPP is modified by a distinct sulfated pentasaccharide that 

apparently assembles into a chain when linked to the Asn-2 position of the protein 

[31,32,46,47]. It is, however, not known whether the chain of repeating sulfated 

pentasaccharides is assembled on a single DolPP carrier (and if so, on which side of the 

membrane) and only then transferred to the protein, or alternatively, whether such 

polymerization results from the transfer of the subunit glycan to the protein from a series of 

glycan-charged DolPP carriers assembled on the cytoplasmic face of the membrane and then 

flipped to face the exterior, where N-glycosylation transpires [48].

Recently, saturation of the α and ω position isoprenes of Hbt. salinarum C55–60 DolP and 

C55,60 DolPP was demonstrated. In these studies, DolP was detected bearing a disaccharide 

precursor of the tetra/pentasaccharide, while DolPP was shown to be modified by the first 

four sugars of the repeating pentasaccharide; DollPP bearing repeats of this glycan was not 

observed [32]. However, the first demonstration of dolichol saturation at both ends of the 

lipid was reported in the case C55,60 DolP bearing a tetrasaccharide in Hfx. volcanii [40]. 

Much later, the tetrasaccharide attached to this DolP was shown to modify at least one Asn 

of the S-layer glycoprotein when the cells were grown in 1.7 M NaCl [49], considered as 

low salinity for this halophile [26]. Indeed, the most convincing evidence for the 
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involvement of DolP in archaeal N-glycosylation has come from studies on Hfx. volcanii, 
where the deletion of genes encoding components of the N-glycosylation pathway yielded 

the same effects on the glycans linked to both DolP and to a target protein, the S-layer 

glycoprotein [27]. Subsequently, C55,60 DolP saturated at both the α and ω position 

isoprenes was observed in other haloarchaea, namely Har. marismortui, where the lipid was 

modified by the same pentasaccharide as found on the S-layer glycoprotein in this species 

[29], and Haloferax mediterranei, where the lipid was modified by a disaccharide [32]. 

Presently, nothing else is known about N-glycosylation in Hfx. mediterranei.

Haloarchaea, such as those considered above, belong to the Euryarchaeota, one of the better-

studied archaeal phyla [1,50]. The same phylum also includes the methanogens, namely 

Archaea able to reduce carbon dioxide with hydrogen to generate methane [51]. To date, 

phosphorylated dolichols have only been characterized in two species. In Methanococcus 
maripaludis (grown in the laboratory in a 80% H2/20% CO2 atmosphere [52]), a lipid extract 

was shown to contain C55 DolP saturated at two non-specified positions and modified by a 

trisaccharide that corresponds to a precursor of the tetrasaccharide N-linked to glycoproteins 

in this organism [53,54]. Moreover, the enzyme thought to add the initial sugar to the lipid 

carrier in M. maripaludis was shown to be more active when presented with C55,60 DolP 

rather than with longer C85–105 DolP, as found in eukaryotes [54]. In contrast, older studies 

conducted on Methanothermus fervidus (optimal growth at 83°C in a 80% H2/20% CO2 

atmosphere [55]), where the S-layer glycoprotein is modified by an N-linked 

hexasaccharide, detected sugar-modified C55 DolPP [56].

In addition to halophiles and methanogens, the Euryarchaeota also include thermophilic 

archaea where phosphodolichols involved in N-glycosylation have been characterized, 

namely Pyrocococcus furiosus and Archaeoglobus fulgidus. In P. furiosus (optimal growth at 

100°C [57]), C60,65,70 DolP modified by glycans containing up to the first six sugars found 

in the N-linked heptasaccharide that decorates glycoproteins in this organism was described 

[37,41]. As such, P. furiosus DolP is the longest phosphodolichol involved in archaeal N-

glycosylation known to date. More striking, however, was the finding that in addition to 

being saturated at the a and ω position isoprenes, P. furiosus DolP is also saturated at up to 

four more internal isoprene positions, with these additional sites of saturation being closer to 

the ω than the α end of the molecule. In A. fulgidus (optimal growth at 83°C [58]), C55,60 

DolP displays saturation of not only the α and ω position isoprenes but also of up to four 

additional internal isoprene positions [37]. Moreover, A. fulgidus DolP is apparently 

modified by two distinct heptasaccharides [37]. The different lipid-linked glycans could 

reflect the fact that A. fulgidus encodes multiple versions of the oligosaccharyltransferase 

AglB [59], responsible for the transfer of the glycan moiety from the lipid carrier to select 

Asn residues of modified proteins (see below), raising the possibility that different version of 

the enzyme process distinct glycan substrates.

In addition to the phosphodolichols involved in N-glycosylation studied in representatives of 

the Euryarchaeota, these lipids have also been considered in three members of a second 

well-studied archaeal phylum, the Crenarchaeota [1,50]. S. acidocaldarius is the only 

crenarchaeote for which insight into the N-glycosylation process is available. Here, C40,45,50 

DolP, in some cases charged with one of three different hexoses, and C45 DolPP modified by 
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the hexasaccharide added to target proteins in N-glycosylation, as well as by glycans 

comprising the first four of five sugars of this structure, were detected [34,35]. In S. 
acidocaldarius DolP and DolPP, up to six isoprenes are saturated, including those at the α 
and ω positions. In the related thermoacidophile S. solfataricus, C30 and C45 DolPP 

modified by the first six sugars of the N-linked heptasaccharide assembled in this species 

[60] and saturated at the α and ω isoprene positions, as well as at up to four additional 

internal position isoprenes, were identified [37]. Moreover, it has been suggested that two 

phosphodolichol glycan carriers used in S. solfataricus N-glycosylation differ not only in 

length (C30 and C45) but also in terms of stereochemistry [37]. At the same time, 

Pyrobaculum calidifontis (optimal growth at 90–95°C [61]) was reported to contain C50,55 

DolPP modified by a decasaccharide also shown to be N-linked to a glycopeptide generated 

by proteolytic digestion of a membrane fraction prepared from this organism [37]. Similarly 

to the phosphodolichols in other crenarchaeotes considered to date, P. calidfontis DolPP is 

saturated at the α position isoprene, at up to five internal position isoprenes and at the ω 
position isoprene [37].

Despite the limited number of archaeal species in which phosphodolichols either shown or 

likely to be involved in N-glycosylation have been characterized, general properties on these 

lipids may have already been revealed. With the exception of M. fervidus, where older 

technologies were employed, it would appear that N-glycosylation in the Euryarchaeota 

relies on DolP as glycan lipid carrier, with the N-linked glycan either being assembled on a 

single DolP carrier or alternatively, being assembled on the modified protein from precursors 

delivered from at least two DolP carriers. In contrast, Crenarchaeota rely on DolPP as lipid 

glycan carrier, with DolP possibly serving as the carrier of individual sugars either delivered 

to DolPP-linked precursors of N-linked glycans or to glycans already transferred from 

DolPP carriers to target protein Asn residues. As such, it would appear that euryarchaeotes 

rely on a more bacterial-like N-glycosylation process, whereas crenarchaeotes rely on a 

process reminiscent of that employed in Eukarya. Indeed, phylogenetic analyses of known 

Archaea position the Crenarchaeota proximal to the ancestor of modern-day eukaryotes 

[62,63].

In addition, the fact that DolP and DolPP from both thermophilic euryarchaeotes and 

crenarchaeotes include saturated isoprenes at internal positions points to dolichol isoprene 

reduction as being important for survival at high temperatures. Such enhanced saturation, 

relative to what is seen in mesophilic archaea, would reduce the movement of 

phosphodolichols in the membranes of thermophilic archaea, a property that could be 

important for the enzyme-mediated processing of these glycan carriers. At the same time, 

dolichol length does not seem to be sensitive to temperature, since both the shortest (C30) 

and longest (C70) archaeal phosphodolichols known to date have been detected in 

thermophiles [37,41].

4. Phosphodolichol biosynthesis in Archaea

Phosphodolichol synthesis occurs in two stages [38,39]. In the first stage, the two building 

blocks of isoprenoid biogenesis, isopentenyl pyrophosphate (IPP) and its isomer 

dimethylallyldiphosphate (DMAPP), are generated from acetyl CoA. This is followed by the 
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second stage of dolichol biogenesis in which a series of condensation reactions between 

DMAPP and several IPP moieties occurs. The resulting polymer is then further processed to 

yield the phosphorylated dolichols used in archaeal N-glycosylation.

The classic route for generating IPP and DMAPP is known as the mevalonate pathway [64]. 

Here, three acetyl CoA molecules are condensed and reduced using NADPH to yield 

mevalonate via the sequential actions of acetoacetyl-CoA thiolase, 3-hydroxy-3-

methylglutaryl (HMG)-CoA synthase and HMG-CoA reductase. Mevalonate is subsequently 

phosphorylated by mevalonate-5-kinase and phosphomevalonate kinase to yield 

mevalonate-5-phosphate and mevalonate pyrophosphate, respectively. The latter compound 

is processed by mevalonate pyrophosphate decarboxylase to generate IPP, which is 

isomerized by IPP isomerase to yield DMAPP (Fig 3).

Genomic analyses revealed the presence of the first four enzymes of the classic mevalonate 

pathway in Archaea, namely acetoacetyl-CoA thiolase, 3-hydroxy-3-methylglutaryl 

coenzyme A (HMG-CoA) synthase, HMG-CoA reductase and mevalonate-5-kinase [65,66]. 

Subsequent efforts not only confirmed the functionality of archaeal versions of these 

enzymes but also revealed unique properties in several instances. For example, Hfx. volcanii 
HMG-CoA reductase is regulated at the transcription level by environmental salinity, 

pointing to a link between the cell surroundings and the biosynthesis of isoprenoids, 

including phosphodolichols [67]. Moreover, Hfx. volcanii HMG-CoA reductase is the first 

such enzyme that is not sensitive to feedback inhibition by its substrate, acetoacetyl-CoA 

[68]. Likewise, known feedback inhibitors of mevalonate-5-kinases do not inhibit the 

Methanosarcina mazei enzyme, making it the sole member of a third class of mevalonate 

kinases defined on the basis of inhibition profile [69].

At the same time, genomic scanning failed to detect archaeal homologues of mevalonate 

pyrophosphate decarboxylase in most species [65,66,70], suggesting the existence of an 

alternate route for the conversion of mevalonate-5-phosphate to IPP. Initial support for this 

hypothesis came with the identification of an isopentenyl phosphate kinase in 

Methanocaldococcus jannaschii (optimal growth at 85°C in a 80% H2/20% CO2 atmosphere; 

first isolated from a hydrothermal vent on the Pacific Ocean floor [71]), namely an enzyme 

that synthesizes IPP via the phosphorylation of isopentenyl phosphate [72]. Genomic 

analyses revealed that other Archaea also contain the gene encoding this protein, with the 

activity of recombinant isopentenyl phosphate kinase from Methanothermobacter 
themautotrophicus (optimal growth at 65–70°C in a 80% H2/20% CO2 atmosphere [73]) and 

Thermoplasma acidophilum (optimal growth at 59°C and pH 1–2 [74]) being demonstrated 

[75]. Subsequent efforts uncovered the existence of both phosphomevalonate decarboxylase, 

responsible for converting mevalonate-5-phosphate into isopentenyl phosphate, and 

isopentenyl phosphate kinase in Hfx. volcanii, thereby confirmed the existence of an 

alternate route for IPP biosynthesis in Archaea (Fig 3) [76]. Nonetheless, there are archaeal 

species that rely on the classic mevalonate pathway despite also encoding components of the 

alternate pathway, such as S. solfataricus [77]. Here too, Archaea have introduced unusual 

variations not seen elsewhere. For instance, while the mevalonate pyrophosphate 

decarboxylase in S. solfataricus exists as a dimer, like its eukaryal and bacterial counterparts, 

the archaeal enzyme is unique in that a disulfide bond serves to stabilize the dimer in this 
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thermoacidophile [78]. Recently, evidence for the existence of yet another pathway for IPP 

biosynthesis in Archaea has been presented. In T. acidophilum, mevalonate-3-kinase 

converts mevalonate into mevalonate-3-phosphate, which is then converted into 

mevalonate-3,5-bisphosphate by mevalonate-3-phosphate-5-kinase [79,80]. Mevolonate-3-

kinase was subsequently described in Picrophilus torridus (optimal growth at 60°C and pH 

1.8–2 [81]), with sequence analysis suggesting the enzyme to also exist in other members of 

the Thermoplasmatales, the order that includes these two species [82]. Presently, however, 

the mevalonate-3,5-bisphosphate decarboxylase that would be required for the appearance of 

IPP by this novel route has yet to be identified (Fig 3). Finally, the IPP isomerases used by 

Archaea to convert IPP into DMAPP are, for the most part, orthologs of a bacterial, rather 

than the eukaryal version of this enzyme [83]. This, despite the fact that many Bacteria do 

not use the MVA pathway but rather rely on a distinct pathway for IPP biosynthesis termed 

the MEP/DOXP pathway, as do plants [84,85]. Members of the order Halobacteriales, 

however, encode both versions of the isomerase [66].

To generate phosphodolichols from the five-carbon precursors IPP and DMAPP, there is a 

need for elongation steps in which DMAPP and multiple IPP moieties polymerize to yield 

an isoprenoid chain, dephosphorylation steps to yield a polyprenol, saturation steps to 

reduce the isoprene subunit at the α end of the dolichol molecule (and, in Archaea, the 

isoprene subunit at the ω position, and in some cases, at more internal positions) and finally, 

phosphorylation steps. While the details of many of these reactions are relatively well 

described in Eukarya (and in undecaprenol synthesis in Bacteria, where saturation steps are 

not required), much less is known about the route(s) taken in Archaea.

Polyprenol biosynthesis begins with DMAPP serving as the acceptor for an IPP molecule to 

generate C10 geranyl pyrophosphate [38,39]. This reaction, as well as the addition of a 

second IPP to generate C15 farnesyl pyrophosphate, involves trans-condensations catalyzed 

by isoprenyl pyrophosphate synthases, also termed prenyltransferases, members of an 

enzyme family responsible for generating polyprenol chains of increasing length [86]. 

Following the condensation of IPP moieties in trans, additional IPP units are added in cis by 

a cis-prenyltransferase to generate a trans/cis-polyprenol pyrophosphate. Now found within 

the membrane, the polyprenol pyrophosphate is next thought to undergo two rounds of 

dephosphorylation to yield polyprenol [87,88]. In Eukarya, saturation of the α position 

isoprene subunit is proposed to occur at this stage, yielding dolichol; in Bacteria, no such 

saturation occurs. Finally, dolichol is phosphorylated by dolichol kinase to generate DolP 

[87,89]. In Bacteria, an undecaprenol phosphokinase that catalyzes a similar reaction has 

been described [38,90]. Whereas there is considerable understanding of the steps taken to 

synthesize IPP and DMAPP in Archaea, insight into how Archaea assemble 

phosphodolichol from these building blocks remains only partial. Nonetheless, what is 

currently known has revealed unexpected aspects of each of the latter steps of 

phosphodolichol assembly, namely elongation, dephosphorylation, saturation and 

phosphorylation.

The sequential addition of IPP subunits to a DMAPP acceptor is catalyzed by distinct 

prenyltransferases that catalyze condensation reactions as a function of substrate length [86]. 

To generate dolichol, the so-called short-chain prenyltransferases are required [91]. In most 
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Archaea, the only members of this group are C20 geranylgeranyl pyrophosphate synthases 

[92,93]. These, however, can assemble trans-polyprenol pyrophosphates of different lengths, 

as exemplified by the bi-functional enzyme from M. themautotrophicus that is able to 

synthesize both farnesyl pyrophosphate and geranylgeranyl pyrophosphate [94]. Similar bi-

functional activity was reported for geranylgeranyl pyrophosphate synthases from S. 
acidocaldarius and Thermococcus kodakarensis (optimal growth at 95°C [95]) [96,97]. 

Based on such observations, it has been proposed that archaeal geranylgeranyl 

pyrophosphate synthases represent the ancestor of the farnesyl pyrophosphate synthases and 

geranylgeranyl pyrophosphate synthases presently found in Eukarya and Bacteria [98,99]. 

This hypothesis has, however, been questioned by others [100]. Finally, in S. acidocaldarius, 

genes encoding IPP isomerase (saci0091), geranylgeranyl pyrophosphate synthase 

(saci0092) and AglH, the glycosyltransferase responsible for adding the first sugar of the N-

linked glycan to DolPP (saci0093), lay adjacent to each other in the genome, with saci0092 
and saci0093 being found on the same polycistronic mRNA [101,102]. This gene 

arrangement offers support for close interplay between phosphodolichol biosynthesis and N-

glycosylation in this thermoacidophile.

In general, the substrate (or primer) of cis-prenyltransferases in Eukarya and Bacteria is C15 

trans-farnesyl pyrophosphate [38,39,91], although evidence for the broader selectively of 

these enzymes in plants has been offered [103,104]. In Archaea, both C15 trans-farnesyl 

pyrophosphate and C20 trans-geranylgeranyl pyrophosphate serve as cis-prenyltransferase 

substrates [92]. In S. acidocaldarius, apparently only trans-geranylgeranyl pyrophosphate 

serves this role [92]. The recent report of one of the three cis-prenyltransferases in 

Methanosarcina acetivorans being able to catalyze both head-to-tail and non-head-to-tail 

condensation reactions [105] could reflect yet another unique aspect of archaeal 

phosphodolichol biosynthesis. In the hyperthermophile Aeropyrum pernix (optimal growth 

at 90–95°C [106]), the cis-prenyltransferase is unusual in that the substrate is the C25 trans-

geranylfarnesyl pyrophosphate [107]. This could indicate the use of a unique lipid glycan 

carrier in this species. Accordingly, it is of note that when 168 archaeal genomes were 

considered for the presence of aglB, encoding the archaeal oligosaccharyltransferase 

responsible for the transfer of glycans from phosphodolichol carriers to target protein Asn 

residues, A. pernix was only one of two species where no such gene was detected, raising 

the question of whether N-glycosylation occurs in this organism [108]. However, if N-

glycosylation indeed occurs in A. pernix, the process may rely on an 

oligosaccharyltransferase distinct from AglB. Lastly, it has been reported that in mammalian 

cells, cis-prenyltransferases require interaction with the NogoB receptor for stabilization of 

the enzyme [109]. In plants, where cis-prenyltransferases exist as enzyme families, it was 

shown that select family members that contribute to dolichol biogenesis also interact with a 

NogoB receptor homologue [103,110]. Although phylogenetic analysis has raised the 

possibility of such a protein in Archaea [105], evidence for the involvement of a NogoB 

receptor homologue in archaeal cis-prenyltransferase activity has yet to be presented.

Once the polyprenol pyrophosphates destined to become phosphodolichols have been 

assembled, it is believed that they must next undergo dephosphorylation, saturation and 

phosphorylation [111], although conclusive evidence that this is indeed the order of events in 

Archaea remains wanting. With this in mind, a scheme of the possible steps taken during the 
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latter phase of archaeal DolP biosynthesis, using S. acidocaldarius as a model system [34], is 

presented in Fig 4. Indeed, it should be noted that alternate pathways leading to the 

appearance of DolP exist in other forms of life [112], and, therefore, possibly in Archaea as 

well. Nonetheless, in this review it is assumed that in Archaea, polyprenol pyrophosphates 

are subjected to dephosphorylation, saturation and then phosphorylation to generate DolP.

The conversion of polyprenol pyrophosphates to polyprenol requires dephosphorylation. In 

Eukarya, the enzyme(s) responsible has(have) yet to be described, although polyprenol 

pyrophosphate phosphatase and polyprenol phosphatase activities have been observed in 

whole-cell homogenates [113]. In Bacteria, undecaprenol pyrophosphate is converted to 

undecaprenol phosphate by the actions of UppP [114]. The resulting mono-phosphorylated 

polymer serves as the bacterial lipid glycan carrier. In Archaea, it is assumed that 

dephosphorylation also occurs. Indeed, undecaprenol (and dolichol) has been observed in M. 
acetivorans [115]. Likewise, the detection of dolichol in S. acidocaldarius [34] could reflect 

the initial dephosphorylation of polyprenol pyrophosphates, although here too, the 

enzyme(s) responsible remain(s) to be identified. Finally, while roles for polyprenol and 

dolichol have been proposed in Bacteria and Eukarya, respectively [17], it is not known 

whether dolichol serves any biological function in Archaea.

In the presumed next step in phosphodolichol biosynthesis, saturation of the isoprene 

subunit found at the α position of polyprenol is thought to occur. In Archaea, saturation of 

the isoprene subunit at the ω position would likely also occur at this point, as would the 

saturation of other isoprene subunits found at more internal positions in those in species 

where highly saturated phosphodolichols exist. A polyprenol reductase responsible for 

saturation of the α position isoprene subunit of polyprenol has been identified in Eukarya 

[116]. The enzyme, encoded by the SRD5A3 gene in humans, has no archaeal homologue. 

As such, it would appear that Archaea rely on a distinct enzyme for such activity. 

Furthermore, given that eukaryal cells lacking SRD5A3 can still generate some 30% of the 

dolichol found in normal cells [116], it would seem that at least one more eukaryal 

polyprenol reductase must exist. One can speculate that Archaea, lacking a SRD5A3 gene, 

could instead contain homologues of this(these) additional polyprenol reductase(s), 

considering the high number of saturated isoprenes in archaeal phosphodolichols. To date, 

archaeal proteins showing polyprenol reductase activity have been described. S. 
acidocaldarius contains a geranylgeranyl reductase that is able to saturate three of the four 

double bonds in geranylgeranyl pyrophosphate, leaving the Δ2 double bond intact and 

thereby yielding a substrate for prenyltransferases in a reaction that would result in the 

removal of the pyrophosphate group from the geranylgeranyl pyrophosphate substrate [117]. 

Recent crystallographic analysis of S. acidocaldarius geranylgeranyl reductase bound to 

geranylgeranyl pyrophosphate has provided insight into the catalytic mechanism of this 

enzyme [118]. In contrast to the geranylgeranyl reductase of T. acidophilum, which uses 

NADPH as electron donor [119], the S. acidocaldarius enzyme does not use either NADPH 

or NADH, and as such, the source of electrons used in the saturation reaction in this species 

is not known [117]. In the case of M. acetivorans geranylgeranyl reductase, ferrodoxin is 

thought to serve as electron donor [120]. In addition, reductases that saturate the ω position 

isoprene subunit of polyprenol, all members of the geranylgeranyl reductase family, have 

also been identified. These enzymes, however, affect the saturation status of other lipids as 

Eichler and Guan Page 10

Biochim Biophys Acta. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



well, raising the question of whether these reductases are truly components of the 

phopshodolichol biosynthesis pathway in Archaea [115,121]. Indeed, the observation that S. 
acidocaldarius contains versions of C45 DolP presenting saturation at the α position isoprene 

subunit, at the α and ω position isoprene subunits and at these two positions together as well 

as at one-four more internal positions, suggests that multiple reductases contribute to 

phosphodolichol biosynthesis here [34]. Finally, considering that two or more of the 

isoprene subunits comprising archaeal dolichols are saturated, it has been proposed that 

archaeal dolichols should be called archaeoprenols, so as to distinguish them from their less 

saturated eukaryal counterparts [122].

In what is assumed to be the final step of DolP biosynthesis, dolichol is phosphorylated. In 

Eukarya, this reaction is catalyzed by a CTP-dependent dolichol kinase [123,124]. 

Homology-based searches of archaeal genomes have identified homologues of eukaryal 

dolichol kinase in only a limited number of species, implying that dolichol phosphorylation 

in Archaea relies on a distinct enzyme.

Once the lipid-linked glycan has been transferred by the oligosaccharyltransferase to a target 

protein, the lipid carrier can be recycled for subsequent rounds of glycan-charging. In 

Eukarya, for example, the DolPP that remains following N-glycosylation undergoes 

dephosphorylation to yield DolP, which is subsequently returned to the cytoplasmic leaflet 

of ER, where it is again recruited as a glycan carrier [125,126]. In Archaea, incubation of 

glycan-charged DolPP from S. solfataricus or P. calidifontis with a membrane fraction 

containing the oligosaccharyltransferase AglB and an peptide that contained an Asn residue 

suitable for glycosylation resulted in the appearance of DolP, suggesting that a 

dephosphorylation reaction, similar to that which occurs in Eukarya, also transpires in 

Archaea where DolPP serves as the lipid glycan carrier [37]. Indeed, externally oriented 

pyrophosphatases from S. acidocaldarius and Sulfolobus tododaii (optimal growth at 80°C 

and pH 2.5–3 [127]) have been described and proposed to participate in DolPP recycling 

[128–130].

5. Phosphodolichol-processing enzymes that participate in archaeal N-

glycosylation

In terms of both glycan composition and glycan architecture, archaeal N-glycosylation 

presents a degree of diversity not seen in either Eukarya or Bacteria [19]. Fittingly, what is 

known of archaeal N-glycosylation pathways reveals the involvement of numerous species-

specific components [25]. In contrast, the oligosaccharyltransferase AglB is highly 

conserved across Archaea. Indeed, like PglB, the bacterial oligosaccharyltransferase, and 

Stt3, the catalytic subunit of the eukaryal oligosaccharyltransferase, AglB also contains the 

WWDXG and other motifs important for activity. AglB, moreover, presents a topology 

similar to those of PglB and Stt3 [131,132]. Solution of the crystal structures of the complete 

AglB protein from A. fulgidus, as well as of the catalytic domain from P. furiosus and those 

of the three A. fulgidus AglB paralogs by the Kohda group [131,133–135] has not only 

provided insight into how AglB catalyzes the glycosylation of target Asn residues but also 

into how the enzyme interacts with the glycan-bearing phosphodolichol carrier. Analysis of 
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the electron density map of full-length A. fulgidus AglB revealed substantial electron 

density, modeled as a sulfate ion, 5 Å from the zinc ion found in the catalytic site of the 

enzyme (that, during the crystallization process, had apparently replaced the magnesium ion 

normally associated with the enzyme) [135]. This sulfate group interacted with His-81, 

His-162, Trp-215 and Arg-246, residues that are conserved in other AglB sequences. Site-

directed mutagenesis showed the importance of the positive charges of His-81, His-162 and 

Arg-246. Based on these observations, it was assumed that the sulfate ion mimicked the 

phosphate group of the DolP that serves as the glycan lipid carrier in A. fulgidus N-

glycosylation [37]. Accordingly, a docking model showed a good fit of the DolP dolichol 

chain within the hydrophobic groove on the protein surface leading to these residues. Once a 

crystal structure of AglB from an archaeal species that relies on DolPP as glycan lipid 

carrier becomes available, it will be of interest to see if the same architecture applies.

Flippases, catalyzing the translocation of glycan-charged and glycan-free phosphodolichols 

across the membrane [136], are also components of N-glycosylation pathways in intimate 

contact with DolP and/or DolPP. In Archaea, the only known protein proposed to act as a 

flippase or to play a flippase-assisting role is Hfx. volcanii AglR [137]. Upon deletion of the 

encoding gene, only the first four sugars of the N-linked pentasaccharide normally 

decorating glycoproteins in this species were protein-bound. It was previously shown that 

this tetrasaccharide is assembled on a common DolP carrier, while the fifth sugar (mannose) 

is derived from its own DolP carrier [27]. Moreover, in the aglR-deleted strain, mannose-

charged DolP accumulated. As such, it would appear that AglR is involved in translocating 

mannose-charged DolP across the membrane. Accumulation of tetraaccharide-charged DolP 

was, however, also noted in the absence of AglR, pointing to a more general flippase or 

flippase-related role for the protein. Further support for AglR acting as a flippase or playing 

a flippase-supporting role comes from sequence homology searches that revealed the 

similarity of AglR to Wzx proteins. In Bacteria, members of this group of proteins are 

thought to act as flippases responsible for translocating lipid-linked O-antigen precursor 

oligosaccharides across the membrane during lipopolysaccharide biosynthesis [138].

6. Conclusions and future prospects

Until recently, the study of Archaea had been hampered by the inability to cultivate the vast 

majority of identified strains in the laboratory, as well as the few cultivatable strains for 

which genetic tools were available. However, as recent advances have expanded the list of 

species amenable to molecular studies, it is likely that novel solutions employed by these 

unusual organisms to a variety of biological challenges will be revealed. In terms of 

phosphodolichols, it is conceivable that not only will the enzymes catalyzing all of the steps 

of known pathways be defined but that additional archaeal-specific steps will be identified. 

In addition, other more specific mysteries may be solved. For instance, both DolP and DolPP 

serve as lipid glycan carriers in Hbt. salinarum [31]. It is presently unclear whether both are 

processed by the same oligosaccharyltransferase. Since genome analysis reveals only a 

single aglB gene in this organism [58, 108], it is possible that a novel 

oligosaccharyltransferase will be identified. Indeed, studies on Hfx. volcanii N-glycosylation 

suggest that such an enzyme exists [49].
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In summary, life in extreme conditions, such as those encountered by many Archaea, often 

calls for unique biological solutions. The routes used for archaeal N-glycosylation and the 

biosynthesis of the phosphodolichols used as lipid glycan carriers in this post-translational 

modification have provided and will likely to continue to provide novel examples of 

Nature’s creativity in the face of such challenges.
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Highlights

• In Archaea, N-linked glycans are assembled on phosphorylated dolichols

• Archaeal phosphodolichols present traits unique to this domain of life

• Archaeal phosphodolichols vary in terms of length, phosphorylation and 

saturation

• Steps in archaeal phosphodolichol biogenesis are often unique to this domain
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Fig 1. Lipid glycan carriers used across evolution
Examples of lipid glycan carriers from Eukarya (human C95 DolPP (trans3cis16 isoprenes) 

charged with the tetradecasaccharide GlcNAc2-Man9-Glc3 where Glc is glucose, GlcNAc is 

N-acetylglucosamine and Man is mannose), Bacteria (C. jejuni C55 UndPP (trans3cis8 

isoprenes) charged with the (GalNAc-α1,4-GalNAc-α1,4-[Glc-β-1,3]GalNAc-α1,4-

GalNAc-α1,4-GalNAc-α1,3-diNAcBac where diNAcBac is 2,4-diacetamido-2,4,6-trideoxy-

D-glucopyranose, GalNAc is N-acetylgalactosamine and Glc is glucose) and Archaea (Hfx. 
volcanii C60 DolP (trans4cis8 isoprenes, predicted) charged with methyl-O-4-GlcA-β-1,4-

GalA-α1,4-GlcA-β1,4-glucose where GalA is galacturonic acid and GlcA is glucuronic 

acid). In each lipid, the arrow depicts the α position isoprene while the arrowhead depicts 

the ω position isoprene. In the eukaryal and archaeal lipids, the α position isoprene is 

saturated, whereas the ω position isoprene is saturated only in the archaeal lipid.
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Fig 2. Phosphodolichols used in archaeal N-glycosylation
Archaea N-glycosylation relies on phosphodolichols that differ in terms of length, degree of 

phosphorylation and the extent of internal isoprene subunit saturation. Shown are major 

phosphodolichol species used in N-glycosylation in different Archaea.
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Fig 3. Pathways of isopentenyl pyrophosphate biosynthesis in Archaea
In Archaea, isopentenyl pyrophosphate can be synthesized by different pathways. In the 

classic mevalonate pathway, mevalonate undergoes two rounds of phosphorylation at the 5 

position and then decarboxylation at the 3 position to yield IPP. In a second pathway, 

mevalonate undergoes phosphorylation at the 5 position, decarboxylation at the 3 position 

and then a second phosphorylation at the 5 position to generate IPP. In a potentially third 

pathway, mevalonate is phosphorylated at the 3 position and then at the 5 position. 

Dephosphorylation at the 3 position, a reaction yet to be observed, would yield isopentenyl 

phosphate, which would be phosphorylated at the 5 position to produce IPP.
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Fig 4. Potential pathways for the biosynthesis of DolP in Archaea
The biogenesis of DolP in S. acidocaldarius offers an example of the potential pathways 

used for synthesizing phosphodolichols in Archaea. Initially (not shown), three isopentenyl 

pyrophosphates and dimethylallyldiphosphate combine to form geranylgeranyl 

pyrophosphate (GGPP). Where internal phosphodolichol isoprenes are reduced, as in S. 
acidocaldarius, three of the four double bonds in GGPP may be reduced at this stage; the α 
position isoprene remains unsaturated. Elongation occurs when additional isoprene subunits 

(four-six in the case of S. acidocaldarius) are added to the α end of GGPP to generate 

polyprenol pyrophosphate. The generation of dolichol requires the removal of the two 

phosphate groups, followed by reduction of the α position isoprene subunit (and possibly 

other subunits elsewhere, as in the case of S. acidocaldarius phosphodolichols; when the 

position of a double bond is only speculated in a S. acidocaldarius lipid in the figure, a 

dotted line appears). Dolichol would undergo phosphorylation to yield dolichol phosphate 

(DolP). Alternatively, polyprenol pyrophosphate could undergo reduction reactions, 

followed by removal of one phosphate group to yield DolP or both phosphate groups, 

followed by re-phosphorylation, again yielding DolP, as thought to occur in Eukarya. 

Abbreviations used: DolP, dolichol phosphate; DolPP, dolichol pyrophosphate; GGPP, 

geranylgeranyl pyrophosphate.
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Table 1

A comparison of lipid glycan carriers used in N-glycosylation across evolution

Eukarya Bacteria Archaea

Lipid glycan carrier DolP DolPP UndPP DolP DolPP

Length C70–C105 C50–C60 C30–C70

Positions of saturated isoprenes Alpha-position isoprene None Alpha- and omega-position 
isoprenes; variable number of 
internal position isoprenes

Location ER membrane Plasma membrane Plasma membrane

Topology of sugar addition Sugars added on both sides of the 
membrane

Sugars added only on the 
cytosolic side of the membrane

Sugars added on the cytosolic 
side of the membrane and in 
some species, on the external 
side of the membrane

Number of lipid glycan carriers 
used per N-glycosylation event

Multiple Single Single or more in some species

Chemical modification of lipid-
linked glycan

No No In some species

Recycling after glycan transfer 
to target protein

DolPP is dephosphorylated to 
DolP, flipped to face the ER lumen 
and recharged to yield DolPP-
glycan

UndPP is dephosphophorylated 
to UndP, flipped to face the 
cytoplasm and recharged to yield 
UndPP-glycan

Unknown
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