Abstract
Cu,Zn superoxide dismutase (Cu,Zn-SOD; EC 1.15.1.1) is known to be inhibited slowly by H2O2. Using EPR and the spin traps 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN), we have shown that Cu,Zn-SOD catalyzes the formation of "free" .OH radicals from H2O2 in pH 7.6 bicarbonate buffer. Supporting evidence includes the following: (i) H2O2 and active Cu,Zn-SOD are required to yield significant signals from spin-trap-OH adducts. (ii) With O2-., Cu,Zn-SOD causes the appearance of intense resonance signals due to DMPO-OH adducts. These signals were inhibited strongly by catalase. (iii) With H2O2, Cu,Zn-SOD, and DMPO, radical scavengers formate and azide, but not ethanol, decrease DMPO-OH signals while causing new intense signals due to their corresponding DMPO-radical adducts. Failure of ethanol to quench DMPO-OH signals is discussed in light of the positively charged active channel of the enzyme. (iv) With PBN as a spin trap, ethanol quenches .OH radical signals and yields PBN-trapped hydroxyethyl radical signals. (v) Mn-SOD does not catalyze "free" .OH radical formation and it also exerts no effect on the signals of DMPO-OH adducts when added together with the Cu,Zn-SOD. The capacity of Cu,Zn-SOD to generate "free" .OH radicals from H2O2 may in part explain the biological damage associated with elevated intracellular SOD activity.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balazs R., Brooksbank B. W. Neurochemical approaches to the pathogenesis of Down's syndrome. J Ment Defic Res. 1985 Mar;29(Pt 1):1–14. doi: 10.1111/j.1365-2788.1985.tb00302.x. [DOI] [PubMed] [Google Scholar]
- Beauchamp C. O., Fridovich I. Isozymes of superoxide dismutase from wheat germ. Biochim Biophys Acta. 1973 Jul 12;317(1):50–64. doi: 10.1016/0005-2795(73)90198-0. [DOI] [PubMed] [Google Scholar]
- Berlett B. S., Chock P. B., Yim M. B., Stadtman E. R. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide. Proc Natl Acad Sci U S A. 1990 Jan;87(1):389–393. doi: 10.1073/pnas.87.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blech D. M., Borders C. L., Jr Hydroperoxide anion, HO-2, is an affinity reagent for the inactivation of yeast Cu,Zn superoxide dismutase: modification of one histidine per subunit. Arch Biochem Biophys. 1983 Jul 15;224(2):579–586. doi: 10.1016/0003-9861(83)90245-x. [DOI] [PubMed] [Google Scholar]
- Borders C. L., Jr, Fridovich I. A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch Biochem Biophys. 1985 Sep;241(2):472–476. doi: 10.1016/0003-9861(85)90572-7. [DOI] [PubMed] [Google Scholar]
- Bray R. C., Cockle S. A., Fielden E. M., Roberts P. B., Rotilio G., Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J. 1974 Apr;139(1):43–48. doi: 10.1042/bj1390043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buettner G. R., Oberley L. W. Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethyl-1-pyrroline-1-oxide. Biochem Biophys Res Commun. 1978 Jul 14;83(1):69–74. doi: 10.1016/0006-291x(78)90398-4. [DOI] [PubMed] [Google Scholar]
- Elroy-Stein O., Bernstein Y., Groner Y. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J. 1986 Mar;5(3):615–622. doi: 10.1002/j.1460-2075.1986.tb04255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elroy-Stein O., Groner Y. Impaired neurotransmitter uptake in PC12 cells overexpressing human Cu/Zn-superoxide dismutase--implication for gene dosage effects in Down syndrome. Cell. 1988 Jan 29;52(2):259–267. doi: 10.1016/0092-8674(88)90515-6. [DOI] [PubMed] [Google Scholar]
- Finkelstein E., Rosen G. M., Rauckman E. J. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts. Mol Pharmacol. 1982 Mar;21(2):262–265. [PubMed] [Google Scholar]
- Fuchs H. J., Borders C. L., Jr Affinity inactivation of bovine Cu,Zn superoxide dismutase by hydroperoxide anion, HO2-. Biochem Biophys Res Commun. 1983 Nov 15;116(3):1107–1113. doi: 10.1016/s0006-291x(83)80256-3. [DOI] [PubMed] [Google Scholar]
- Getzoff E. D., Tainer J. A., Weiner P. K., Kollman P. A., Richardson J. S., Richardson D. C. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature. 1983 Nov 17;306(5940):287–290. doi: 10.1038/306287a0. [DOI] [PubMed] [Google Scholar]
- Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry. 1975 Dec 2;14(24):5299–5303. doi: 10.1021/bi00695a011. [DOI] [PubMed] [Google Scholar]
- Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
- Klug-Roth D., Fridovich I., Rabani J. Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. J Am Chem Soc. 1973 May 2;95(9):2786–2790. doi: 10.1021/ja00790a007. [DOI] [PubMed] [Google Scholar]
- Klug D., Rabani J., Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem. 1972 Aug 10;247(15):4839–4842. [PubMed] [Google Scholar]
- Mavelli I., Ciriolo M. R., Rossi L., Meloni T., Forteleoni G., De Flora A., Benatti U., Morelli A., Rotilio G. Favism: a hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells. Eur J Biochem. 1984 Feb 15;139(1):13–18. doi: 10.1111/j.1432-1033.1984.tb07969.x. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Morehouse K. M., Mason R. P. The transition metal-mediated formation of the hydroxyl free radical during the reduction of molecular oxygen by ferredoxin-ferredoxin:NADP+ oxidoreductase. J Biol Chem. 1988 Jan 25;263(3):1204–1211. [PubMed] [Google Scholar]
- Mota de Freitas D., Valentine J. S. Phosphate is an inhibitor of copper-zinc superoxide dismutase. Biochemistry. 1984 Apr 24;23(9):2079–2082. doi: 10.1021/bi00304a031. [DOI] [PubMed] [Google Scholar]
- Mottley C., Connor H. D., Mason R. P. [17O]oxygen hyperfine structure for the hydroxyl and superoxide radical adducts of the spin traps DMPO, PBN and 4-POBN. Biochem Biophys Res Commun. 1986 Dec 15;141(2):622–628. doi: 10.1016/s0006-291x(86)80218-2. [DOI] [PubMed] [Google Scholar]
- Saprin A. N., Piette L. H. Spin trapping and its application in the study of lipid peroxidation and free radical production with liver microsomes. Arch Biochem Biophys. 1977 Apr 30;180(2):480–492. doi: 10.1016/0003-9861(77)90063-7. [DOI] [PubMed] [Google Scholar]
- Scott M. D., Meshnick S. R., Eaton J. W. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. J Biol Chem. 1989 Feb 15;264(5):2498–2501. [PubMed] [Google Scholar]
- Scott M. D., Meshnick S. R., Eaton J. W. Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. J Biol Chem. 1987 Mar 15;262(8):3640–3645. [PubMed] [Google Scholar]
- Sinet P. M., Garber P. Inactivation of the human CuZn superoxide dismutase during exposure to O-2 and H2O2. Arch Biochem Biophys. 1981 Dec;212(2):411–416. doi: 10.1016/0003-9861(81)90382-9. [DOI] [PubMed] [Google Scholar]
- Sinet P. M. Metabolism of oxygen derivatives in down's syndrome. Ann N Y Acad Sci. 1982;396:83–94. doi: 10.1111/j.1749-6632.1982.tb26845.x. [DOI] [PubMed] [Google Scholar]
- Stadtman E. R., Berlett B. S., Chock P. B. Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc Natl Acad Sci U S A. 1990 Jan;87(1):384–388. doi: 10.1073/pnas.87.1.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Symonyan M. A., Nalbandyan R. M. Interaction of hydrogen peroxide with superoxide dismutase from erythrocytes. FEBS Lett. 1972 Nov 15;28(1):22–24. doi: 10.1016/0014-5793(72)80667-7. [DOI] [PubMed] [Google Scholar]
- Tainer J. A., Getzoff E. D., Beem K. M., Richardson J. S., Richardson D. C. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol. 1982 Sep 15;160(2):181–217. doi: 10.1016/0022-2836(82)90174-7. [DOI] [PubMed] [Google Scholar]
- Yamakura F. Destruction of tryptophan residues by hydrogen peroxide in iron-superoxide dismutase. Biochem Biophys Res Commun. 1984 Jul 31;122(2):635–641. doi: 10.1016/s0006-291x(84)80080-7. [DOI] [PubMed] [Google Scholar]
- Yim M. B., Berlett B. S., Chock P. B., Stadtman E. R. Manganese(II)-bicarbonate-mediated catalytic activity for hydrogen peroxide dismutation and amino acid oxidation: detection of free radical intermediates. Proc Natl Acad Sci U S A. 1990 Jan;87(1):394–398. doi: 10.1073/pnas.87.1.394. [DOI] [PMC free article] [PubMed] [Google Scholar]