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ABSTRACT
Bispecific antibody engineering, in which binding specificities toward 2 distinct epitopes are combined
into a single molecule, can greatly enhance immunotherapeutic properties of monoclonal antibodies.
While the bispecific antibody approach has been applied widely to targets for indications such as cancer
and inflammation, the development of such agents for viral immunotherapy is only now emerging. Here,
we review recent advances in the development of bispecific antibodies for viral immunotherapy,
highlighting promising in vitro and in vivo results.
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Introduction

Passive administration of monoclonal antibodies (mAbs) is a
promising therapeutic platform for treatment of viral
infections.1 Currently, there is only one FDA-approved
antiviral mAb, Synagis�, for prophylaxis of respiratory
syncytial virus (RSV) in premature infants.2 However, a
number of mAbs are in preclinical or clinical development for
chronic viruses (e.g., HIV-1) as well as acute infections (e.g.,
influenza, Ebola virus, and West nile virus).3-6 In other
indications, mAbs are advantageous relative to other
therapeutic platforms because they are well tolerated (favorable
safety profile), are highly specific for their target with few off
target effects, and have long serum half-life due to the Fc
region.7 These advantages also extend to viral immunotherapy
and, in cases where the antibody specificity is directed toward
non-host (i.e. viral) epitopes, the safety profile may even be
better than other mAbs that target human components.

The majority of antiviral mAb treatments consist of a single
mAb that targets a single epitope on the virus surface
(“monotherapy”); however, in several cases, a combination
therapy consisting of 2 or more mAbs is being advanced. Most
immunotherapeutic mAbs are targeted toward the glycoprotein
of a particular virus, which is required for cell entry. In many
viruses, the glycoproteins across species or strains within the
same viral family contain a high degree of sequence variability,
and thus a monotherapy may not be effective against all strains.
Furthermore, monotherapies that target a single epitope are
more susceptible to viral escape mutations and thus
development of resistance. Cocktails of antibodies targeting
multiple epitopes are capable of increasing potency as well as
breadth, and potentially mitigate against escape mutations.4,8-11

While there may be clear therapeutic benefits for advancement

of a cocktail of mAbs rather than a monotherapy, the
development of mAb cocktails also imposes additional regula-
tory and manufacturing hurdles.

Recent advancements in recombinant antibody engineering
technologies have allowed the generation and clinical
development of antibodies with enhanced function.12,13

Bispecific antibodies (Fig. 1), which can bind 2 or more
separate and distinct epitopes, have been broadly applied across
a number of disease indications. They have been engineered to
bind 2 epitopes on the same cell, 2 epitopes on different cells,
or different epitopes of the same antigen. In viral immunother-
apy, bispecific mAb design can be used to lower the complexity
of mAb cocktails, allowing simultaneous targeting of 2 or more
distinct epitopes in a single entity. This approach potentially
combines the therapeutic advantage of targeting multiple epitopes
on the glycoprotein with the simplicity of developing and
manufacturing a single molecule, as opposed to a mixture of 2 or
more conventional mAbs. Furthermore, bispecific antibody
engineering provides the opportunity to tailor multifunctional
molecules to match the proposed mechanism of action, for exam-
ple targeting both viral and host components simultaneously.13-15

Here, we provide a brief overview of recent developments
toward application of bispecific antibody design for viral
immunotherapy. Much of the discussion focuses on formats that
contain the Fc-region of immunoglobulin, which provides the
potential for long pharmacokinetic half-life in vivo and for
Fc-mediated antiviral mechanisms (Table 1).7 Virus-targeting
bispecific antibodies can be grouped into 3 major subclasses (i)
molecules with increased species or strain breadth that target
several viral epitopes; (ii) antibodies that bind both virus and
host epitopes; and (iii) antibodies that recruit the host cells
immune system machinery (Fig. 1A). Currently, a variety of
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bispecific antibody formats are applied in the development of
antiviral multivalent antibodies (Fig. 1B). Methods that have
been used for the multimerization of such antibodies include
antibody conjugates, asymmetric IgG-like molecules, as well as
single chain variable fragment (scFv) fusions to IgG molecules.
These different formats and conjugation methods are each asso-
ciated with particular advantages that may be tailored to the spe-
cific application.

Bispecific antibodies targeting 2 distinct viral epitopes

Bispecific antibodies that engage 2 distinct viral epitopes have
potential to provide enhanced breadth and potency. As such,
Wagner et al. reported a format where 2 full-sized anti-
influenza A IgG antibodies with individual subgroup specificity
were fused via their C-termini applying sortase transpeptida-
tion and click chemistry.16 The C-C fusion of this covalently
linked IgG antibody heterodimer does not require any
mutations and it is therefore believed to not compromise
antibody stability or Fc-receptor binding capacity. The
antibody dimer retained the activity and stability of the 2
original antibodies against a wide range of influenza subtypes
in a suitable mouse model. However, the C-C linkage could be
immunogenic, a notion that requires further testing. Zanin
et al. developed two neutralizing monoclonal antibodies against
H5 influenza viruses of different clades, and combined them
into a single bispecifc Fc-domain fusion protein (referred to as
Fc-dual-affinity retargeting molecule, or FcDART).17 The
generated FcDART consist of 2 Fc-fusion protein chains that
dimerize to form antibody derived binding sites. One polypep-
tide chain connects the light chain variable region (vL) of the
first antibody with the heavy chain variable region (vH) of the
second antibody via a Gly-Ser linker, and the second polypep-
tide contains the complementary variable regions. Assembly of
a DART occurs via heterodimeriztion of the 2 chains and
results in a single protein that is bispecific and tetravalent. The
anti-influenza FcDART was shown to possess the broad-

spectrum activity and protective efficacy of both of its parental
monoclonal antibodies in mouse infection models. Addition-
ally, the FcDART demonstrated 100% protection in infected
ferrets, which represents a more faithful model for influenza
infection. Therefore, a therapy consisting of FcDART alone
might be as efficacious as a cocktail containing both monoclo-
nal antibodies against a broad spectrum of antigenically diverse
influenza viruses.

Similarly, enhanced activity was also demonstrated for bis-
pecific antibodies targeting the antigenically diverse envelope
protein (Env) of HIV-1. Asokan et al. constructed asymmetric
bispecific IgGs in which each arm binds a different broadly
susceptible epitope on Env monovalently, applying the
CrossMAb format.18 The generated bispecific IgGs not only
retained functional binding and neutralization by both arms,
but also neutralized 94–97% of antigenically diverse viruses in
a panel of 206 HIV-1 strains. The bispecific molecule with the
highest neutralization activity was infused intravenously to
rhesus macaques and demonstrated similar pharmacokinetic
properties as the combination of its parental antibodies. To
test the idea that increased parent affinity might enhance
neutralizing activity, Mouquet et al. engineered scFv-Fc IgG-
like molecules, also called immunoadhesins, that can bind
HIV-1 bivalently by engaging 2 distinct subunits of Env.19 It
was shown that heterotypic binding enhanced neutralization
compared with the parental antibodies. By engineering an
asymmetric bispecific IgG1 molecule that contains the hinge
domain of an IgG3, Bounazos et al. recently reported addi-
tional success in the synergistic combination of different anti
HIV-Env antibodies.20 The length and flexibility of the IgG3
hinge domain allows for hetero-bivalent binding to 2 essential
epitopes on 2 adjacent glycoproteins of the HIV-1 trimer
spike, thereby increasing antibody avidity while facilitating
spike inactivation. Compared to unmodified asymmetric bis-
pecific molecules, the synergistic activity of molecules with
modified hinge domains was shown to be superior in viral
neutralization as well as in the protection of HIV-1 infected
humanized mice.

Figure 1. Schematic representation of different antibody formats. The combination of the variable regions of 2 monoclonal antibodies (A) can be achieved via numerous
bispecific antibody formats (B). Here exemplified is a single chain variable fragment fusion to an IgG (scFv-IgG), a dual-affinity retargeting immunoglobin fusion protein
(DART-Ig), a dual-variable domain immunoglobin (DVD-Ig), as well as an asymmetric IgG in which each arm engages a different epitope (e.g., Duobody or CrossMab).
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Guo and colleagues engineered a dual variable domain
(DVD) bispecific antibody from 2 distinct monoclonal
antibodies against hepatitis B surface antigen (HBsAg) that
synergistically neutralized hepatitis B virus (HBV) infection.21

In DVDs the vH and vL of one antibody are genetically fused to
the N-terminus of the heavy and light chain of a second
antibody via a short peptide linker, respectively, thereby
retaining the Y-shape of an IgG molecule (Fig. 1B). The
resulting bispecific molecule was shown to have superior HBV-
neutralizing activity in comparison to the combination of both
parental monoclonal antibodies, possibly through steric hin-
drance or induction of HBsAg conformational changes. The
same group recently described another DVD bispecific
antibody, that neutralizes all 4 closely related but serologically
distinct dengue viruses (DENV-1-4).22 The fused variable
domains of this molecule bind the domain of the DENV surface
protein E, that is responsible for virus attachment (DIII), while
the variable domains of the IgG scaffold bind to the E protein

domain DII, which contains the fusion loop that inserts into
the host cell during viral entry. The DVD molecule was
confirmed to be more effective at protecting against DENV
than each of its parental mAbs individually as well as the
combination of the 2 in a suckling mouse model. Additionally,
the mutation of 9 amino acids within the Fc domain eliminated
antibody dependent enhancement (ADE) of infection in
myeloid cells expressing Fc-g receptors (FcgR). Earlier, Brien
et al. already reported an IgG fusion DART protein (DART-Ig;
Fig. 1B) that was also engineered to lack FcgR binding capacity
and to bind 2 spatially distinct and cross-reactive epitopes on
DII and DIII on the surface of the DENV virion.23 The
generated molecule possessed neutralizing activity in vitro and
therapeutic activity in a mouse ADE disease model. An
observed improved avidity of the tetravalent DART-Ig for
DENV E protein did not translate into greater inhibitory
activity in vitro and in vivo, possibly due to the quasi-icosahe-
dral structure of the DENV virion, precluding binding

Table 1. Fc-region containing bispecific antibody formats that have been generated for viral immunotherapy.

Virus Targets Format Results Reference

1) Targeting 2 distinct viral epitopes
Influenza HA protein of different

strains
Full-sized IgG antibodies linked

via C -termini
Retained activity and stability of original antibodies against

various influenza subtypes
[16]

Head of H5 HA protein FcDART Retained activity and efficacy of original antibodies in mice and
ferret models

[17]

HIV-1 Various neutralizing
epitopes on Env

Asymmetric IgG (CrossMAb) Retained binding activity of original antibodies; enhanced
neutralization of HIV-1 strains; best neutralizer retained
pharmacokinetic properties of original antibodies

[18]

Two subunits of Env Immunoadhesins (scFv-Fc) Retained binding activity of original antibodies; enhanced
neutralization compared to original antibodies

[19]

Different epitopes on
adjacent GPs

Asymmetric IgG1 molecule with
IgG3 hinge domain

Enhanced neutralization and protection in infected humanized
mice compared to original antibodies and bispecific antibody
without IgG3 hinge domain

[20]

Hepatitis B Various epitopes on
surface antigen

DVD Enhanced neutralization and inhibition of hepatitis B surface-
antigen secretion compared to original antibodies

[21]

Dengue DII and DIII of surface
protein

DVD with mutated Fc-domain Retained binding activity of original antibodies; enhanced
neutralization and protection in mouse model; eliminated
ADE of infection in vitro

[22]

DII and DIIII of surface
protein

DART-Ig with mutated Fc-
domain

Retained neutralizing activity and therapeutic activity in mice as
original antibodies; enhanced avidity for isolated recombinant
DENV surface protein

[23]

Ebola SUDV and EBOV GP scFvs of EBOV antibody fused to
SUDV-IgG

Retained neutralizing activity of original antibodies; post-
exposure protection of mice from both viruses

[24]

2) Targeting viral and host epitopes
HIV-1 Env and CD4 scFv of anti-Env antibodies fused

to anti-CD4 IgG
Enhanced neutralizing activity and potency compared to original

antibodies; neutralization of strains resistant to original
antibodies

[14]

CD4 and CD4 induced
epitope on Env

Single-domain antibody (anti-
CD4i site) fused to CD4 IgG

Enhanced neutralizing activity and potency compared to original
antibodies; neutralization of strains resistant to original
antibodies

[25]

Various neutralizing
epitopes on Env and
CD4 or CCR5

Asymmetric IgG (CrossMAb) Enhanced neutralizing activity compared to original antibodies;
reduction of viral load in infected humanized mice

[26]

Ebola Receptor binding site of
GP and NPC1

DVD Neutralization of all known ebolaviruses and post exposure
protection against multiple filoviruses in mouse models.

[27]

3) Recruiting host cell machinery
Dengue Primate CR1 and

DENV GP
Thioester Cross-linked IgGs Facilitated specific and rapid binding of DENV to monkey and

human erythryocytes; clearance of DENV viremia in
cynomolgus macques

[30]

Marburg Primate CR1 and
Marburg GP

Thioester Cross-linked IgGs Facilitated specific and rapid binding of MARV-GP to monkey and
human erythrocytes

[31]

CMV CD3 and CMV Thioester Cross-linked IgGs Redirected specific cytotoxicity to CMV infected cells [33]
HIV CD3 and CD4 induced

epitope on Env
scFV of anti-CD3 linked to light

chain of anti-Env by GS linker
Increased CD8C T-cell activation and lysis of infected cells;

reduction of latently infected CD4C T cells ex vivo; in vivo
safety in ART-treated SHIV-infected macaques

[36]
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geometries necessary for simultaneous recognition of adjacent
epitopes. In 2015, a set of bispecific antibodies was developed
in which scFvs of an Ebola virus (Zaire) specific antibody were
fused to the N –and C-termini of a Sudan virus-specific
antibody (scFv-Ig; Fig. 1B). These two species are the most
divergent within the ebolavirus family but have collectively
accounted for 95% of Ebola-related deaths from 1976–2014.
The bispecific molecules exhibited potent neutralization, and
present the first example of antibodies to confer a high degree
(in one case 100%) post-exposure protection of mice from 2
distinct Ebola virus species.24

Bispecific antibodies that interact with host and
viral epitopes

The approach of constructing bispecific antiviral antibodies that
simultaneously bind to viral and host epitopes has been mainly
utilized in HIV studies to target CD4 receptor presenting T-cells.
By binding to CD4, these bispecifics are able to increase its local
concentration at the point of viral entry and prevent HIV from
infecting CD4C T cells. Pace et al., developed a bispecific
antibody where scFvs of broadly neutralizing anti-Env antibodies
were fused to the N-terminus of a humanized anti-CD4 antibody
via a Gly-Ser linker.14 The same research group engineered
another bispecific antibody where 2 copies of a single domain
antibody that binds to the CD4-induced site on Env is fused to
the C-terminus of the heavy chain of the same anti-CD4C

antibody by a Gly-Ser linker.25 Both bispecific molecules showed
improved antiviral activity and were able to neutralize viruses
that exhibit resistance to parental antibodies in vitro. Aiming to
engineer synergistic bispecific antibodies that preserve the
architecture of a normal IgG, Ho and colleagues developed
asymmetric IgGs (Fig. 1B) with the Fab from either an anti-CD4
or anti-CCR5 antibody applying the CrossMab technology.26

Two of these molecules showed increased neutralization in a
panel of HIV-1 isolates, and one antibody significantly reduced
the viral load in HIV-infected humanized mice.

Unlike HIV, which binds to the surface exposed CD4
receptor to facilitate host-cell attachment and entry, ebolavi-
ruses engage the intracellular late endosome residing receptor
Niemann-Pick C1 (NPC1) during host cell entry and infection.
This engagement is absolutely required for host cell infection
and the receptor-binding site (RBS) on the filovirus
glycoprotein is shielded prior to physical sequestration in late
endosomes. To target this interaction, recently a novel “Trojan
Horse” bispecifc antibody strategy was described, in which the
viable domains of NPC-1 or GP-RBS specific antibodies are
fused to an antibody that binds to a conserved surface exposed
GP-epitope, applying the DVD technology.27 It was shown that
the bispecific molecules, but not their parental monoclonal
antibodies, neutralized all known ebolaviruses by utilizing the
viral particle themselves for endosomal delivery, and conferred
post exposure protection against multiple filoviruses in vivo.

Bispecific antibodies recruiting the host cell machinery

Bispecific molecules can also be utilized to recruit host cell
immune system machinery. Taylor et al., developed heteropoly-
mers (HPs) to clear various prototype pathogens by covalently

crosslinking a monoclonal antibody specific for primate E
complement receptor 1 with another monoclonal antibody
specific to a target antigen with a nonreducible thioether
bond.28,29 Potential for viral immunotherapy was shown in
HPs that bound to the Dengue glycoprotein and inactivated
Marburg virus.30,31 The HPs demonstrated rapid and specific
binding of their respective pathogens to monkey and human
erythrocytes in vitro. Furthermore, the dengue-specific HP
demonstrated clearance of dengue passive viremia when
administered to previously challenged cynomolgus macques.

There has been much recent interest in engineering
bispecific molecules that are able to activate and direct
cytotoxic T-cells. For example, bispecific T-cell engagers
(BiTEs) contain both an antigen-specific arm and an anti-CD3
arm, which activates and redirects cytotoxic CD8C T-cells to
antigen-specific cells.32 Given the success of T-cell engaging
molecules in cancer immunotherapy, there is much potential
for adoption of similar strategies to eliminate the viral particles
themselves, or infected cells. For example, an anti-cytomegalo-
virus (CMV) bispecific molecule possessing an anti-CD3 arm
has been reported.33 To achieve bispecificity, an anti-CD3
monoclonal antibody was chemically heteroconjugated with a
CMV specific human IgG via a nonreducable thioether bond.
The bispecific antibody was able to redirect specific cytotoxicity
to CMV-infected cells and induce cell lysis of target cells at an
effector to target ratio as low as 1:1. Similar approaches have
been applied in HIV-1, where the CD3-binding moiety serves a
2-fold purpose in directing cytotoxic CD8C T-cells and
activating latently infected cells. In what has been called a “kick
and kill” strategy, the anti-CD3 arm promotes viral production
by binding to latently infected CD4C T-cells and stimulating
Env gene expression. The antibody then crosslinks CD3 on
CD8C T-cells to bring the cytotoxic cell in close proximity to
recently activated CD4C T-cells with Env on the surface to
induce cell lysis.34 Interest in the “kick and kill” strategy for
HIV-1 stems from the persistence of latently infected cells in
HIV-1 infected individuals treated with antiretroviral therapy
(ART). While ART can significantly reduce the viral load in an
infected individual, it is unable to fully eradicate HIV-1 from
the system due to the virus establishing a stable latent infection
in resting CD4C T-cells with minimal expression of HIV
genes.35 Fortunately, 2 bispecific anti-HIV antibodies have
shown promise in the lysis of these reservoirs and potential use
in ART-treated patients. Additionally, an immunomodulatory
protein consisting of the scFv of an anti-human CD3 monoclo-
nal antibody that is linked to the light chain of a HIV-1 broadly
neutralizing antibody by a Gly-Ser linker showed similar results
in CD8C T-cell activation and in vivo safety in ART-treated
SHIV-infected macaques.36

Multispecific antibody derived formats lacking
an Fc-region

Success has also been found in multifunctional anti-viral anti-
body-mimetics. Genetic fusions of recombinant single-domain
antibody fragments derived from camelid heavy chain
antibodies (VHHs) have gained attention due to their high
stability and easy production through prokaryotic expression.
For example, 2 VHHs that bind to different epitopes on the

HUMAN VACCINES & IMMUNOTHERAPEUTICS 839



rotavirus capsid were displayed on the surface of Lactobacillus
paracasei as linear bivalent proteins that are fused without
linkers.37 These were shown to be superior at reducing the rate
of diarrhea when used for prophylactic and therapeutic
intervention in a mouse model of rotavirus infection.
Additionally, Hultberg et al. reported multimeric constructs
developed by fusing different llama heavy chain antibody
fragments with Gly-Ser linkers of varying length.38 Multivalent
molecules were constructed with VHHs against the trimeric
envelope proteins of RSV, rabies virus and H5N1 influenza.
Despite functional differences in the protein among the viruses,
multimerization of the VHHs exhibited increased potency and
cross-protection capacity against different viral strains for all 3
viruses. Recently, a DART engineered with the arm of a CD3-
specific monoclonal antibody and the arm of one of 2 anti-
Env HIV antibodies showed increased CD8C T-cell activation
and lysis with lymphocytes derived from patients on ART.39

Additionally, a bispecific antibody-based molecule has been
reported in which 2 Fabs of broadly neutralizing anti-HIV
antibodies were conjugated to various lengths of double-
stranded DNA. The architecture of the Env spike trimer
prevents bivalent binding by the Fabs of IgG and reduces
neutralization potency. The flexibility and length in the DNA
linkers overcome this barrier and allow for bivalent binding of
the Fabs to the Env spike trimer via intra-spike crosslinking.
When the molecules were engineered with the Fabs of 2
different broadly neutralizing anti-HIV antibodies, the neutrali-
zation potency increased 100-fold.

Potential drawbacks of bispecific antibodies

From a developmental and regulatory perspective, combining
several antibodies into a single therapeutic makes development
less complex and more cost-effective, since production and
quality control as well as preclinical and clinical testing will be
reduced to a single molecule. However, bispecific antibodies are
also associated with some disadvantages relative to canonical
mAbs, and these limitations should be considered depending
on the desired outcome. Asymmetric IgGs (e.g. DuoBodies,
CrossMab) bind monovalently to their targets, which might
have consequences for activity, especialy in the context of
viruses that have high glycoprotein spike density per virion and
thus may be more potently neutralized by mAbs that engage
epitopes bivalently to cross-link subunits or spikes.40,41 The
production of asymmetric IgGs also requires either a reduction
step to convert homodimers into heterodimers, or coexpression
of 2 antibody fragments. This additional requirement might
hamper high scale production of these molecules. Some bispe-
cific antibody formats might possess reduced physiochemical
stability or be prone to aggregation, for example, when lacking
a Fc domain, if a constant domain mutation is required to
enable IgG heterodimerization, or if long flexible polypeptide
linker regions are included in the design. This can comprise
stability and may affect binding to Fc receptors.42,43 So far, little
attention has been given to the immunogenicity and pharmaco-
kinetics of multispecifc antibodies within the specific context of
viral immunotherapy. However, recent studies on bispecific
antibodies generated for different purposes, indicate that the
orientation as well as the nature of the fusion partner can affect

the pharmacokinetics of immunoconjugates of IgGs, as it may
result in conformational change or misfolding in certain com-
binations.44,45 However, the in vivo half-life for any particular
antibody (engineered or natural) is unpredictable and requires
empirical case-by case assessments. In general, enhanced
pharmacokinetics of molecules containing an IgG scaffold can
be attributed to 2 major factors; (i) their lager size (>150 kDa)
precludes renal clearance, which is responsible for the rapid
elimination of smaller constructs (60 kDa), such as scFvs; and
(ii) their dynamic binding to the neonatal Fc receptor extends
serum half-lives.45 An intravenously administered bispecifc
antibody targeting different epitopes on the HIV-1 envelope
was shown to have a similar serum half-life (ca. 10 days) to the
parental IgGs in rhesus marcaques and persisted in circulation
for 4 weeks while retaining neutralization activity in the
serum.18 Like the parental IgGs, this antibody contained a
mutated CH3 domain to improve antibody persistence.
Development for clinical application might require further
engineering of existing bispecific formats. As such, hinge
stabilized or aglycosylated IgG4 scaffolds can be applied to
decrease heterogenicity.46 Furthermore, anti- and pro-
inflammatory properties can be regulated through the
alteration of glycosylation, and the serum half-life can be
increased by Fc engineering.46 Other aspects that remain to
be carefully addressed when preparing multispecific antibodies
for clinical development are formulation and dosing, especially
if different amounts of individual components are required in
the respective canonical antibody cocktails.

Conclusion

To date, a vast repertoire of bispecific antibody formats is
available, which has been primarily applied in the therapy of
malignancies and inflammatory conditions. The studies we
outlined here highlight that bispecific antibodies offer
numerous functionalities and targeting mechanisms that can
be exploited for viral immunotherapy. Despite potential
limitations, bispecific antibody engineering can be utilized to
enhance the effectiveness of antiviral immunotherapies. As
individual epitopes may not provide sufficient therapeutic
benefit when targeted alone, significant therapeutic benefits of
these targets can be gained from additive and/or synergy effects
of bispecific molecules. Moreover, bispecifc antibody
engineering may open up new therapeutic venues when
utilizing one of the 2 specificities for the delivery of the second
specificity to its target site. Thus, there is much opportunity for
the application of such methods to other viruses and to develop
next-generation therapeutics.
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