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Abstract

Mounting evidence supports the hypothesis that the cortex operates near a critical state,

defined as the transition point between order (large-scale activity) and disorder (small-scale

activity). This criticality is manifested by power law distribution of the size and duration of

spontaneous cascades of activity, which are referred as neuronal avalanches. The exis-

tence of such neuronal avalanches has been confirmed by several studies both in vitro and

in vivo, among different species and across multiple spatial scales. However, despite the

prevalence of scale free activity, still very little is known concerning whether and how the

scale-free nature of cortical activity is altered during external stimulation. To address this

question, we performed in vivo two-photon population calcium imaging of layer 2/3 neurons

in primary visual cortex of behaving mice during visual stimulation and conducted statistical

analyses on the inferred spike trains. Our investigation for each mouse and condition

revealed power law distributed neuronal avalanches, and irregular spiking individual neu-

rons. Importantly, both the avalanche and the spike train properties remained largely

unchanged for different stimuli, while the cross-correlation structure varied with stimuli. Our

results establish that microcircuits in the visual cortex operate near the critical regime, while

rearranging functional connectivity in response to varying sensory inputs.

Introduction

How does the activity of individual neurons and neuronal circuits give rise to knowledge

representation, computation, and cognition? This fundamental question in neuroscience [1] is

deeply confounded by the recurrent nature of cortical circuits [2,3] (Fig 1A), which shows its

dynamic face (Fig 1B) in intrinsically generated cortical activity [4–6]. Specifically, it has long

been argued that recurrent cortical circuits self-organize towards a dynamical critical regime

[7]. Such critical network state straddles the boundary between two distinct regimes of order

and disorder [8]. The hypothesized critical dynamics, at the boundary between the two

regimes, is predicted to reveal itself in the scale-free neuronal activity [9] (Fig 1C) and in the

irregular nature of neuronal spiking [10] (Fig 1D).

PLOS ONE | https://doi.org/10.1371/journal.pone.0177396 May 10, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Karimipanah Y, Ma Z, Miller J-eK, Yuste

R, Wessel R (2017) Neocortical activity is

stimulus- and scale-invariant. PLoS ONE 12(5):

e0177396. https://doi.org/10.1371/journal.

pone.0177396

Editor: Michal Zochowski, University of Michigan,

UNITED STATES

Received: October 12, 2016

Accepted: April 26, 2017

Published: May 10, 2017

Copyright: © 2017 Karimipanah et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research was supported by

Whitehall Foundation grant #20121221 (RW)

http://www.whitehall.org/; National Science

Foundation (Collaborative Research in

Computational Neuroscience) grant #1308159

(RW) https://www.nsf.gov/funding/pgm_summ.

jsp?pims_id=5147; National Eye Institute

(DP1EY024503 and R01EY011787 to RY,

and F32EY022579 and K99EY024653 to JKM)

https://doi.org/10.1371/journal.pone.0177396
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177396&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177396&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177396&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177396&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177396&domain=pdf&date_stamp=2017-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177396&domain=pdf&date_stamp=2017-05-10
https://doi.org/10.1371/journal.pone.0177396
https://doi.org/10.1371/journal.pone.0177396
http://creativecommons.org/licenses/by/4.0/
http://www.whitehall.org/
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5147
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5147


The self-organized criticality hypothesis for the nervous system [11,12] continues to garner

support from large-scale measurements of integrated neural activity in intact brains ranging

from local field potential recordings in reptiles [13] to magnetoencephalography in humans

[14]. However, whether the natural small-scale building blocks of the brain, the neurons, self-

organize into microcircuits operating near the critical regime during sensory processing con-

tinues to remain a crucial question in neuroscience [15,16].

Here, we addressed this question by imaging the activity from populations of layer 2/3 neu-

rons in primary visual cortex of awake and behaving mice during visual stimulation. We ana-

lyzed the spike trains with respect to (i) the statistics of the spatiotemporal cascades of activity

(neuronal avalanches) (Fig 1B and 1C), (ii) the statistical properties of individual spike trains

(Fig 1D), and (iii) the pairwise correlation of spike trains. Results from this combination of

analysis tools support the notion that neocortical microcircuits operate near criticality inde-

pendent of stimulus condition, while rearranging correlation patterns in a stimulus specific

manner.

Fig 1. A quantification of the level of spike correlation in recurrent cortical circuits and its variation

with external inputs is essential for understanding cortical computation. (A) Schematic of a recurrent

neural circuit consisting of neurons (gray), connections (black), and external inputs (purple). (B) Neuronal

avalanches (gray) are contiguous bouts of spikes (black raster) across the recorded neurons. The spike count

within an avalanche determines the avalanche size (numbers). (C) The shape of the avalanche size

distribution reflects the level of spatiotemporal correlation within the network. A power law avalanche size

distribution (straight line in the log log plot) is a characteristic feature of the critical (green) network state.

Deviations from the power law distributions indicate the subcritical (purple) and supercritical (red) network

state. (D) Theory predicts that operating near the critical network state impacts the variability of neuronal

spiking as characterized by the coefficient of variation (CVISI) of the interspike interval (ISI). Specifically,

irregular spiking (CVISI > 1) has been predicted to emerge at the critical network (green), whereas for the

subcritical (purple) and the supercritical (red) network state the CVISI distribution peaks near 1.

https://doi.org/10.1371/journal.pone.0177396.g001

Neocortical microcircuits operate near criticality

PLOS ONE | https://doi.org/10.1371/journal.pone.0177396 May 10, 2017 2 / 18

https://nei.nih.gov/. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0177396.g001
https://doi.org/10.1371/journal.pone.0177396
https://nei.nih.gov/


Materials and methods

Animals

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments of the Columbia University

(Permit Number: AC-AAAD0720). All surgery was performed under isoflurane anesthesia,

and all efforts were made to minimize suffering. This study represents an independent analysis

of experiments described previously [17]. In brief, experiments were performed on C57BL/6

mice (n = 6) or on parvalbumin-Cre (n = 2) or somatostatin-Cre (n = 2) × LSL-tdTomato

transgenic mice, obtained from The Jackson Laboratory, at the age of postnatal day (P) P40–80

[18–20]. Six mice were used for awake preparation, and four mice were used for anesthetized

preparation. During surgery, mice were anesthetized with isoflurane (initially 2% (partial pres-

sure in air) and reduced to 1%). A small circle (1–2 mm in diameter) was thinned over the left

V1 using a dental drill to mark the site for craniotomy (centered at 2.5 mm lateral from the

lambda, putative monocular region). A titanium head plate was attached to the skull using

dental cement. Mice underwent training to maneuver on a spherical treadmill with their head

fixed for 1–3 h each day for 2–3 d.

All animals were monitored daily, including weekend days, according to an internal sched-

ule. During daily monitoring if an animal was extremely jumpy to touch, vocalized while

undisturbed in cage, was unable to groom, or showed lethargy, ruffled fur, or signs of abnor-

mal nursing behavior, we further determined distress or pain by comparing weight loss to

other age and sex matched animals. A couple of animals became ill after surgery, were eutha-

nized, and were not included in this study. All mice used in this study were healthy throughout

the experiment. Infection at site of surgery confounds experimental results making any data

acquired invalid. Thus, animals with infection were euthanized to prevent further pain. A cou-

ple of mice became ill and were euthanized. They were not included in the study. No animals

died prior to the experimental endpoint. Daily monitoring of every injected animal was carried

out by our laboratory, including weekend days, according to an internal schedule. In addition,

weight loss compared to baseline pre-surgery was monitored to assess pain and distress. Ani-

mals were weighted twice weekly and euthanized if weight loss was greater than 20%. Animals

were euthanized by carbon dioxide to prevent further pain. The secondary method of euthana-

sia was cervical dislocation.

Imaging

On the imaging day, mice were anesthetized with isoflurane and the craniotomy, marked

previously, was completed for dye injection. For bulk loading of cortical neurons Oregon

Green Bapta-1 AM (Molecular Probes) was first dissolved in 4 μL of freshly prepared

DMSO containing 20% Pluronic F-127 (Molecular Probes) and then further diluted in

35 μL of dye buffer [150 mM NaCl, 2.5 mM KCl, and 10 mM Hepes (pH 7.4) [21]. Sulforho-

damine 101 (50 μM; Molecular Probes) was added to the solution to label astrocytes

[22]. The dye was slowly pressure-injected into the left visual cortex at a depth of 150–

200 μm at an angle of 30˚ with a micropipette (4–7 MO, 10 psi, 8 min) under visual control

by two—photon imaging (20x water immersion objective, 0.5 N.A.; Olympus). The activity

of cortical cells was recorded by imaging fluorescence changes with a two-photon micro-

scope (Moveable Objective Microscope; Sutter Instrument) and a Ti:sapphire laser (Chame-

leon Vision II; Coherent) at 880 nm or 1,040 nm through a 20x (0.95 N.A.; Olympus) or 25x

(1.05 N.A.; Olympus) water immersion objective. Scanning and image acquisition were

Neocortical microcircuits operate near criticality
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controlled by Sutter software (4.07 frames per second for 512 × 512 pixels, Mscan; Sutter

Instrument).

Visual stimulation

Visual stimuli were generated using the MATLAB (MathWorks) Psychophysics Toolbox [23]

and displayed on a liquid crystal display monitor (19-inch diameter, 60-Hz refresh rate) posi-

tioned 15 cm from the right eye, roughly at 45˚ to the long axis of the animal. Spontaneous cal-

cium signals were measured for ~13 min in the dark at the beginning of the experiments and

sometimes in the middle of the experiments (with a monitor and room lights turned off). The

imaging setup was completely enclosed with blackout fabric (Thorlabs). After spontaneous cal-

cium signals were collected, mice were presented with either sequences of full-field grating sti-

muli or a natural movie (the order of presentations was alternated randomly). Square or sine

wave gratings (100% contrast, 0.035 cycles per degree, two cycles per second) drifting in eight

different directions in random order were presented for 5 s, followed by 5 s of mean lumines-

cence gray screen (10 repetitions). A natural movie (Moose in the Glen, from the British

Broadcasting Corporation’s Natural World documentary series) consisting of 10 distinct natu-

ral scenes in 30-s sequences was played using the MATLAB Psychophysics Toolbox (20 repeti-

tions). In some experiments, a natural movie was played using the QuickTime Player (Apple).

The visual responsiveness of the recorded neurons has been described previously [17]. The

sequences of gratings or a natural movie stimulation played in MATLAB were synchronized

with image acquisition using Sutter software (Mscan; Sutter Instrument). Locomotion of a

mouse was not associated with motion of the visual scene relative to the mouse.

Image analysis

The raw images were processed to correct brain motion artifacts using the enhanced correla-

tion coefficient image alignment algorithm [24] or a hidden Markov model implemented pre-

viously [25,26]. Initial image processing was carried out using custom-written software in

MATLAB (Caltracer 2.5, available at our laboratory website). Cell outlines were detected using

an automated algorithm based on fluorescence intensity, cell size, and cell shape, and were

adjusted by visual inspection. Cell-based regions of interest (ROIs) were then shrunk by

5–10% to minimize the influence of the neuropil signal around the cell bodies (Fig 2A). All

pixels within each ROI were averaged to give a single time course, and ΔF/F was calculated by

subtracting each value with the mean of the lower 50% of previous 10-s values and dividing it

by the mean of the lower 50% of previous 10-s values. Neurons with noisy signal with no

apparent calcium transient for a given stimulus condition were detected by visual inspection

and excluded from further analysis for that stimulus condition. Spike probability was inferred

from calcium signals using a fast, non-negative deconvolution method [27]. Briefly, the base-

line of calcium signals was detrended, and ΔF/F was then calculated before applying an algo-

rithm to infer spike probability. The decay constant of calcium transients was set to 0.8 s. The

output was normalized by a maximum value in each neuron. Spike probability was then thre-

sholded to a level of 3 SDs above 0, determined from spike probabilities of the entire popula-

tion in each experiment (Fig 2B). The values above a threshold were set to 1, and the values

below a threshold were set to 0. These binary activity data were then used for subsequent anal-

yses unless otherwise indicated. Although most spikes resulted in significant somatic calcium

transients with a calcium indicator and analysis threshold similar to our experiments [28], we

likely underestimated the presence of action potentials, particularly when neurons fire a single

action potential or at frequencies higher than 40 Hz [29].

Neocortical microcircuits operate near criticality
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Fig 2. Quantifying the level of coordination at cellular resolution within cortical microcircuits of

behaving mice. (A) Illustration of population Ca imaging from the visual cortex in a head-fixed awake mouse

on a spherical treadmill during viewing of three types of visual stimuli: square or sine wave grating, natural

movie, and dark screen. For clarity, the head fixation was omitted from the drawing. Inset: Two-photon

microscopic image of a typical field of view from neurons bolus-loaded with Oregon Green Bapta-1 AM (OGB-

1) dye in layer 2/3 of V1. Regions of interest (ROIs, yellow) are overlaid on the image. (B) Inferred spike

probability for two representative neurons during visual stimulation with sine-wave gratings (see (E)). Spike

probability was inferred from calcium sensitive dye fluorescent signals using a spike inference algorithm

(Methods). Spike probability was then thresholded (dashed red line) to a level of 3 SDs above 0, and

converted to 1 (active) or 0 (inactive). (C) Raster plot of activity (moving gratings) constructed using the

thresholded spike probability. Each row represents a single neuron, and each mark represents the inferred

spiking activity of that neuron, i.e., the thresholded spike probability with value 1 (active). (D) “Network activity”

(black) is the sum of all spiking neurons in a time bin (250 ms), i.e., the thresholded inferred spike probability

summed over all recorded neurons in that time bin. A threshold (dashed red line) at median network activity

defined the start and end of a “neuronal avalanche” as the time points of crossing this threshold. The

Neocortical microcircuits operate near criticality

PLOS ONE | https://doi.org/10.1371/journal.pone.0177396 May 10, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0177396


Spike train analysis

From the thresholded inferred spike probability of the recorded neurons (Fig 2C), we obtained

the “network activity” (Fig 2D) as the sum of all spiking neurons in a time bin (250 ms), i.e.,

the thresholded inferred spike probability summed over all recorded neurons (Fig 2D). Based

on the network activity, we defined a “neuronal avalanche” by introducing a threshold at

median network activity [30,31]. This definition of a neuronal avalanche is well suited to

recordings from a large population of neurons, which yields few or no silent periods in the

recorded population activity. For completeness, we note that this definition is blind to the spa-

tial location of the neurons. An avalanche starts when the network activity crosses the thresh-

old from below and ends when the network activity crosses the threshold from above. We

quantified each neuronal avalanche by its size S, i.e., the integrated network activity between

threshold crossings, and its duration D, i.e., the time between threshold crossings (Fig 2D).

Avalanches were analyzed separately for the three different conditions of visual stimulation.

Using maximum likelihood estimation methods, we fitted a truncated power law

f ðSÞ ¼ S� t
PSmax

Smin
S� t

to the avalanche size distribution of Nav avalanches using the following iter-

ative procedure. (i) The maximum avalanche size Smax was taken as the largest observed ava-

lanche size. (ii) The exponent τ was estimated for three values of the minimum avalanche

size Smin ranging from 1 to 3 and the corresponding Kolmogorov-Smirnov (KS) values were

obtained. (iii) The minimum avalanche size Smin and the corresponding exponent τ yielding

the smallest KS value were chosen. (iv) When KS < 1=
ffiffiffiffiffiffiffi
Nav
p

, the exponent estimation was

completed. Otherwise, the procedure (ii) to (iv) was repeated with the maximum avalanche

size Smax reduced by 1 until the condition KS < 1=
ffiffiffiffiffiffiffi
Nav
p

, was satisfied. We applied the same

fitting procedure to the avalanche duration distributions.

To evaluate whether a power law was a plausible fit of an avalanche distribution, we per-

formed hypothesis testing. We simulated 1000 artificial power law distributions (surrogate dis-

tributions) with the same exponent, number of avalanches, minimum avalanche size, and

maximum avalanche size, as estimated from the experimental avalanche distribution. Specifi-

cally, using the inverse method, the surrogate distributions were generated according to S =

Smin(1 − r)−1/(τ − 1) where r was a random number drawn from a uniform distribution between

0 and 1. Thereafter, the distribution was upper-truncated by setting a cut-off at the maximum

value observed in the empirical data Smax. This procedure worked well for generating ava-

lanches of Smin larger than 1. For Smin = 1, we used an alternative acceptance-rejection method

[32].

The deviation between the simulated surrogate distributions and a perfect power law was

quantified with the KS statistics. The p value was calculated as the fraction of the surrogate dis-

tributions with KS values smaller than the KS value of the corresponding experimental ava-

lanche distribution. We took the significance level to be 0.05, i.e., for p< 0.05 the power law

hypothesis was rejected, whereas for p� 0.05 the power law hypothesis was not rejected. This

hypothesis testing procedure is illustrated, by plotting the experimental avalanche distribution

over a gray band that delineates the 5 to 95 percentiles of the surrogate distributions.

The uncertainty of the exponent estimation was computed using bootstrap method. After

estimating the exponent from the experimental avalanche distribution, we resampled actual

avalanche size (gray) is the integrated network activity for the avalanche duration, i.e., the time between

threshold crossings. (E) For the data in (B) to (D), moving gratings (100% contrast, 0.035 cycles per degree,

two cycles per second) drifting in eight different directions in random order were presented for 5 s, followed by

5 s of mean luminescence gray screen.

https://doi.org/10.1371/journal.pone.0177396.g002
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avalanches (with replacement) 1000 times and then fitted the resampled data to a power law

and estimated the exponent. The standard deviation of re-estimated exponents provided an

estimate of the uncertainty in the exponent estimation from the experimental avalanche

distribution.

To test whether average avalanche size scales with duration according to< S> ~ Dβ, we

estimated the fitted β from the experimental data using linear regression. We then compared

the fitted β to the predicted β, where the predicted β = (α − 1)/(τ − 1) was obtained from the

size and duration exponents derived from pure power law estimation [33].

Cross-correlation coefficients were obtained by calculating the zero-lag pairwise Pearson

correlation coefficients of the thresholded inferred spike probability for a given stimulus con-

dition using the Matlab corrcoef routine. The resulting matrix of cross-correlation coefficients

for grating stimulation was clustered using hierarchical clustering with maximum or com-

plete-linkage clustering (Matlab dendrogram routine). Neurons were rearranged accordingly

to visualize the clusters in the cross-correlation matrix during grating stimulation. The clusters

seen for grating stimulation indicate groups of neurons with similar orientation selectivity.

Subsequently, the cross-correlation matrices for ongoing activity and natural movie stimula-

tion were plotted without rearranging the neurons. This display shows the reorganization of

the cross-correlation when varying the stimulus condition.

Results

To record neuronal population spiking at cellular resolution within cortical microcircuits, we

performed two-photon population calcium imaging of layer 2/3 neurons in primary visual cor-

tex of head-fixed awake and behaving mice during three conditions of visual stimulation: dark

screen, moving grating, and naturalistic movie (Fig 2A). Recordings taken under the dark

screen condition were interpreted as ongoing activity. For each mouse and stimulus condition

we obtained the inferred spike trains from some 100 closely-spaced neurons for 13 minutes

(Fig 2B and 2C).

Cortical microcircuits operate near criticality during three stimulus

conditions

We analyzed the spike trains employing the concept of “neuronal avalanches” [9], which are

bouts of elevated network activity, revealing correlations both among neurons and in time.

Specifically, we defined a neuronal avalanche based on the threshold crossing of the network

activity [30,31]. We quantified each neuronal avalanche by its size S, i.e., the number of spikes,

quantified by the area under the curve between threshold crossings, and its duration D, i.e., the

time between threshold crossings (Fig 2D and 2E).

Avalanches were diverse in spatiotemporal scale. Specifically, both avalanche size and dura-

tion distributions were typically consistent with power laws, P(S)~S−τ (Fig 3A and S1–S3 Figs)

and P(D)~D−α (Fig 3B and S4–S6 Figs). The closeness of the avalanche distributions to power

laws was evaluated using rigorous statistical criteria (Method, Fig 3C and 3D). Avalanche size

and duration distributions were typically power-law distributed for ten mice and three types of

visual stimulus conditions (dark screen, moving grating, naturalistic movie; n = 30 data sets).

Notably, randomizing the inferred spike times abolished the power-law distributions of ava-

lanche size and duration (Fig 3A and S2 and S5 Figs).

Importantly, despite the different spatiotemporal structure of the three stimulus conditions,

recorded population activities typically resulted in power-law avalanche distributions (Fig 3A

and 3B), indicating that the scale-free nature of cortical activity was due to inherent microcir-

cuit dynamics rather than externally imposed stimulus statistics. While power-law avalanche

Neocortical microcircuits operate near criticality
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Fig 3. Avalanche size and duration distributions of cortical spiking activity for three different

conditions of visual stimulation. (A, B) Probability density functions for avalanche sizes and durations for

the three stimulus conditions: grating (red), movie (yellow), and ongoing (blue). The solid dots denote the

avalanches included for fitting to a truncated power law; open circles denote avalanches that were excluded in

the fitting procedure (see Materials and methods). Shuffling spike times abolishes large avalanches and

results in an avalanche size distribution (dashed gray lines) that is inconsistent with a power law. (C, D)

Cumulative probability density function (CDF, black dots) of the experimental data from A and B. For visual

comparison, the gray shading indicates the range (5–95%) of expected probabilities for the truncated power

law with the same exponent as estimated from the experimental data and with the same number of samples.

(E) Estimated avalanche size (τ) and duration (α) exponents for all mice and stimulus conditions for which the

avalanche distributions fit power laws according to strict statistical criteria. (F, G) Estimated avalanche size (τ)

and duration (α) exponents for the three stimulus conditions: grating (G), movie (M), and ongoing (O).

Exponents from the same mouse are connected by black lines.

https://doi.org/10.1371/journal.pone.0177396.g003
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distributions were largely robust for all data sets (S1 and S4 Figs), the exponent values covered

a broad range (Fig 3E). The range of values is in line with earlier experimental results

[9,13,34,35] and, in computational studies of a critical model network, has been demonstrated

to result from subsampling [13].

In addition, the exponent values tended to be smaller for anesthetized mice compared to

awake mice (Fig 3E). This observation implies extended spatiotemporal correlations in the

population activity of the anesthetized mice, thus yielding neuronal avalanches of larger sizes

and longer duration.

Concerning the potential impact of the stimulus condition on the exponent values, the data

were less conclusive (Fig 3F and 3G). While for many mice the exponent values varied for dif-

ferent stimulus conditions, the direction of change was not consistent from mouse to mouse.

When considering the population of mice, only the size exponent for the movie stimulation

was significantly larger than the size exponent for the grating stimulation (p = 0.034, t-test).

Power laws provide necessary, but insufficient evidence for critical dynamics [36]. Addi-

tional tests are needed to determine whether criticality underlies the experimentally observed

power laws. Two such tests arise from a particular relationship between the size and duration

of avalanches, which is predicted to occur at criticality [37,38]. First, the average avalanche size

scales with duration according to< S> ~ Dβ. Second, the exponent β is not independent, but

rather depends on the exponents τ and α according to β = (α − 1)/(τ − 1). Our experiments

confirmed both these predictions from the scaling relation for all stimulus conditions. Average

avalanche size scaled with duration < S> ~ Dβ according to a power law (Fig 4A–4C and S7–

S9 Figs) and the observed values of τ and α provided a good prediction β = (α − 1)/(τ − 1) of

the fitted β (Fig 4D). The observations of power laws (Fig 3) and scaling relations (Fig 4)

together provide strong evidence that the inspected cortical microcircuits operate near critical-

ity independent of the stimulus condition.

Irregular single-neuron spiking is consistent with network criticality

Complementary to the avalanche analysis, the coefficient of variation (CVISI), defined as the

ratio of the standard deviation and the mean of the inter spike intervals (ISI) of individual

spike trains, provides qualitatively different measures to test the criticality hypothesis. Irregular

spiking with a CVISI distribution with peak above 1 is predicted to be an emergent property of

a neural network operating near criticality [10]. Our experiments give credence to this predic-

tion concerning the statistical properties of spike trains. The standard deviation (Std) of the

ISIs was larger than the mean ISI for most neurons (Fig 5A). This translated into a CVISI distri-

bution peaked above CVISI values of 1 (Fig 5B and S10 Fig). In addition, the firing rate distri-

bution was right skewed for all conditions (Fig 5C). For the ten mice and three types of visual

stimulus conditions the hCViwas significantly larger than 1 and for a given mouse the hCVi
values were similar for different stimulus conditions (Fig 5D).

Stimulus condition redistributes spatiotemporal activity

In summary, we observed that the statistical measures of both spatiotemporal activity (Figs 3

and 4) and the spike train properties (Fig 5) were largely stimulus invariant. This observation

raised the question whether stimulus condition impacted other measures of spatiotemporal

activity as might be expected for knowledge representation in a neural network. One such

measure of spatiotemporal activity is the pairwise cross-correlation coefficients. Our experi-

ments showed that cross-correlation coefficients were broadly distributed for all stimuli tested

(Fig 6A–6C and S11 Fig). Importantly, changing the stimulus condition caused a redistribu-

tion of the pairwise cross-correlation coefficients among the pairs (Fig 6D–6F and S12 Fig).

Neocortical microcircuits operate near criticality
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Fig 4. Average avalanche size scales with duration as predicted for a network operating near criticality.

(A-C) For each avalanche (solid purple dots) the size is plotted (log-log scale) vs the duration for the three stimulus

conditions (mouse #3). For each avalanche duration the average avalanche size (cyan dots) is plotted. The linear

relationship on logarithmic axes reveals a power law relationship < S > ~ Dβ between average avalanche size and

duration as predicted by criticality theory. The fitted exponent β is derived from the linear regression line (yellow

dashes). The predicted line (red) is derived from the predicted exponent β = (α − 1)/(τ − 1). Solid purple dots were

included in the exponent estimation, open circles were not (see Materials and methods). (D) The summary plot for

all mice shows that the fitted exponent β largely matches the predicted exponent β = (α − 1)/(τ − 1) for all mice and

stimulus conditions. This is despite the fact that different values were found for size exponents τ and duration

exponents α for different mice and stimulus conditions.

https://doi.org/10.1371/journal.pone.0177396.g004
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Discussion

Our results support the hypothesis that cortical microcircuits at cellular resolution operate

near criticality during sensory processing, while rearranging functional connectivity in

response to varying sensory inputs.

Ongoing innovations in imaging technology permit the probing of neural spiking of ever

larger number of neurons [39,40,41]. By extending the evidence for the criticality hypothesis

to the cellular resolution of cortical microcircuits, we advanced our understanding of cortical

dynamics in a fundamental manner. The testimony shown here (Figs 3 and 4) transcends

beyond the coarse spatial scale of previous tests of criticality in cerebral cortex of awake sub-

jects, which employed recordings of ongoing integrated large-scale neural activity [42–45].

Building on these important studies of macroscopic cortical activity in brain volumes consist-

ing of thousands to millions of neurons, our results demonstrate that the principle of self-orga-

nized criticality applies down to the cellular resolution of some hundred neurons within a

microcircuit embedded in the mouse visual cortex.

Importantly, the investigation at cellular resolution addressed a long-standing puzzle of

irregular spiking [46] and concurrently pushed open a new window of evidence for the criti-

cality hypothesis of cerebral cortex [10]. Cortical neuron spiking tends to be more irregular

than what is expected for a Poisson process; the coefficient of variations (CV) of the inter spike

intervals (ISI) are distributed with a peak above one [47]. It has recently been predicted that

this statistics of single-neuron spike trains emerges as the property of a recurrent neural

Fig 5. Irregular spiking at network criticality. (A) The standard deviation (Std) of the inter spike intervals

(ISIs) was larger than the mean ISI for most neurons (black dots) for mouse #3 (grating). (B) The ISI

coefficient of variation (CVISI) distributions for the recorded neurons from mouse #3 under three stimulus

conditions. (C) The firing rate distributions for the recorded neurons from mouse #3 under three stimulus

conditions. (D) The average coefficient of variation hCVi (mean ± SEM) for all 10 mice and three stimulus

conditions tested.

https://doi.org/10.1371/journal.pone.0177396.g005
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network operating near criticality [10]. By measuring the spiking properties of neurons (Fig 5)

and evaluating evidence for criticality for the same group of neurons (Figs 3 and 4), we show

that irregular spiking (CV> 1) in mouse visual cortex coincides with the cortical circuit oper-

ating near criticality. We also show that both the irregularity of spike trains and power law sta-

tistics of avalanches are robust with respect to external stimuli.

The observed stimulus invariance of network criticality represents an important advance in

systems neuroscience. Much of the interest in the criticality hypothesis [7,12,48] for sensory

cortices is fueled by the prediction that the critical regime optimizes aspects of signal process-

ing [49,50]. But do neural networks operate near criticality when external sensory inputs trig-

ger part of the activity? This question, whether neurons self-organize into microcircuits

operating near the critical regime during varying external sensory inputs, represents a timely

and crucial inquiry in neuroscience [17,51]. Theoretical work suggests that synaptic depression

can cause self-organized criticality in weakly driven neural networks [52,53]. Experiments,

using local field potential recordings from visual cortex during visual stimulation, seem to sup-

port this prediction [13]. In separate studies, it has long been appreciated that the recurrent

Fig 6. The cross-correlation coefficients among the pairs of neurons rearrange for different stimulus conditions.

(A-C) The distributions of the zero-lag pairwise Pearson cross-correlation coefficients of the thresholded inferred spike

probabilities for the three stimulus conditions. Significance testing was obtained by comparing with uncorrelated spike

trains of the same mean rate and adopting a p-value threshold of 0.1. (D) The cross-correlation coefficient matrix for the

grating stimulus, with the matrix clustered using a hierarchical clustering algorithm (see Materials and methods). A subset

of rows/columns are blank because neurons with noisy signal with no apparent calcium transient for a give stimulus

condition were detected by visual inspection and excluded from further analysis for that stimulus condition. (E, F) The

cross-correlation coefficient matrix for the other two stimulus conditions (movie, ongoing), while maintaining the order of

neurons as in (D). This display illustrates the reorganization of the cross-correlation when varying the stimulus condition.

https://doi.org/10.1371/journal.pone.0177396.g006
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nature of cortical circuits results in intrinsically generated cortical activity [54, 55] and net-

work states [56], which appear to be modulated, rather than triggered, by sensory inputs [57],

while leaving the correlation statistics largely unchanged [17,58,59].

Here we expand on these important earlier studies on the stimulus invariance of certain

aspects of neural activity in significant ways. First, we evaluate neural activity at cellular resolu-

tion in the visual cortex of awake mice for three different stimulus conditions. Second, we eval-

uate simultaneously the statistical measures of spike trains (Fig 5), pairwise cross-correlation

coefficients (Fig 6A–6C), and spatiotemporal population activity (Figs 3 and 4). Third, we

interpret these statistical measures in the context of the network state, namely criticality. In

conclusion, our results extend the observation of stimulus invariance of the statistical measures

of cortical activity to the level of microcircuits and network state and indicate that different sti-

muli trigger the redistribution of the functional connectivity matrix (Fig 6D–6F), while main-

taining the network state near criticality.

Supporting information

S1 Fig. Avalanche size distributions for all ten mice for three different visual stimuli. Prob-

ability density functions for avalanche sizes for each mouse and for the three stimulus condi-

tions: grating (red), movie (yellow), and ongoing (blue). The solid dots denote the avalanches

included for fitting to a truncated power law; open circles denote avalanches that were

excluded in the fitting procedure (see Methods). P-values of truncated power law estimations

(see Methods) are shown for each stimulus condition (color assignment as in legend). We

took the significance level to be 0.05, i.e., for p< 0.05 the power law hypothesis was rejected,

whereas for p� 0.05 the power law hypothesis was not rejected.

(PDF)

S2 Fig. Comparing avalanche size distributions that were derived from recorded spike

trains with those derived from shuffled spike trains. The violet dots denote the avalanches

(based on recorded spike trains) that were included for fitting to a truncated power law; pale

green dots denote avalanches that were excluded in the fitting procedure (see Methods). Shuf-

fling spike times abolishes large avalanches and results in avalanche size distributions (dashed

gray lines) that are inconsistent with a power law.

(PDF)

S3 Fig. Cumulative probability density functions (CDF, black dots) of the avalanche size

distributions. For visual comparison, the gray shading indicates the range (5–95%) of

expected probabilities for the truncated power law with the same exponent as estimated from

the experimental data and with the same number of samples (see Methods). P-values of trun-

cated power law estimations (see Methods) are shown for each stimulus condition. We took

the significance level to be 0.05, i.e., for p< 0.05 the power law hypothesis was rejected,

whereas for p� 0.05 the power law hypothesis was not rejected.

(PDF)

S4 Fig. Avalanche duration distributions for all ten mice for three different visual stimuli.

Probability density functions for avalanche durations for each mouse and for the three stimu-

lus conditions: grating (red), movie (yellow), and ongoing (blue). The solid dots denote the

avalanches included for fitting to a truncated power law; open circles denote avalanches that

were excluded in the fitting procedure (see Methods). P-values of truncated power law estima-

tions (see Methods) are shown for each stimulus condition (color assignment as in legend).

We took the significance level to be 0.05, i.e., for p< 0.05 the power law hypothesis was
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rejected, whereas for p� 0.05 the power law hypothesis was not rejected.

(PDF)

S5 Fig. Comparing avalanche duration distributions that were derived from recorded

spike trains with those derived from shuffled spike trains. The violet dots denote the ava-

lanches (based on recorded spike trains) that were included for fitting to a truncated power

law; pale green dots denote avalanches that were excluded in the fitting procedure (see Meth-

ods). Shuffling spike times abolishes long duration avalanches and results in avalanche dura-

tion distributions (dashed gray lines) that are inconsistent with a power law.

(PDF)

S6 Fig. Cumulative probability density functions (CDF, black dots) of the avalanche dura-

tion distributions. For visual comparison, the gray shading indicates the range (5–95%) of

expected probabilities for the truncated power law with the same exponent as estimated from

the experimental data and with the same number of samples (see Methods). P-values of trun-

cated power law estimations (see Methods) are shown for each stimulus condition. We took

the significance level to be 0.05, i.e., for p< 0.05 the power law hypothesis was rejected,

whereas for p� 0.05 the power law hypothesis was not rejected.

(PDF)

S7 Fig. Average avalanche size scales with duration for the drifting grating stimulus condi-

tion. For each avalanche (solid purple dots) the size is plotted (log-log scale) vs the duration

for each mouse. For each avalanche duration the average avalanche size (cyan dots) is plotted.

The linear relationship on logarithmic axes reveals a power law relationship < S> ~ Dβ

between average avalanche size and duration as predicted by criticality theory. The fitted expo-

nent β is derived from the linear regression line (yellow dashes). The predicted line (red) is

derived from the predicted exponent β = (α − 1)/(τ − 1). Solid purple dots were included in the

exponent estimation, open circles were not (see Methods).

(PDF)

S8 Fig. Average avalanche size scales with duration for the natural movie stimulus condi-

tion. For each avalanche (solid purple dots) the size is plotted (log-log scale) vs the duration

for each mouse. For each avalanche duration the average avalanche size (cyan dots) is plotted.

The linear relationship on logarithmic axes reveals a power law relationship < S> ~ Dβ

between average avalanche size and duration as predicted by criticality theory. The fitted expo-

nent β is derived from the linear regression line (yellow dashes). The predicted line (red) is

derived from the predicted exponent β = (α − 1)/(τ − 1). Solid purple dots were included in the

exponent estimation, open circles were not (see Methods).

(PDF)

S9 Fig. Average avalanche size scales with duration for ongoing activity. For each avalanche

(solid purple dots) the size is plotted (log-log scale) vs the duration for each mouse. For each

avalanche duration the average avalanche size (cyan dots) is plotted. The linear relationship on

logarithmic axes reveals a power law relationship < S> ~ Dβ between average avalanche size

and duration as predicted by criticality theory. The fitted exponent β is derived from the linear

regression line (yellow dashes). The predicted line (red) is derived from the predicted expo-

nent β = (α − 1)/(τ − 1). Solid purple dots were included in the exponent estimation, open cir-

cles were not (see Methods).

(PDF)

S10 Fig. Irregular spiking is prevalent for all three stimulus conditions tested. The ISI coef-

ficient of variation (CVISI) distributions for the recorded neurons for 10 mice and three
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stimulus conditions. All CV distributions are widely distributed with most neurons having a

CVISI larger than 1.

(PDF)

S11 Fig. The zero-lag pairwise Pearson cross-correlation coefficients are broadly distrib-

uted for all stimulus conditions tested. The distributions of the zero-lag pairwise Pearson

cross-correlation coefficients of the thresholded inferred spike probabilities for all mice and

for the three stimulus conditions. Significance testing was obtained by comparing with uncor-

related spike trains of the same mean rate and adopting a p-value threshold of 0.1.

(PDF)

S12 Fig. Changing the stimulus condition caused a redistribution of the pairwise cross-cor-

relation coefficients among the pairs. TOP ROW: The cross-correlation coefficient matrix

for the grating stimulus for each mouse, with the matrix clustered using a hierarchical cluster-

ing algorithm (see Methods). A subset of rows/columns are blank because neurons with noisy

signal with no apparent calcium transient for a given stimulus condition were detected by

visual inspection and excluded from further analysis for that stimulus condition. BOTTOM

TWO ROWS: The cross-correlation coefficient matrix for the other two stimulus conditions

(movie, ongoing), while maintaining the order of neurons as for grating stimulus (TOP

ROW). This display illustrates the reorganization of the cross-correlation when varying the

stimulus condition.

(PDF)
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