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Introduction

The physiological roles of androgens and glucocorticoids 
are very different, and this is reflected in their clinical 
applications. Androgens are the male sex steroids mainly 
involved in development and maintenance of reproductive 
organs and spermatogenesis. Clinically, they might provide 
benefit as hormone replacement therapy for hypogonadal 
men or in cases of severe cachexia or osteoporosis [1, 2]. 
On the other hand, in the therapy of metastatic castration-
resistant prostate cancer, androgen action is blocked by 
androgen deprivation, androgen synthesis inhibitors, and/
or the use of androgen receptor (AR) antagonists [3]. Glu-
cocorticoids, however, are mainly controlling inflammation 
and metabolism which has led to their wide-spread use to 
treat inflammatory and immunologic disorders [4].

Androgen and glucocorticoid effects are mediated by 
their corresponding receptors, the AR and the glucocor-
ticoid receptor (GR), which are both nuclear receptors. 
Nuclear receptors are ligand-inducible transcription factors; 
they have a centrally located DNA-binding domain (DBD) 
which is connected via a hinge region to a carboxytermi-
nal ligand-binding domain (LBD) and an amino-terminal 
activation function (NTD) (Fig. 1a). The DBD exists of two 
zinc-coordinating modules and forms the signature domain 
of the nuclear-receptor family. Because of their essential 
roles in target gene selection, both DBD and hinge region 
as well as the response elements will be discussed in detail.

The LBDs of all nuclear receptors are folded in a typical 
3-layered, 12-helical structure with a ligand-binding cavity 
[5]. While the overall structure of the LBD is conserved, 
receptor-specific residues delineating the ligand-binding 
cavity determine the ligand specificity of the receptors. The 
binding of the cognate ligand is proposed to induce a repo-
sitioning of the carboxyterminal helix (H12) of the LBD, 
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thus forming an activation function (called AF2) which is 
a docking site for α-helical LxxLL motifs that are found in 
most coactivator complexes [6].

The NTD of the nuclear receptors is very diverse both 
in length and sequence. In addition, between the NTDs of 
AR and GR, there is little or no conservation, although 
both have transcription activating properties (called 

AF1). A comparison between the NTD of AR and GR has 
been extensively reviewed elsewhere [7–9].

Here, we will compare how the AR and GR interact 
with DNA and chromatin; how they evoke tissue-specific 
transcriptional responses and in how far they have inter-
changeable functions, for instance, in prostate cancer [10, 
11].

Fig. 1   a Comparison of the 
domain structure of the andro-
gen and glucocorticoid receptor 
(AR and GR), with indication 
of the different domains and 
level of conservation. NTD 
amino-terminal domain, DBD 
DNA-binding domain, LBD 
ligand-binding domain; Znf 
Zinc finger, CTE carboxyter-
minal extension, NLS nuclear 
localization signal. b Structure 
of the DNA-binding domains 
of the AR and GR bound to 
DNA (left panels). At the right, 
details of the D-boxes with dot-
ted lines indicating AR-specific 
H-bonds and the GR specific 
glycine hole
(adapted from [12])
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Comparing the DNA‑binding domains of AR 
and GR

AR and GR are steroid receptors which form a specific sub-
family of the nuclear receptors. Steroid receptors can be 
divided based on their sequence specificity into two groups: 
the estrogen receptors (ER) and ER-like receptors on one 
hand and the glucocorticoid, mineralocorticoid (MR), pro-
gesterone (PR), and androgen receptors on the other hand. 
The latter are also called the oxosteroid receptors.

The structures of the DNA-binding domains of nuclear 
receptors were solved by X-ray crystallography [12, 13] 
and later refined by NMR [14]. The DNA-binding domains 
of all steroid receptors are very similar (Fig. 1a). Part of the 
first zinc finger (P-box) folds into an α-helix which fits in 
the major groove of the DNA thus making sequence-spe-
cific contacts with 5′-AGA​ACA​-3′-like or 5′-GGT​ACA​-3′-
like motifs [15]. Part of the second zinc finger (D-box) is 
involved in receptor dimerization. Because of this specific 
D-box dimerization, the DNA-recognition helices of the 
two DBDs are positioned at a very specific distance relative 
to one another. This structural characteristic determines 
that all steroid receptors recognize bipartite DNA elements 
with exactly three nucleotide spacers, called inverted repeat 
with 3-nucleotide spacer (IR3). There is an important, 
strong cooperativity between the two monomers when they 
bind to DNA [15].

A detailed comparison of the DBDs from AR and GR 
reveals many structural similarities, but also some remark-
able differences. The amino acids in the DNA-binding 
helix, which make the sequence-specific contacts with 
the bases, are identical in GR and AR, but small nuances 
in the three-dimensional structure of the α-helix indicate 
a slightly stronger affinity of the AR-DBD for its 5′-AGA​
ACA​-3′ motif [16]. For the AR-DBD, there is only one 
crystal structure available (Fig. 1b), but for the GR-DBD, 

a series of NMR structures with different GREs and recep-
tor isoforms were reported [17, 18]. This revealed a bidi-
rectional allosteric signaling role for the so-called ‘lever 
arm’, transmitting signals from the DNA reading head and 
the DBD dimerization surface to other functional domains 
of the receptor. As a consequence, GREs that differ in one 
base only differentially affect GR transactivating properties 
[17]. It is interesting to note that the sequence of the lever 
arm is different between GR and AR which implies differ-
ent receptor-specific allosteric pathways.

The amino acids of the second zinc finger which con-
stitute the dimerization surface of the DBDs are also con-
served between the oxosteroid receptors (Fig.  2b). Never-
theless, there are two AR-specific residues, Ser598 (Gly in 
GR, PR, and MR) and Thr603 (Ile in GR, PR, and MR) 
that contribute to the stronger DNA-dependent dimeriza-
tion for AR. The Ser598 of AR not only increases the van 
der Waals forces, but also adds two hydrogen bonds to the 
interface. In case of a glycine at this position, a molecular 
cavity is apparent between the two DBDs (Fig. 1b). Moreo-
ver, Thr603 in the AR-DBD can form additional hydrogen 
bonds which cannot be formed by the corresponding iso-
leucine in the GR, PR, or MR (Fig. 1b) [12, 16].

In conclusion, although the two zinc fingers of the 
AR and GR-DBDs differ only in 12 out of 65 residues 
and even when most of the substitutions are conserva-
tive, small variations in structure seem to have functional 
consequences. These subtle differences in the way ster-
oid receptors bind DNA correlated with slightly differ-
ent consensus binding sites and overlapping but distinct 
sequence specificities between oxosteroid receptors, 
which will be discussed further [19, 20]. Surprisingly, 
the differences in P-box sequence between AR and ER, 
which control a different set of target genes in vivo, are 
insufficient to impose gene selectivity in vitro. Indeed, the 
P-box of the ER-DBD makes sequence-specific contacts 

Fig. 2   a Logo presentation 
of top-enriched ARE motifs 
provided by Cheung based on 
[99] (top) and top-enriched 
GRE motifs from [35] (bottom). 
b Logo presentation of top-
enriched ARE motifs specific 
for the SPARKI model, consid-
ered to be selAREs (top) or for 
classical AREs (bottom).
Adapted from [48]
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with the 5′-AGG​TCA​-3′ hexamer half sites of the estro-
gen response elements (ERE), while the oxosteroid P-box 
recognizes their cognate 5′-AGA​ACA​-3′ hexamer. How-
ever, despite these differences, the AR is able to bind 
EREs and this has been proposed to be a mechanisms by 
which it interferes with ER functioning in breast cancer 
[21]. Observations like these clearly demonstrate that the 
DNA binding as such cannot explain the specificity of 
the physiological steroid responses. What the role of the 
other receptor domains could be during the selection of 
the target enhancers is being discussed in the following 
sections.

Comparing androgen and glucocorticoid response 
elements

The lack of receptor specificity of the first identified 
response elements for glucocorticoids, progestagens, 
mineralocorticoids, and androgens has been confusing. 
Indeed, in binding and transactivation assays, all glu-
cocorticoid response elements (GRE) are recognized 
by AR, MR, and PR and vice versa; many androgen 
response elements (AREs) are recognized by the other 
oxosteroid receptors [22–24]. In addition, in more recent 
chromatin immunoprecipitation assays (ChIP-seq), the in 
silico derived consensus sequences for AR and GR bind-
ing motifs were quite similar (Fig.  2a). How can recep-
tors with such diverse physiological roles act through 
DNA elements with so similar sequences? A large part 
of the answer must lie in the cell-specific chromatin envi-
ronment [25]. For GR, for example, only a 5% overlap 
was seen between its binding sites in mammary versus 
pituitary cell types indicating a crucial role for epigenetic 
chromatin factors in intracellular receptor-DNA bind-
ing [26]. Cell-specific transcription factor occupancy of 
enhancers and promotors can also contribute to receptor 
selectivity. An example for this is the pioneering role of 
FoxA1 which specifies AR DNA binding in LNCaP cells 
[27]. However, what happens when cells express both AR 
and GR and when both ligands are present? In LNCaP 
cells that express both AR (endogenously) and GR 
(exogenously), or VCaP cells that express both receptors 
(endogenously), there is a large overlap between AR and 
GR binding sites indicating that the receptors might bind 
the same DNA elements [27, 28]. These common bind-
ing sites are located in active enhancers near genes that 
are responsive to both hormones. Because the activity 
of some of these genes is correlated with oncogenic pro-
cesses, this supports the hypothesis that re-expression of 
GR in castration-resistant prostate cancer could explain 

the progression into an AR-independent form of the dis-
ease [10, 11].

AR and GR both bind to the AGA​ACA​ consensus 
sequence organized as an inverted repeat with a 3n 
spacer

The first systematic discovery of genomic AR binding sites 
was based on ChIP-on-chip and ChIP-seq experiments on 
AR-positive prostate cancer cell lines. While the earlier, 
limited ‘old school’ biochemical analyses indicated that 
AR binds DNA motifs that are organized as 5′-AGA​ACA​
-3′-like repeats, initial in silico analyses of the ARBS lead 
to the idea that the AR might also bind monomeric motifs 
or dimeric motifs with variable spacing and orientations 
[29–31]. However, later mutational analyses of such puta-
tive alternative AREs strongly indicated that the AREs are 
always dimeric in nature with an exact 3 nucleotide spacer 
[24, 32]. A study on DNA specificity of human transcrip-
tion factors that used high-throughput SELEX for deter-
mining binding sites also pointed out the dimeric nature of 
the binding motif of the AR with 5′ GTACA 3′ as the con-
sensus half site [33]. Chen et al. described in another study 
that the sequence specificity of the AR depended on the 
ligand. In LNCaP cells, agonist bound AR binds the clas-
sical inverted repeat-like elements, while in the genomic 
binding sites for antagonist-bound AR, elements which 
resemble a 5′-CnnG-3′ repeat with a 5 nucleotide spacer are 
enriched [34].

While the data for monomeric binding are less con-
vincing for AR, monomeric binding for the GR has been 
reported to some of its enhancers [35]. Moreover, ChIP-
exo data, which give a more detailed indication of the exact 
borders of the receptor-binding motifs, revealed mainly 
dimeric binding sites for GR and a redistribution to mono-
meric sites when the D-box of the GR is mutated [36, 37].

It should be noted that in this review, we do not discuss 
the possibility of indirect DNA binding, which has been 
well documented, certainly in case of the GR. Indeed, 
such GR tethering to DNA via other transcription factors 
could involve monomeric receptors and will result in recep-
tor-specific effects on gene activation and/or repression 
[38–40]. In how far such monomeric GR might play a role 
in castration-resistant prostate cancer has not been resolved 
yet.

Despite the high similarity between AREs and GREs 
(Fig.  2a), we and others identified differential receptor 
recognition that could offer an alternative explanation for 
receptor specificity. A subset of AREs turns out not to be 
recognized by GR. When cloned upstream of a reporter 
gene, they confer responsiveness to androgens and proges-
tins but not to mineralocorticoids or glucocorticoids [12, 
41]. In vitro DNA-binding assays showed that AR and PR, 
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but not MR or GR, bind these selective AREs (selARE) 
with high affinity. Moreover, the isolated GR-DBD binds 
these selAREs as monomers or as non-cooperative dimers 
[42, 43]. So what makes an ARE selective for AR?

Discovery of selective AREs and the proposed 
differential AR binding mode

A comparison of the sequences of the first selAREs with 
that of the first known classical AREs led us to propose that 
the selAREs could be organized as direct repeats, rather 
than inverted repeats of 5′-AGA​ACA​-3′-like hexamers [22, 
24]. This was further corroborated by the observation that 
any synthetic direct repeat was able to confer androgen but 
not glucocorticoid responsiveness to reporter genes. More-
over, when mutations reduce the direct repeat-like nature of 
selective AREs, they gained responsiveness to glucocorti-
coids [19]. Does this mean that selAREs are bound by AR 
dimers in a head-to-tail conformation, much like many of 
the non-steroid receptors? [44]. This possibility was sug-
gested by the fact that swapping of the dimerization inter-
face between the DBDs of AR and GR also swapped the 
selectivity: an AR-DBD with the second zinc finger module 
of the GR no longer binds selective AREs, but still binds 
classical AREs [43, 45]. Vice versa, a GR-DBD with the 
second zinc finger of the AR gains affinity for selective 
AREs. However, the crystal structure of the AR-DBD on a 
direct repeat element shows a clear inverted protein dimer 
(head-to-head conformation) [12]. Therefore, unlike what 
has been reported for several other nuclear receptors, direct 
repeat binding does not mean head-to-tail dimerization in 
case of the AR [46].

To answer the question how common selective AREs 
are and whether this type of selectivity has any in vivo rel-
evance, we developed the SPARKI mouse model. In this 
model, the exon encoding the second zinc finger of the AR 
was replaced for the corresponding exon of the GR gene. 
The resulting mutant AR can still bind to classical AREs, 
but no longer binds to or activates via selAREs; hence the 
name specificity affecting AR knockin (SPARKI) [45]. The 
SPARKI male mice develop a phenotype resembling par-
tial androgen insensitivity [47]. Loss of binding to selAREs 
was first demonstrated by the loss of responsiveness in tes-
tes and epididymis of a subset of the androgen-regulated 
genes that subsequently were shown to have selAREs in 
their enhancers/promoters [45, 47]. More recent AR ChIP-
seq on prostate and epididymis of SPARKI versus wild 
(WT) type mice also revealed distinctive patterns of chro-
matin binding by the WT-AR versus the SPARKI-AR [48]. 
While in wild-type epididymal tissue, 10 009 ARBS were 
picked up, only 6446 binding events were detected in the 
SPARKI tissue. This loss of AR binding events again cor-
related well with loss of androgen responsiveness of nearby 

genes as demonstrated in transcriptome analysis. Moreo-
ver, most of the SPARKI ARBS were also bound by AR in 
wild-type tissue and correlated with the vicinity of andro-
gen-responsive genes, indicating that the SPARKI mutation 
led to the loss of a specific function of the AR and not in 
the complete inactivation of AR DNA binding.

The evaluation of the AR binding sequences in SPARKI 
and WT tissues allowed for the construction of a consensus 
sequence for selAREs (AR binding lost in SPARKI) and 
for classical AREs (AR binding retained in SPARKI and 
present in WT) (Fig. 2b). These two consensus sequences 
were similar but distinct [48]. The classical ARE consen-
sus is virtually identical to the GRE consensus taken from 
Schiller [35]. The consensus of the selective elements is 
also very similar, except for a loss of thymine conservation 
at position 12 (Fig. 2b). Clearly, these similarities left little 
room for the hypothesis that selective AREs have a direct 
repeat nature.

Therefore, how can we explain the variation in sequence 
preference between AR and GR? For both receptors, it was 
postulated that the affinity for the upstream, more con-
served 5′-AGA​ACA​-3′ hexamer is high and binding to this 
hexamer results in a DNA-dependent dimerization with a 
second monomer that will bind hexamers that can diverge 
more from 5′-AGA​ACA​-3′ [14–16]. It is tempting to specu-
late that the dimerization interface in the second zinc fin-
ger, which is stronger for the AR (Fig.  1b), allows more 
divergent downstream hexamers. This hypothesis is not 
confirmed by mutational analyses in which the Serine and 
Threonine in AR were swapped for the GR residues and 
vice versa, and the Glycine and Isoleucine in the GR were 
swapped for the AR residues in the GR [49].

Unfortunately, in the only crystal structure of the AR-
DBD bound to DNA that has been published until now 
[12], the motif is organized as a direct repeat (based on the 
earlier report) with an adenine at position 12. Therefore, 
the final explanation for the lower stringency of the AR 
versus the GR or for the enrichment of the thymine at this 
position remains to be elucidated. Possibly, the difference 
in sequence specificity could be explained by alternative 
DNA or chromatin interactions contributed by the CTE or 
by receptor-specific allosteric interactions with other recep-
tor domains or coactivators. This will be discussed in the 
following.

Hinge region

Despite their name, hinge regions are more than the flexible 
connection between the DBDs and the LBDs. For the AR-, 
PR-, GR-, and ER-DBDs, it is clear that residues immedi-
ately carboxyterminal of the second zinc finger are involved 
in DNA binding (Fig. 1a) [50, 51]. Indeed, the addition of 
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the CTEs to the DBD increased the binding affinity for the 
DNA-response elements [43]. While sequence specific-
ity of the full size receptors is not affected by mutations or 
deletions in the CTE, clearly, the affinity for DNA was [52, 
53]. For other nuclear receptors, the interactions of simi-
lar carboxyterminal extensions with the DNA immediately 
adjacent to the hexamers have been well documented [54]. 
For AR and GR, however, the possible contacts with the 
DNA still need to be elucidated because of the unstructured 
nature of the CTE in the thus far known crystals. Moreo-
ver, for both AR and GR, the CTE coincides with a nuclear 
localization signal known to interact with importin-α 
[55]. This is not the only function of the CTE, since the 
AR (629)RKLKK(633) motif was shown to be involved in 
intranuclear mobility, control of the N/C interactions (see 
in the following), and even the transactivation properties 
of the AR [52, 53]. Of course, these different functions are 
executed at different timepoints and at different locations in 
the cell involving different interaction partners. As an addi-
tional layer of complexity, these functions seem to be dif-
ferentially affected by posttranslational modifications, such 
as the acetylation of the Lysines of the (629)RKLKK(633) 
motif [56–58].

Allosteric signaling between the DNA elements 
and the other receptor domains

Like for most proteins, allostery plays an integrative role in 
the functioning of nuclear receptors. For the ligand-binding 
domains of NR, there are clear allosteric pathways identi-
fied between the ligand-binding pockets and the activation 
functions, where coregulators interact [59]. Many data also 
indicate allosteric communications between the DNA-
binding domain and the DNA elements (reviewed in [60]). 

While intra-domain allostery within the DBD and LBD has 
been examined in great detail, the allostery between differ-
ent domains is much harder to study. The best studied is the 
allostery from the GR-DBD, where the so-called lever arm 
situated between the two zinc finger modules plays a clear 
role in the transmission of sequence-specific signals from 
the DNA to coactivator recruitment by the LBD [17, 61]. 
This is further illustrated by the effect of a splice variant 
of the GR which has a single amino acid added to the lever 
arm and which dramatically affects the differential coregu-
lator recruitment to the GR [18].

Physiological evidence for allosteric effects in the AR 
comes from the functional analysis of AR-NTD mutations, 
and detected in androgen insensitivity patients that affect 
the functioning of AR in an ARE-specific way [62]. In 
addition, the deletion of the (23)FQNLF(27) motif which 
is involved in NTD-LBD communications in the AR has 
an effect on transactivation via classical AREs, but has lit-
tle effect on reporters based on selAREs [63]. Moreover, 
the deletion of the polyglutamine tract or mutations in the 
sumoylation sites in the NTD have an effect on AR trans-
activation via classical elements, but not on selAREs [64]. 
Clearly, we need more detailed three-dimensional struc-
tures of the full-length androgen or glucocorticoid recep-
tors, such as the ones described for other NRs [46, 65, 66]. 
Possible allosteric pathways between different domains for 
which there is some experimental, albeit sometimes cir-
cumstantial evidence are given in Fig. 3.

Role of lncRNA in receptor functioning

The recent discovery of many thousands long noncod-
ing RNA-encoding genes in the human genome will affect 
the study of virtually all biological processes [67]. These 
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Fig. 3   Schematic presentation of the allosteric signaling pathways 
between different domains of the AR or GR. Color code: light red 
DNA; light blue DBD; blue hinge; green NTD; orange LBD. 1 Sign-
aling can take place between the DNA to the DNA-binding domain 
[17]; 2 between the DNA to the hinge [53]; 3 from the DNA to the 

amino-terminal domain [52, 63]; 4 from the DNA to the N/C inter-
actions [63]; 5 from the DNA-binding domain to the ligand-binding 
domain [100]; and 6 between Tau-1 and Tau-5 [101]. For reasons 
of simplification, only allosteric pathways within one monomer are 
shown
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lncRNAs bind to protein-like transcription factors and 
coactivators and have been proposed to act as complex-
building scaffolds. How many of them interact with nuclear 
receptors in general and steroid receptors more specifi-
cally, for example, remains to be determined. However, 
even before the term was coined, lncRNAs were known to 
interact functionally with the AR-NTD. This was first dem-
onstrated for the steroid receptor RNA activator (SRA) by 
the group of O’Malley [68]. The structure–function analy-
ses of SRA as well as the interacting proteins are still being 
identified [69, 70]. More recently, other lncRNAs, such as 
PRNCR1 and PCGEM1, have been proposed to affect AR 
functioning via its amino-terminal domain [71].

Another action mechanism was reported for ‘growth 
arrest-specific transcript’ called gas5. GR was shown to 
bind to a motif in this lncRNA, and this was proposed to 
squelch the receptor away from the genome [72]. The 
receptor-binding RNA motif in gas5 is a double-stranded 
fragment which resembles a 5′-AGA​ACA​-3′-like mono-
meric DNA motif, hence called GRE mimic. In vitro, this 
RNA motif can titrate MR, PR, and AR activity in cellu-
lar overexpression experiments [73]. It will be exciting to 
learn how gas5 is implicated in the action mechanisms of 
these steroid receptors in normal physiology and in disease 
mechanisms. Because of the possible role of the NTDs, it is 
likely that here too, receptor specific mechanisms will exist.

In conclusion, over the coming years, we can expect a 
dramatic increase in our insights on how lncRNAs affect 
NR biology in many different physiological processes and 
disease mechanisms.

Cooperativity with other transcription factors

The first AREs in eukaryotic genes were described for the 
androgen-dependent, prostate-specific C3 component of 
the prostatic binding protein [74, 75], the prostate-specific 
antigen [76], the probasin [77], and sex-limited protein 
genes [78]. For all these, it was immediately apparent that 
the AREs were part of complex enhancers to which several 
other transcription factors, such as NF1, Oct1, SP1, and 
GATA, need to bind to result in their full activity [78–82]. 
Indeed, mutation analyses of the individual binding sites 
within these complex enhancers illustrated the cooperative 
nature of the binding  of transcription factors. Clearly, the 
AR is the ligand-induced factor which turns on the enhanc-
ers, but they themselves also depend on the binding of other 
enabling transcription factors to induce transcription of a 
nearby gene. ChIP-seq data on series of transcription fac-
tors in cell lines and more recently also on tissue confirmed 
that: (1) steroid receptors involve other transcription fac-
tors to activate their target genes [25, 29]; (2) transcription 
factors recruit histone mark writing, reading, and erasing 

coregulators; and (3) the co-regulating transcription factors 
are involved in the tissue specificity of the responses [48, 
83]. The details on how different transcription factors coop-
erate during the transactivation via enhancers and chro-
matin histone modifications are being elucidated further. 
FoxA1 seems to act upstream of GATA2 as a pioneer fac-
tor for the AR [84]. However, the same transcription factor 
can have different roles depending on the enhancers under 
study (reviewed for AR in prostate cancer in [25, 85]).

Despite near identity of the DBDs, there are large differ-
ences between AR and GR in mobility reflecting kinetics 
of chromatin binding as measured by fluorescence recov-
ery after photobleaching. These differences of residence at 
the MMTV enhancer array are compound effects of DNA 
binding as well as differential effects of other binding tran-
scription factors, histon modifiers, and chromatin remod-
eling complexes [86, 87].

Should we target the GR and AR simultaneously 
in castration‑resistant prostate cancer

While AR can be targeted in castration-resistant prostate 
cancer with ADT or anti-androgens, glucocorticoids can be 
used to relieve pain or suppress androgens. A first clinical 
observation relevant for this discussion is that AR-target-
ing therapies can lead to the appearance of mutations that 
change ligand specificity of the AR and allows glucocorti-
coids to act as agonists for the AR [88].

In addition, the high similarity between the DBDs of 
AR and GR as well as their response elements led to the 
hypothesis that the receptors could be interchangeable 
[89]. In normal prostate epithelial cells, AR but not GR is 
expressed, so this is not relevant. During ADT treatment, 
however, GR can be upregulated and thus be co-expressed 
with the AR [11]. It was postulated, therefore, that in ADT 
or under anti-androgen therapy, the GR might take over the 
role of (inhibited) AR and thus lead to castration resistance 
or resistance against the latest AR-targeting therapies [10]. 
Clinically, this is an important question, since inhibitors 
of androgen synthesis, which are used to treat castration-
resistant prostate cancer, are usually supplemented with 
glucocorticoids or glucocorticoid precursors to prevent side 
effects [90].

In prostate cancer cell lines, many genes that are andro-
gen responsive can also respond to glucocorticoids, pro-
vided that the GR is expressed [41]. In such cells, the 
responses to androgens and glucocorticoids largely overlap, 
and overexpression of GR is correlated with a loss of anti-
androgen control of proliferation [10]. Jaaskelainen et  al. 
and Isikbay et al. showed that GR and AR both can activate 
anti-apoptotic genes, so when AR is inactivated by anti-
androgens, the GR can still upregulate these genes [11, 91]. 
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However, this seems in discordance with clinical practice, 
where glucocorticoids have been used in PCa treatment for 
many years. Their suppressive effects on serum androgen 
levels, their clinical benefit on PSA levels, and negative 
effects on tumor volume have been well established [92, 
93]. Moreover, their inhibitory role on prostate cancer cell 
proliferation as well as angiogenesis has been documented 
in preclinical models [94, 95]. Therefore, while the pos-
sibility of GR taking over the survival role of the AR has 
been shown in preclinical work, at the moment, there is 
little evidence that this would be a major problem in the 
clinic. Nevertheless, there is need for well-controlled clini-
cal studies to verify whether glucocorticoids could have 
adverse effects, maybe on a specific subtype of castration-
resistant prostate cancer, which express GR. In the mean-
time, studying the role of AR and GR and their functional 
interactions in prostate cancer remains of major importance 
when developing and implementing new anti-androgen 
therapies [96].

Future prospects

Over the last years, major steps forward have been taken in 
our knowledge of the transcription activation process. Sur-
prisingly, we are still far from understanding the tissue-spe-
cific actions of AR and GR, two very similar steroid recep-
tors with very divergent biological roles. Indeed, although 
general roadmaps of the activation are well described, now, 
we need to search for the details that explain the different 
rules of engagement of these two receptors.

The description of structures of full size receptors or 
larger receptor fragments bound to DNA, ligand, and 
coregulator peptides continues to reveal more details on 
the allosteric pathways within the receptors [44, 97]. The 
maturing of a number of technologies, such as ChIP-exo 
to better define the DNA-binding events [36], RIME to 
identify protein–protein interactions at the level of chro-
matin [98], and CRISPR/Cas9 to mutate enhancers or to 
reactivate genes expressing specific transcription factors 
or coregulators, now allows for the testing of the hypoth-
eses on the allosteric signals of specific DNA elements on 
receptor functioning.
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