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Fast Protein Translation Can Promote Co-
and Posttranslational Folding of Misfolding-Prone
Proteins
Fabio Trovato1 and Edward P. O’Brien1,*
1Pennsylvania State University, State College, Pennsylvania
ABSTRACT Chemical kinetic modeling has previously been used to predict that fast-translating codons can enhance cotrans-
lational protein folding by helping to avoid misfolded intermediates. Consistent with this prediction, protein aggregation in yeast
and worms was observed to increase when translation was globally slowed down, possibly due to increased cotranslational mis-
folding. Observation of similar behavior in molecular simulations would confirm predictions from the simpler chemical kinetic
model and provide a molecular perspective on cotranslational folding, misfolding, and the impact of translation speed on these
processes. All-atom simulations cannot reach the timescales relevant to protein synthesis, and most conventional structure-
based coarse-grained models do not allow for nonnative structure formation. Here, we introduce a protocol to incorporate mis-
folding using the functional forms of publicly available force fields. With this model we create two artificial proteins that are
capable of undergoing structural transitions between a native and a misfolded conformation and simulate their synthesis by
the ribosome. Consistent with the chemical kinetic predictions, we find that rapid synthesis of misfolding-prone nascent-chain
segments increases the fraction of folded proteins by kinetically partitioning more molecules through on-pathway intermediates,
decreasing the likelihood of sampling misfolded conformations. Novel to this study, to our knowledge, we observe that differ-
ences in protein dynamics, arising from different translation-elongation schedules, can persist long after the nascent protein
has been released from the ribosome, and that a sufficient level of energetic frustration is needed for fast-translating codons
to be beneficial for folding. These results provide further evidence that fast-translating codons can be as biologically important
as pause sites in coordinating cotranslational folding.
INTRODUCTION
Molecular simulations of structure-based, coarse-grained
protein models (i.e., G�o models (1)) have advanced our
understanding of the general principles of protein folding
(2–4) and have provided molecular interpretations of exper-
imental results (5,6). In some cases, these models have made
predictions in quantitative agreement with experimental
data (7,8). The numerous variants of such models are alike
in that residues that are in contact in an experimentally
determined structure are assigned attractive interactions in
the force field. Because the parameterization of G�o models
is based on a single structure, most versions of these models
do not allow for nonnative tertiary structure formation. Pro-
tein misfolding, which involves the formation of nonnative
conformations, is relevant to a wide range of biological phe-
nomena, including the specific activity of enzymes and the
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aggregation of proteins. Structure-based coarse-grained
models able to describe protein misfolding are needed to
address these processes.

Several methods have been devised to model transitions
among different ordered structures using structure-based
models. In the approach ofBest et al. (9), theHamiltonians en-
coding different structures are combined through a parallel-
programming method. In the approach by Okazaki et al.
(10), a new energy term is introduced in the force field to shift
the equilibriumbetween twodifferent ordered conformations.
These approaches have been used to study protein allosteric
movements (10–12) and fold switching in metamorphic pro-
teins (13,14). Here, we present a method that avoids the
need for simulating multiple Hamiltonians or adding addi-
tional energy terms by assigning different energies to the
native andmisfolded contactswhilemaintaining the structural
fidelity of each structure. We then apply this method to the
process of protein synthesis on the ribosome, with the aim
of understanding how codon translation rates influence the
likelihood of cotranslational folding and misfolding.
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Cotranslational protein folding is likely to occur in an
appreciable fraction of the proteome of organisms (15) and
can be influenced by thevariable speed atwhich the ribosome
translates mRNA codons into amino acids that are added to
the growing polypeptide (16–21). Under quasiequilibrium
conditions, cotranslational folding is determined by the
physical forces responsible for domain stability as well as in-
teractions with the ribosome and surrounding macromole-
cules (17,22–24). Under nonequilibrium conditions, when
nascent-chain structural rearrangements occur on similar or
slower timescales compared to elongation, the nascent poly-
peptide explores a smaller number of conformations that are
dependent on earlier stages of elongation and thereby on the
rates at which codons are translated.

The relationship between elongation rates and cotransla-
tional events is beginning to be quantitatively understood
through theoretical, computational and experimental efforts
(16,20,25–30). Kinetic modeling predicted that increasing
the polypeptide elongation speed can promote cotransla-
tional folding by reducing the number of misfolding events
during the time that the ribosome dwells in the misfolding-
prone nascent-chain length regime, contrary to the common
view that slow synthesis favors native structure formation
(31). Consistent with this hypothesis, recent experiments
(32,33) and the qualitative trends observed in atomistic mo-
lecular dynamics simulations of a small protein (28) imply
that slow-translating codons are not always beneficial for co-
translational folding and can promote protein aggregation.

Using our modeling approach, we created two artificial
misfolding-prone proteins and simulated their synthesis by
the ribosome using Langevin dynamics. Consistent with
the chemical kinetic predictions, we find that rapid elonga-
tion through the proteins’ misfolded region can either facil-
itate the formation of on-pathway intermediates or delay the
formation of misfolded structures until the domain has fully
emerged from the tunnel, where folding to the native con-
formation outcompetes misfolding. Beyond the previous
predictions of the kinetic model, we show how the distribu-
tion of folding pathways is altered by fast translation, that
posttranslational protein dynamics can depend on the trans-
lation-elongation schedule, and that a sufficient level of en-
ergetic frustration is needed before fast-translation becomes
beneficial for folding.
MATERIALS AND METHODS

Constructing the multibasin G�o model

The protocol for constructing a multibasin G�o model, as well as the details

about the coarse-grained ribosome and nascent chain are provided in the

Supporting Material.
Starting structures and simulation protocols

To construct the two misfolding-prone protein models, Protein Data Bank

(PDB) PDBs:1RYK and 2BTG (multibasin model 1) and PDBs:1ZZV
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and 1ND9 (multibasin model 2) were defined as the native and misfolded

structures, respectively. Selection of these PDBs was discussed in the Re-

sults and Discussion. An Escherichia coli ribosome was converted into a

coarse-grained model using the crystal structure with PDB:5AFI. A 60-

amino acid (aa) residue unstructured linker (sequence¼ 50-AVQLA LAALI

SALEK EVVIL LALVK ALGAL LLLLA ALAAL AAIDA LELVA

ATALL LLLVA-30) was generated in an extended conformation using the

CHARMM simulation software package (https://www.charmm.org/) and

attached to the C terminus of the nascent chain. The linker sequence was

obtained as the consensus sequence of C-terminal unstructured regions

from the database of cytosolic E. coli proteins reported in Ciryam et al.

(15). Atomistic structures were coarse-grained using one bead per amino

acid and three or four beads per nucleotide. The ribosome-nascent-chain

complex was assembled using in-house code developed for single-structure

G�o models, as described previously (34).

Langevin dynamics simulations were performed with a friction coeffi-

cient of 0.05 ps�1 using a modified version of the CHARMM software

that includes the Debye-H€uckel and double-well functional forms for the

electrostatic and angle potential terms, respectively. This friction coefficient

minimizes the folding time in simulations of isolated proteins. The Lange-

vin equations of motion were integrated every 0.015 ps and the temperature

was set to 310 K, which is the optimal growth temperature of E. coli.

The two multibasin G�o-models, built using the combination of

PDBs:1RYK and 2BTG or PDBs:1ZZV and 1ND9, were simulated with

replica exchange (REX) simulations either off the ribosome or attached

to arrested ribosomes at different nascent chain lengths. Selected nascent

chain lengths were used in stalled ribosome simulations as reported in

the Supporting Material (Figs. S1 and S9) to provide a description of the

structural ensembles populated on the ribosome, while reducing the compu-

tational burden. For each REX run, 20 replicas were used ranging in tem-

perature from 300 to 550 K, and 100,000 exchanges were made, with the

first 20,000 eliminated from the analysis to allow for system equilibration.

Four-thousand integration time-steps were carried out between attempted

REXs.

For each translation-elongation schedule, 300 continuous synthesis sim-

ulations were performed at 310 K starting from a nascent chain length of 40

residues and ending at 129 or 140 residues. An unstructured linker was

attached to the C terminus and synthesized from nascent chain length

70–129 (multibasin model 1) or 81–140 (multibasin model 2). The unstruc-

tured linker allows the protein domain to fully emerge outside the ribosome

exit tunnel, thereby mimicking the synthesis of a domain within a multido-

main protein. Synthesis simulations were carried out at different amino acid

addition rates. For the uniformly fast and slow synthesis simulations, resi-

dues (Ca beads) were added to the nascent chain every 0.15 and 15 ns,

respectively. All translation-elongation schedules used in this study are re-

ported in the Supporting Material (Fig. S4).

Every 7 ns, on average, a residue was added to the nascent chain in our

simulations, which is a much faster timescale compared to the average

experimental value of �100 ms measured in E. coli (35). The use of such

residue addition times was nevertheless necessary to compensate for the

accelerated dynamics typical of protein coarse-grained models (36,37). Af-

ter previous simulation studies of cotranslational folding, the elongation

timescales used in our simulations are obtained by rescaling the average

experimental elongation timescale by a factor of 106 to 108 (8,26,29).

The acceleration factor can also be obtained by comparing the rates of pro-

tein folding in experiments and coarse-grained simulations. Two studies

addressed the relationship between experimental and simulated protein

folding timescales using coarse-grained models and found that the simu-

lated folding rates were 104 and 105 faster compared to experiments

(38,39). Albeit smaller than the rescaling factors we used, these estimates

do not account for the larger spread of experimental folding rates compared

to simulations and moreover, they can depend sensitively on the friction

used in the Langevin equation. Because of the larger spread of experimental

data, from the mentioned studies we could estimate larger acceleration fac-

tors, within the range of the ones we used in this work.

https://www.charmm.org/
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Analyses

Conformations and related free energies and probabilities were character-

ized in the simulations based on selected structural quantities including

the root mean square deviation (RMSD) RMSDk, where k indicates the

experimental native (n) or misfolded (m) structure, and the fraction of con-

tacts Qk that are similar to those of structure k. (The latter quantity is

commonly known as the fraction of native contacts, but for clarity with

the terminology adopted for n and m, we do not use this expression.) A con-

tact between residues I and J is present in a given system configuration if the

distance between Ca(I)-Ca(J) is within 0.5 Å of the same distance in the kth

crystal structure.

From arrested ribosome simulations, the probabilities p(Qn,QmjL) were
calculated using a bin width of 0.07 and combined using the formula
P

LpðQn;Qm j LÞhSðQn;QmÞ, where the summation is performed on a

set of nascent chain lengths selected as described before. Maxima on the

surface S correspond to frequently visited conformations and were used

to partition S into structurally distinct conformations as described in the

Results and Discussion.

Pathways were defined as the time series of states populated as a function

of nascent chain length. The states defined by S(Qn,Qm) were used to iden-

tify all pathways. The edges of the rectangles that partition S (Fig. 3 a) were

decreased by 0.05, to reduce the noise caused by trajectory recrossings at

their borders. This operation preserved the overall state definitions and

generated small gaps where conformations were assigned to the most

recently visited state. To reduce the extremely large number of possible

pathways, a clustering was performed. Two pathways were assigned to

the same representative pathway if the difference between them

was <20%. The difference metric was defined as 1=Nt

P
td½‘ðtÞ � ‘ðtÞ0�,

where Nt is the number of time points in the trajectory, ‘ and ‘0 are two path-
ways, and d is the Kronecker function. The same procedure was used to

calculate the number of transitions between states. The software tools

VMD (http://www.ks.uiuc.edu/Research/vmd/) and gnuplot (http://www.

gnuplot.info/) were used to generate the figures (40).

Statistical significance of the difference between state probabilities pI
was assessed using the two-tailed Student’s t-test. Error bars on the state

probabilities correspond to the 95% confidence intervals.
C

FIGURE 1 The multibasin coarse-grained model for protein misfolding

on the ribosome. (a) Shown here is a Ca-trace representation of the native

and misfolded structures generated from PDBs:1RYK (top) and 2BTG (bot-

tom). The networks of stabilizing Ca-Ca interactions (contacts) are de-

picted in green and magenta. (b) Shown here is a contact map of the

multibasin model. Each colored pixel represents a stabilizing interaction

between two residues (see termUnel in Eq. S1). The misfolded-state contact

map (magenta) is embedded in the native-state contact map (green) starting

at position s ¼ 3 through a procedure that minimizes the number of shared

contacts between the two structures (gray). (c) Given here is an illustration

of the full-length misfolding-prone construct. The native structure is

composed of residues 1–69, whereas the misfolding-prone region is be-

tween residues 3 and 47. The unstructured linker starts at residue 70. (d)

Shown here is a coarse-grained representation of the ribosome-nascent

chain complex used in the simulations (left). Coarse-grained interaction

sites are centered on the Ca atom of amino acids (yellow and magenta)

and on the phosphorus atom (P, cyan), ribose center (R, light blue) and

base-ring centers (B, dark blue) of nucleotides (right). Folding and misfold-

ing events are energetically driven by the network of contacts in (b), as the

metastable domain (yellow) is being synthesized by the ribosome.
RESULTS AND DISCUSSION

A coarse-grained model that allows for protein
misfolding

To study the general features of protein misfolding, a multi-
basin coarse-grained protein model was created as detailed
in the Supporting Material and was subsequently applied
to the study the co- and post-translational folding of mis-
folding-prone proteins. In this approach, a G�o-based force
field is initially generated based on a structure representing
the native state (denoted n) (1,41). This force field is subse-
quently augmented with information based on a conforma-
tion representing a misfolded state (denoted m), thereby
capturing the competition between the two potential energy
surfaces. Rather than combining the two energy surfaces
into a single surface displaying two minima (9,10), we
sum the residue-residue interaction potentials in a single
nonbonded term (Eq. S1) (11,12,42), as this procedure is
easy to implement and does not assume any potential energy
surface topology a priori. Here, we apply this approach to
compact structures with different shapes and sequence
lengths.
It is difficult to experimentally characterize the structure
of soluble misfolded proteins because of their heteroge-
neous, transient nature and their tendency to aggregate.
Therefore, we chose two well-resolved and ordered struc-
tures n and m to create multibasin model 1, composed of
Nn ¼ 69 and Nm ¼ 45 residues, respectively, and built the
artificial misfolding-prone protein depicted in Fig. 1. These
structures were selected randomly from the PDB, requiring
that they be E. coli proteins <100 residues in length, that
they have different topologies, and that Nm < Nn. The last
two conditions were imposed to allow the modeling of
Biophysical Journal 112, 1807–1819, May 9, 2017 1809
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off-pathway misfolding events, which have been detected
experimentally (43,44). The interaction networks that stabi-
lize structures n andmwere represented as contact maps Z(n)

and Z(m), respectively. Z(m) is embedded within Z(n) at a spe-
cific position, s, defined as the position at which the first
element of Z(m) occurs within Z(n) after the optimization pro-
cedure described in the Materials and Methods. This pro-
cedure aims to merge the two contact maps such that the
number of interresidue contacts that are common to both n
and m is minimized. The resulting combined contact map
has some contacts that are unique to each structure n or m
and others that are shared (gray pixels in Fig. 1 b). The 32
shared contacts, found when Z(m) is embedded within Z(n)

at its optimal position of s¼ 3 residues, are all short-ranged,
intrahelix interactions with interresidue distances differing
by <1 Å. These shared contacts are then uniquely assigned
to either the n or m structure. The contacts found in the
merged contact map have Lennard-Jones well depths equal
to either εn or εm (Eq. S3). These parameters influence the
relative stability of the n- and m-like conformations in the
coarse-grained model.

The εn and εm values are chosen following a three-step
procedure (see Materials and Methods for details). In the
a
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first step, εm was set to 0.001 (i.e., misfolding cannot occur)
and εm tuned to match the experimental folding free energy
of n, resulting in an εn value of 1.5 kcal/mol at 310 K, the
temperature of E. coli optimal growth (this temperature is
used in all subsequent simulations). Fig. 2 a illustrates the
protein’s free energy surface as a function of the fraction
of contacts (Qn, Qm) for the simulation at (εn, εm) ¼ (1.5,
0.001) kcal/mol, where n is stable and m is never populated.
The only visible basin is centered around (Qn, Qm) ¼ (0.8,
0.2), corresponding to a well-formed native state.

In the second step, misfolding is introduced by increasing
εm. The goal is to have a protein that predominantly populates
its folded state at equilibrium, with a small misfolded popu-
lation. Therefore, using target native and misfolded popula-
tions, respectively, of p0,n ¼ 0.95 and p0,m ¼ 0.05, and a
number of contacts hn ¼ 79 and hm ¼ 48, we estimate that
εm ¼ 2.5 kcal/mol will achieve this level of misfolding based
on Eq. S5 (see Materials and Methods). The increase of εm
from 0.0 to 2.5 kcal/mol perturbs the system’s equilibrium
and dynamic properties, producing a shift of the native-state
basin from (Qn, Qm) ¼ (0.8, 0.2) to (Qn, Qm) ¼ (0.9, 0.5)
(Fig. 2 a). Although the most probable Qm value increases
from 0.2 to 0.5, this basin still corresponds to the native state
G
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as evidenced by an average root mean square deviation
(RMSD), RMSDn ¼ 2.0 Å and average RMSDm ¼ 5.0 Å,
where RMSDk is the RMSD from the experimental structure
k. A larger Qm value results from those shared contacts that
are present in both the native andmisfolded states (gray pixels
in Fig. 1 b). Transitions to the misfolded state are observed in
simulations with εm ¼ 2.5 kcal/mol (Fig. 2 b), resulting in
native (all conformations having RMSDn % 4.0 Å or Qn R
0.6) and nonnative populations of 0.8 and 0.2, respectively.
Both n- and m-like conformations are explored with high
structural fidelity, reaching RMSD values %3 Å from their
corresponding n and m structures (Fig. 2 b).

As the third step in the procedure, aimed at decreasing the
probability of observing nonnative states (misfolded and
additional compact states), we lowered εm, thereby correcting
for the fact that Eq. S5 does not account for the formation of
additional states. The final, tuned energy values (εn*, εm*) ¼
(1.5, 2.0) kcal/mol produce a multibasin model with native
and nonnative state populations of 0.99 and 0.01, respectively,
which are close to the target populations (Fig. 2 a).
FIGURE 3 Nascent-protein structural states populated during arrested-

ribosome REX simulations. (a) Shown here is a contour map of the proba-
Folding kinetics consists of fast and slow phases

We characterized the folding kinetics of the protein whose
tuned force field parameters are (εn*, εm*) by running 800
independent temperature-quench simulations (22). In each
simulation the protein was first heated to 1000 K for 30 ns,
then instantaneously cooled to 310 K and simulated for an
additional 100 ns. All 800 trajectories were confirmed to be
unfolded after the initial heating phase based on their low
Qn and Qm values. We then computed the fraction of trajec-
tories that were folded at each time point using the native state
definition Qn R 0.6 and Qm % 0.6, and observed a fast and
slow folding phase (Fig. S2). The fast phase has a character-
istic folding time of 1.0 ns, similar to that found in G�o models
of other proteins (22,34), with �56% of the trajectories
folding on this timescale. Such multiphase kinetics is com-
mon in energetically frustrated proteins or large proteins,
and has been observed experimentally (45,46) as well as in
coarse-grained protein models with transferable force fields
(47) and in G�o models that cannot populate misfolded states
(34). For some proteins, the slow-folding timescale can be on
the order of minutes (45). In the rest of this article, when we
refer to the folding time of the model protein, we are referring
to the 1.0 ns value of the fast phase.
bility function S(Qn, Qm) of finding conformations with fractions of con-

tacts Qn and Qm during arrested ribosome simulations at 310 K. S is

computed by summing the probabilities of observing Qn and Qm at selected

nascent chain lengths between 40 and 129 residues (see Materials and

Methods). Darker contour lines indicate higher probability values. The par-

titioning of the (Qn, Qm) space is indicated by the colored boxes and is

based on the position of the maxima and minima of S. (b) Shown here is

an a-trace representation of the disordered (gray), combination (cyan), mis-

folded (orange), and native (yellow) conformations characteristic of the

states demarcated in (a) (same color coding). For clarity, the unfolded state

(black) is not shown in (b). Colored spheres indicate the C-terminal end of

the domain. The ribosome and the disordered linker are not shown.
The misfolding-prone protein explores a
heterogeneous structural ensemble on the
ribosome

To understand how translation kinetics impacts the cotrans-
lational folding of this protein, we first characterized the
states the nascent chain populates on arrested ribosomes,
as these states provide a reference to which the contin-
uous-synthesis simulation results can be compared. The
misfolding-prone domain was attached to an unstructured
C-terminal linker that, at its full length, allows the domain
to emerge from the exit tunnel and fold (Fig. 1 c), thereby
mimicking the behavior of an N-terminal domain that is
part of a multidomain protein. Arrested ribosome-nascent
chain (RNC) complexes were simulated using REX (48)
at nascent chain lengths, L, between 40 and 129 residues, us-
ing the tuned (εn*, εm*) force-field values. We did not simu-
late nascent chain lengths shorter than 40 residues because
the nascent protein populates only unfolded conformations
at those lengths (Fig. S1).

As L increases from 40 to 129 residues the protein
explores different conformations at equilibrium (Fig. S1).
At the shortest nascent-chain lengths the protein is unfolded,
but at intermediate and longer lengths the conformations
are, respectively, most similar to the misfolded and native
structures. We characterized the conformational ensembles
explored during the arrested RNC simulations using the
probability function S(Qn, Qm) of finding a conformation
with fractions of contacts equal to Qn and Qm (Fig. 3 a).
S(Qn,Qm) is an average over the probabilities at the different
L values shown in Fig. S1. The maxima and minima of
S(Qn, Qm) allow us to partition this space into distinct
conformational subpopulations corresponding to the native
(N), misfolded (M), combination (C), disordered (D), and
unfolded (U) states (Fig. 3 b). States N and M occupy the
regions of S that have high values of Qn or Qm, implying
that they resemble, respectively, the experimental structures
n or m. Indeed, we find that the RMSD between state
Biophysical Journal 112, 1807–1819, May 9, 2017 1811
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N from the experimental structure n is lower (0.8–3 Å) than
the RMSD between N from the experimental structure m
(4.5–5 Å; Fig. S3). We find the opposite result for state
M (data not shown). The U and D states are the least
compact, and for this reason they occupy regions with the
lowest (Qn, Qm) combinations. State U is largely devoid of
secondary and tertiary contacts, whereas state D preferen-
tially occupies the gray rectangle at higher Qm values in
Fig. 3 a because D is populated at L < 65 (Fig. S1), when
the majority of contacts permitted to form belong to the
contact map Z(m). Because other contacts are prevented
from forming due to the steric confinement of the ribosome
exit tunnel, state D differs from state M. The two regions
enclosed within the cyan rectangles in Fig. 3 a correspond
to state C, which has structural features of both n and m,
stabilized by a roughly equal number of contacts from
each structure. The most likely conformation is the one
having an N-terminal segment similar to the m structure
whereas the C-terminal is folded similarly to the n structure.
However, state C is heterogeneous, as different combina-
tions of the n and m structures are allowed to form by the
force field.

The state definitions illustrated in Fig. 3 account for the
formation of isolated secondary structural elements within
the ribosome exit tunnel. However, because these secondary
structures form only transiently during the arrested ribo-
some simulations they only contribute marginally to the
probability S(Qn, Qm). This partitioning of the conforma-
tional space provides a reduced set of states that we use to
study the behavior of the nascent protein during continuous
synthesis simulations.
Rapid synthesis through misfolding-prone
segments increases cotranslational folding

To determine if fast elongation improves cotranslational
folding, we performed synthesis simulations of the mis-
folding-prone nascent chain at various elongation sched-
ules {taa(L)}, where taa(L) indicates the time of
elongating the nascent chain from length L to Lþ1. The
taa(L) values used in our simulations are smaller than the
experimentally measured times of amino acid addition in
E. coli. As described in greater detail in the Materials
and Methods, we used faster elongation timescales to
take into account the accelerated dynamics inherent to
coarse-grained simulations at low viscosity (20). Results
from these simulations are presented in Fig. 4 as the prob-
ability of observing a state I at nascent chain length L,
where I is one of the states U, D, C, M, or N (Fig. 3).
As in the arrested ribosome simulations, we started the
continuous synthesis simulations at a nascent chain length
of 40 residues to reduce the simulation time. This choice
does not affect our conclusions, because below 60 residues
the nascent protein is unfolded (black data points in
Fig. 4).
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We find that when the protein is synthesized uniformly
slowly (taa(L) ¼ 15 ns at all L), the states are populated
at shorter nascent chain lengths compared to when elonga-
tion is 100-fold faster (Fig. 4 a). State D starts to be popu-
lated at L ¼ 63, state M at L ¼ 65, and state C at L ¼ 77
residues when synthesis is uniformly slow (schedule s30
in Fig. S4 c), whereas at a uniformly faster elongation
(schedule s2 in Fig. S4 c), state D appears at L ¼ 66, and
either M or C at L¼ 71 residues. For both elongation sched-
ules, N starts to be appreciably populated at L¼ 89 residues,
consistent with earlier simulation results (22). The positions
at which the state probabilities achieve a maximum also
shift to longer nascent chain lengths when elongation is
faster (Fig. 4 a). At the longest nascent chain length of
129 residues, the uniformly fast elongation schedule pro-
motes the formation of 59% more nativelike molecules
compared to the uniformly slow schedule (pN ¼ 0.51 vs.
0.32 in Fig. 4 a; p value < 10-4 Student’s t-test), whereas
the probabilities of populating M and C decrease. Thus, uni-
formly faster elongation increases the probability of co-
translational folding whereas slower elongation promotes
misfolding in this artificial protein.

Comparing the state probabilities during the uniformly
slow- and fast-synthesis simulations, we noticed that the
probability of misfolding pM (orange symbols in Fig. 4 a)
is dramatically altered between the nascent chain lengths
of 70–90 residues, where, according to the equilibrium (ar-
rested) ribosome simulations, the nascent protein populates
the misfolded state (see Fig. S1). This suggests that the
nascent chain conformations explored at these lengths are
particularly sensitive to changes in elongation rates and
therefore that this region may be a major cause of down-
stream changes in the probability of cotranslational folding
pN. To test this hypothesis, we simulated protein synthesis
using a slow rate at residue positions 70–90, whereas the re-
maining positions were synthesized at the fast rate (schedule
s6 in Fig. S4 c). Slowing down elongation in this region
causes the fraction of nativelike molecules at the final
nascent chain length to decrease by 63% compared to the
uniformly fast elongation (pN ¼ 0.51 decreases to 0.19 in
Fig. S4 a; p value<10-4 Student’s t-test). A similar decrease
(Fig. S4 b) is obtained even when the region of slower elon-
gation is reduced to only a single residue located at position
80 (schedule s37 in Fig. S4 c). Thus, rapidly synthesizing
through the misfolding-prone region promotes this protein’s
cotranslational folding.
A general trend in cotranslational folding versus
synthesis time

We next examined if this effect could be observed using
a more diverse set of elongation schedules. We simulated
the protein’s synthesis using 36 additional elongation
schedules (Fig. S4 c), which can be classified into three
groups: 1) uniform schedules, 2) schedules that differ in
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FIGURE 4 The effect of different elongation schedules on cotranslational folding and misfolding. The probabilities of populating states U (black),

D (gray), M (orange), C (cyan), and N (yellow) as a function of nascent chain length L, when one amino acid is added every taa(L) ns (elongation schedules

s1 to s40 are reported in Fig. S4 c). In all panels, lines are meant as a guide to the eye and the standard errors about the mean are smaller than the symbols.

(a) State probabilities from the uniformly slow (s30) and uniformly fast (s2) elongation schedules are shown, respectively, as triangles and circles. Each data

point is an average over 300 independent synthesis trajectories. (b) Same as (a), except the state probabilities resulting from the nonuniform, slow schedule

s39 (triangles) and nonuniform, fast schedule s5 (circles) are shown. (c) Shown here are the native (yellow) and nonnative (M and C; magenta) state prob-

abilities at the end of synthesis (i.e., at L ¼ 129 residues) as a function of the reduced time Tmis ¼ tmis/tf. The value tmis is the time necessary to synthesize

residues 70–90 and tf ¼ 1.0 ns is the mean folding time of the fast-kinetic phase of this protein off the ribosome. The data point sizes are proportional to the

reduced total time Tsyn ¼ tsyn/tf needed to synthesize the entire protein (from residue 40–129). Each data point results from one of the elongation schedules

shown in Fig. S4 c. (d) Same as (c), but as a function of the reduced time Tsyn¼ tsyn/tf. The value tsyn is the time necessary to synthesize the entire protein from

residues 40–129. Circle sizes are proportional to the time Tmis needed to synthesize the misfolding-prone segment. Vertical dashed lines indicate boundaries

among regions I, II, and III.
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the misfolding-prone region or adjacent segments, and 3)
schedules with a single slow-translated residue. We plotted
the probability of cotranslational folding as a function of the
reduced time Tmis ¼ tmis/tf, where tmis is the time that the
ribosome dwelled in the misfolding-prone region (i.e., resi-
dues 70–90) and tf ¼ 1.0 ns is the folding time of the fast
phase off the ribosome. Because the protein kinetics are
accelerated as a consequence of both the coarse-grained rep-
resentation and low-friction simulations, the absolute time
tmis cannot be compared directly to experiments unless the
acceleration factor is known (20). It is therefore useful to
rescale the simulated timescale tmis by tf to eliminate this
intrinsic acceleration.

We find that the probability of domain folding at the final
nascent chain length increases as Tmis decreases, whereas
the probability of populating nonnative states decreases in
an anticorrelated fashion (continuous lines in Fig. 4 c).
When synthesis is very fast, eventually becoming compara-
ble to or faster than the folding time of this protein (Tmis < 4
in Fig. 4 c), the likelihood of folding is larger than the
likelihood of misfolding. The size of the data points in
Fig. 4 c is proportional to the time Tsyn necessary to synthe-
size the entire protein. The majority of points with large
or small sizes are distributed, respectively, at large and
small Tmis values. Thus, for this protein, cotranslational
folding is promoted, on average, by fast synthesis across
the misfolding-prone region, as well as across the entire
polypeptide.

Even though the native and nonnative state probabilities
follow a sigmoidal relationship as a function of Tmis (solid
lines in Fig. 4 c), there are deviations that are explained in
part by the different total synthesis times Tsyn. For example,
the largest magenta and yellow data points in Fig. 4 c, which
correspond to the outcomes of the slowest-elongation
Biophysical Journal 112, 1807–1819, May 9, 2017 1813
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schedule (s40 in Fig. S4), deviate from the general trends. In
this case, although slow synthesis across the misfolding-
prone region initially increases the misfolded population
up to 0.95, the slow elongation of the remaining protein
segment affords the nascent chain enough time to transition
from states M or C to N, which is the thermodynamically
favored state at the end of synthesis. This suggests that the
state probabilities are also sensitive to the kinetics of protein
synthesis across the segments adjacent to the misfolding-
prone region.

The interplay between elongation timescales across the
different protein segments is more clearly illustrated when
the state probabilities are plotted as a function of Tsyn
(Fig. 4 d). The regime that promotes folding by speeding
up elongation is visible at intermediate values of Tsyn (re-
gion II in Fig. 4 d), consistent with Fig. 4 c. This is also
the region where the state probabilities show the largest
variability (between 0 and 0.69). Two additional regions
are distinguishable in which speeding up synthesis either
penalizes folding or has a neutral effect. For relatively
large Tsyn values (region III in Fig. 4 d), the probability of
cotranslational folding decreases as the elongation speed
is increased because, as noted earlier, the nascent protein
is closer to thermodynamic equilibrium. For relatively small
values of Tsyn (region I in Fig. 4 d), the state probabilities
remain almost constant as a function of the total synthesis
time, with a more populated native state compared to the
misfolded state. In region I, the overall fast synthesis allows
the nascent protein to populate unstructured conformations
at later stages of elongation (nascent chains >92 residues)
and consequently to evolve toward the native state more
easily than toward the misfolded state.

The data in Fig. 4, c and d, indicate that Tsyn and Tmis

can independently affect cotranslational folding, suggesting
that elongation schedules with a similar total synthesis time
but different distributions of elongation rates can produce
very different cotranslational behaviors. To test this hy-
pothesis we selected two schedules, the nonuniform, fast
schedule s5 (Fig. S4 c) and the uniformly fast schedule,
and compared their synthesis outcomes. Schedule s5 differs
from the uniformly fast schedule in that it has a faster elon-
gation rate in the misfolding-prone region and slower elon-
gation rate for L > 90 residues, but a similar Tsyn value
(within 3%). At the end of synthesis, the cotranslational
folding probability of the nonuniform, fast schedule
(pN ¼ 0.69, yellow circles in Fig. 4 b) is 35% higher
than the uniformly fast schedule (pN ¼ 0.51, yellow circles
in Fig. 4 a). An additional comparison between the uni-
formly slow schedule and the nonuniform, slow schedule
s39 (Fig. S4 c), which differ by <4% in Tsyn, reveals that
the folding probability decreases from 0.32 to 0.01 at the
end of synthesis (yellow triangles in Fig. 4, a and b), essen-
tially abolishing cotranslational folding. (In the schedule
s39, taa(L) is relatively large in the misfolding-prone re-
gion and relatively small in the region L > 90 to achieve
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a Tsyn similar to the uniformly slow case.) Thus, even
when two schedules have similar total synthesis times,
the populations of native and nonnative states can be
very sensitive to how the fast- and slow-elongation rates
are distributed during synthesis, especially in the mis-
folding-prone region.

These simulation results are consistent with in vivo exper-
iments that measured either an increase of protein aggrega-
tion upon slowing down translation (49) or a decrease in
protein misfolding upon speeding up translation (32). The
degradation of gB-crystallin was observed to decrease
upon synonymous codon substitutions that increased the
mRNA translation speed (32). Based on our results, we
speculate that some of the slow-to-fast synonymous codon
substitutions might have been introduced in misfolding-
prone regions of gB-crystallin, thereby promoting cotrans-
lational folding. In another experiment, fast-to-slow synon-
ymous codon mutations were introduced in the nucleotide
binding domain 1 of the cystic fibrosis transmembrane
conductance regulator (49). By affording this domain
enough time to populate long-lived nonnative conforma-
tions, slower elongation may have negatively impacted
folding of this topologically complex protein, in agreement
with our results.
Fast elongation promotes folding by reducing the
number of pathways involving misfolded states

The folding pathways of the nascent protein were character-
ized to determine the molecular mechanisms by which
faster elongation promotes folding and penalizes the forma-
tion of misfolded conformations. Using the clustering pro-
cedure described in the Materials and Methods, we
calculated a set of representative cotranslational folding
pathways, accounting for 87 and 85% of the uniformly
fast and slow synthesis trajectories (Fig. 5).

The most probable pathway in the uniformly fast
(Fig. 5 a) and slow synthesis (Fig. 5 b) trajectories leads
to state M at the end of synthesis. This pathway is charac-
terized by a long-lived M state that does not transition
to any other states, indicating that the N-terminal region
of the nascent protein can populate kinetically trapped
misfolded conformations as soon as the protein emerges
from the ribosome exit tunnel. This pathway accounts
for 26% of the fast-synthesis pathways and 42% of the
slow-synthesis pathways (Fig. 5), suggesting that the fast
schedule may be responsible for promoting folding by
decreasing the number of molecules forming misfolded
states during synthesis. To test this hypothesis, we calcu-
lated the fraction of trajectories that visit state M at least
once during the simulation. We find that the number of
pathways involving state M decreases from 91 to 57%
when the elongation speed is increased. Taken together,
these observations suggest that speeding up elongation
helps folding by reducing the number of initial transitions
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FIGURE 5 Representative folding pathways during continuous synthesis simulations. (a) Show here is the structural state versus nascent chain length re-

sulting from the uniformly fast elongation schedule. Each pathway differs by the series of states (U, D, C, M, and N) that the nascent chain populates as a

function of L. The percentage of the 300 trajectories that is represented by each pathway is indicated in the upper-right corner of each panel. (b) Same as (a),

but for the uniformly slow elongation schedule.
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U(D)/M and the likelihood to populate M at subsequent
elongation stages.

Concomitant with the decrease in misfolding pathways,
Fig. 5, a and b, show that speeding up elongation increases
the number of pathways leading to N by the end of synthe-
sis, in agreement with the results in Fig. 4 a. The most prob-
able series of state transitions responsible for the formation
of N is the transition U(D)/C/N, which occurs in 37% of
the fast pathways and 5% of the slow ones. Two additional
mechanisms are U(D)/N and the pathway to N mediated
by previous formation of M. Whereas the former mecha-
nism occurs in 6% of the fast pathways and 0% of the
slow ones, the latter occurs in 9% of the fast pathways
and 24% of the slow ones. Therefore, speeding up synthesis
promotes folding pathways through state C and decreases
those involving state M. Such phenomenon in the chemical
and biological sciences is referred to as kinetic partitioning,
where kinetics plays an important role in driving a system
into different states (50). Thus, fast rates of amino-acid
addition can influence the kinetic partitioning of nascent
proteins to favor folded structures at the expense of mis-
folded conformations.

To further understand the role that the elongation rates
play in selecting the molecular pathways to the folded
state, we analyzed the trajectories generated with two
schedules that achieve high folding probabilities of 0.62
(schedule s26) and 0.69 (schedule s5) by the end of syn-
thesis (Fig. S4 c). Under schedule s26, in which the mis-
folding-prone region elongates two times faster than s2,
pathway U/N is the most probable (Fig. S5), whereas
the most probable pathway for schedule s5 is U/D/
C/N (Fig. S6). From this analysis we conclude that
the nascent protein can reach the folded state following
multiple pathways, and that the elongation schedule deter-
mines which of these pathways is most likely during
synthesis.
Fast synthesis helps protein folding above a
threshold-level of energetic frustration

We next explored how changing the stability of the mis-
folded state and the rate of nascent protein elongation affect
the amount of correctly folded protein produced at the end
of synthesis. Specifically, we varied εm between 0.001 and
2.5 kcal/mol and held εn constant at 1.5 kcal/mol, thereby
modulating the degree of frustration in the system. We
find that at or below an εm of 1.5 kcal/mol, fast elongation
decreases the cotranslational folding probability, whereas
above this value fast elongation increases cotranslational
folding (Fig. 6). Although this threshold value of εm will
most likely be protein dependent, these results indicate
that a particular level of energetic frustration is required
for fast elongation to promote folding. We speculate that
strengthening the misfolded state interactions results in
slower interconversion rates between the states, thereby
shifting the system into a kinetically controlled regime
during protein synthesis.
Robustness with respect to changes in εn

To ensure our main conclusion is robust with respect to the
choice of εn, we varied εn between 1.3 and 1.5 kcal/mol and
εm between 1.3 and 2.2 kcal/mol, and synthesized the pro-
tein at the uniformly fast and 10-fold slower elongation
schedules (Schedules s2 and s10 in Fig. S4 c). We computed
the difference in the resulting folding probabilities at the last
Biophysical Journal 112, 1807–1819, May 9, 2017 1815



FIGURE 6 The probability of cotranslational folding probability as a

function of elongation kinetics and interresidue interaction strength εm.

One-hundred protein synthesis simulations were carried out for each value

of εm and uniform amino acid addition time, while keeping εn fixed at the

tuned value of 1.5 kcal/mol. The amino acid addition time is rescaled by

tf ¼ 10 ns, the mean folding time of this protein off the ribosome. The

size of each point, and the number close to it, represent the fraction of

folded molecules (state N in Fig. 3) at the end of synthesis (residue 129).

Speeding up elongation increases the fraction of folded molecules when

εm > 1.5 kcal/mol (e.g., going from 15 to 0.15 at εm ¼ 2.0 or 2.5 kcal/mol).
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codon position. If fast translation promotes folding, then this
difference will be positive. We find that at all εn values there
exist multiple εm values for which fast translation promotes
folding (Fig. S10), indicating this scenario can arise regard-
less of the choice of the model protein’s residue-residue
interaction energies.
Posttranslational protein behavior can be
influenced by cotranslational events

To examine if the elongation history affects the posttransla-
tional behavior of our model protein, we continued the sim-
ulations after the nascent protein had completed synthesis
and had been released from the ribosome. As before, we re-
scaled the time-dependent results from the posttranslational
simulations by the fast-phase folding time of this protein
(1.0 ns) to provide a reduced timescale that is unaffected
by the accelerated dynamics characteristic of coarse-grained
models. Posttranslational simulations were started from the
ensemble of nascent-chain conformations reached at the end
of the nonuniform, fast and nonuniform, slow synthesis
simulations (schedules s5 and s39 in Fig. S4 c) because
they resulted in the highest and lowest cotranslational
folding probabilities (0.69 vs. 0.01; Fig. 4 b). During the
posttranslational simulations we observe that, whereas the
fraction of folded molecules increases over time, differences
between the folding probabilities persist during the 35-ms
posttranslational simulation (Fig. 7). We also simulated
the protein’s posttranslational behavior starting from the
conformational ensembles populated at the end of the uni-
formly fast and slow elongation schedules. For this case,
1816 Biophysical Journal 112, 1807–1819, May 9, 2017
there is very little difference in the protein’s postsynthesis
behavior during the 9-ms simulation (Fig. S7), likely due
to a smaller difference between the starting folding proba-
bilities (0.51 vs. 0.32; Fig. 4 a).

These results demonstrate that in some cases the influence
of the translation-elongation schedule can persist long after
a protein has been synthesized. This implies that the fraction
of posttranslational proteins that are misfolded can be
modulated through the appropriate choice of the elongation
schedule. Consistent with our results, experiments have
found that synonymous codon substitutions altered an anti-
body’s posttranslational binding affinity and aggregation
propensity (51), suggesting that the antibody’s cotransla-
tional folding was perturbed by altered translation kinetics.
The same effects are observed in another artificial
misfolding-prone protein

To test whether the main conclusions of this study can apply
to other proteins, we constructed an additional misfolding-
prone system by combining the single-basin G�o models of
PDBs:1ZZV (structure n) and 1ND9 (structure m). The con-
tact map of the resulting coarse-grained model (Fig. S8) is
characterized by the optimal value s ¼ 1 (see definition in
the Materials and Methods). The force-field parameters εn
and εm (see Eqs. S2 and S3), which describe the strengths
of the contacts in Fig. S8, were tuned to values of 1.6 and
1.48 kcal/mol, respectively. The resulting coarse-grained
protein model can populate a folded state composed of 80
residues with a a/b topology, or a misfolded state composed
of 49 residues with a-helical topology. In REX simulations
without the ribosome, the probabilities of the native and
misfolded states are, respectively, 0.98 and 0.02 at 310 K.

The protein predominantly populates the misfolded state
at nascent chain lengths between 70 and 105 residues, ac-
cording to the arrested-ribosome simulations (Fig. S9, a
and b). Therefore, we simulated synthesis of this protein us-
ing two elongation schedules whose rates differ only in the
misfolding-prone region (Fig. S9 c). When elongation is
faster, we observe a fourfold increase in the probability of
cotranslational folding compared to when synthesis is
slower (0.36 versus 0.08, Fig. S9 d). These results indicate
that fast-translating codons can help proteins with different
native and misfolded topologies to fold cotranslationally.
The ratio of simulation timescales are relevant to
one-third of the E. coli proteome

A question of fundamental importance concerning the valid-
ity of our results is whether the ratio of timescales of amino
acid addition to domain folding is realistic, because this ra-
tio influences how far from equilibrium cotranslational
folding is in our simulations, and consequently the impor-
tance of kinetic control to the folding process. In our simu-
lations, amino-acid addition occurred on timescales ranging
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from 0.03 to 15 ns, and the mean folding time of the fast-ki-
netic phase was 1.0 ns off the ribosome (Fig. S2). Thus, this
ratio varies from 0.03 to 15 in our simulations. To estimate
the fraction of the cytosolic E. coli proteome that falls
within this range we utilized the estimated domain folding
times from the structural and kinetic database in Ciryam
et al. (15), which reports the folding times for 1236 domains
from 758 cytosolic proteins. Assuming the E. coli’s average
codon translation time is 0.10 s, allowing us to compute the
ratio of amino-acid addition to folding time of each domain
in the database. We find that 37% of the proteome falls
within the simulated ratio of timescales, indicating that by
this metric, our simulations are kinetically relevant to an
appreciable fraction of E. coli proteins.
CONCLUSIONS

In this study, we have introduced, to our knowledge, a new
protocol for incorporating misfolding into structure-based
coarse-grained models of proteins. This method allows in-
formation from two experimental structures to be incorpo-
rated into the parameterization of the force field, to
maintain the structural fidelity of the alternative tertiary
structures and to tune the relative stability of these ordered
states. Our approach can be used with publicly available
force fields (e.g., CHARMM, AMBER), without the need
for modification to their functional forms or implementation
of multi-Hamiltonian simulations. Although we modeled
artificial misfolding-prone proteins, our approach can be
applied to real misfolding-prone proteins, provided high-
resolution structures of both the native and misfolded states
are available. A key challenge in this latter area is that sol-
uble, misfolded structures have not been characterized at
high enough resolution in the experimental literature to be
used as inputs for our modeling strategy.

We applied this coarse-grained methodology to under-
stand at the molecular level how fast-translation can pro-
mote protein folding, complementing the predictions
obtained from a previous kinetic model (31). We simulated
the synthesis of two proteins, each able to populate different
native and misfolded states, using a variety of translation-
elongation schedules. We also simulated the posttransla-
tional behavior of one of them. Our results indicate that
because these nascent proteins can be trapped in long-lived
nonnative states, the outcome of synthesis (state probabili-
ties and folding pathways) strongly depends on the distribu-
tion of amino acid-addition rates during elongation.
Specifically, in the nonequilibrium regime, the simulated
nascent proteins are more likely to reach the native state
at the end of synthesis if elongation across the misfolding-
prone segments is fast, consistent with the chemical kinetic
predictions (31). This trend is also observed when the entire
protein is synthesized quickly, which is qualitatively consis-
tent with lower levels of aggregation observed experimen-
tally upon speedup of translation in yeast and worms (47).
Fast elongation rates are beneficial not only for folding in
difficult-to-fold regions, but a suitable combination of fast
and slow elongation rates can also maximize cotranslational
folding. Conversely, we observe that even a single slow-
translating codon may result in very high levels of
nascent-protein misfolding (Fig. S4 b) whose effect can
persist after the protein has been released from the ribosome
(Fig. 7).

Deviations from these trends are mainly observed when
synthesis of the nascent protein is slow enough to switch
the protein’s behavior from a nonequilibrium regime (i.e.,
kinetic control) to a quasi-equilibrium regime (i.e., thermo-
dynamic control). Because the kinetic regime that a nascent
chain experiences is a complex function of the various time-
scales associated with translation and cotranslational
folding (26), not all proteins that are misfolding-prone
will benefit from fast elongation. However, we have esti-
mated that up to 37% of cytosolic E. coli proteins have
values of the ratio of folding time to elongation time that
fall within the range of ratios used in our simulations.
This suggests that the kinetic partitioning mechanism we
have observed in our simulations may be relevant to an
appreciable subset of proteins.

The results of our simulations confirm the kinetic parti-
tioning mechanism identified previously in a chemical ki-
netic model. By utilizing a coarse-grained description of
the nascent protein and the ribosome, we have explored
this phenomenon using a more realistic model, which is
able to capture energetic and structural details of cotransla-
tional folding, and that results in a multiplicity of folding
Biophysical Journal 112, 1807–1819, May 9, 2017 1817
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pathways that are absent in the kinetic model. The coarse-
grained model has provided a number of additional insights
including a molecular view of the coupling of cotransla-
tional folding and elongation schedules, how individual
pathway probabilities are affected by 40 different elongation
schedules, how increasing energetic frustration shifts the
protein from a regime in which accelerating translation
elongation hinders folding to one in which it helps, and
the impact of elongation on posttranslational protein
behavior.

How broadly our conclusions apply to other proteins de-
pends on additional factors, including the structural details
of the native and misfolded states and the location of the
misfolding-prone segment along the protein’s sequence.
Therefore, we do not expect that all misfolding-prone pro-
teins will benefit from fast translation elongation rates.
For example, a protein with a misfolding segment located
at its C terminus would not benefit from the kinetic parti-
tioning mechanism we have identified because both the mis-
folding-prone region and the fully synthesized domain
would simultaneously emerge from the exit tunnel. An inter-
esting question for future research is to understand if the use
of fast-translating codons is a wide-spread evolutionary
strategy to prevent aggregation caused by cotranslational
protein misfolding. Answering this question will require
either the application of our approach to a large, diverse
set of different proteins or high-throughput experimental
methods.
SUPPORTING MATERIAL

Supporting Materials and Methods and ten figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(17)30393-4.
AUTHOR CONTRIBUTIONS

E.P.O. and F.T. designed research. F.T. performed the research. E.P.O. and

F.T. contributed analytical tools. F.T. analyzed data. E.P.O. and F.T. wrote

the paper.
ACKNOWLEDGMENTS

F.T. thanks Giordano Fumagalli for the support provided with the statistical

analysis.
REFERENCES

1. Ueda, Y., H. Taketomi, and N. Go. 1978. Studies on protein folding, un-
folding, and fluctuations by computer simulation. II. A. Three-dimen-
sional lattice model of lysozyme. Biopolymers. 17:1531–1548.

2. Hills, R. D., Jr., and C. L. Brooks, 3rd. 2009. Insights from coarse-
grained G�o models for protein folding and dynamics. Int. J. Mol. Sci.
10:889–905.

3. Bryngelson, J. D., J. N. Onuchic, ., P. G. Wolynes. 1995. Funnels,
pathways, and the energy landscape of protein folding: a synthesis.
Proteins. 21:167–195.
1818 Biophysical Journal 112, 1807–1819, May 9, 2017
4. Thirumalai, D., and D. K. Klimov. 1999. Deciphering the timescales
and mechanisms of protein folding using minimal off-lattice models.
Curr. Opin. Struct. Biol. 9:197–207.

5. Roy, M., L. L. Chavez, ., P. A. Jennings. 2005. The native energy
landscape for interleukin-1b. Modulation of the population ensemble
through native-state topology. J. Mol. Biol. 348:335–347.

6. Craig, P. O., J. L€atzer, ., P. G. Wolynes. 2011. Prediction of native-
state hydrogen exchange from perfectly funneled energy landscapes.
J. Am. Chem. Soc. 133:17463–17472.

7. Zheng,W., A. Borgia,., R. B. Best. 2016. Probing the action of chem-
ical denaturant on an intrinsically disordered protein by simulation and
experiment. J. Am. Chem. Soc. 138:11702–11713.

8. O’Brien, E. P., G. Ziv, ., D. Thirumalai. 2008. Effects of denaturants
and osmolytes on proteins are accurately predicted by the molecular
transfer model. Proc. Natl. Acad. Sci. USA. 105:13403–13408.

9. Best, R. B., Y.-G. Chen, and G. Hummer. 2005. Slow protein conforma-
tional dynamics from multiple experimental structures: the helix/sheet
transition of arc repressor. Structure. 13:1755–1763.

10. Okazaki, K., N. Koga, ., P. G. Wolynes. 2006. Multiple-basin energy
landscapes for large-amplitude conformational motions of proteins:
structure-based molecular dynamics simulations. Proc. Natl. Acad.
Sci. USA. 103:11844–11849.

11. Schug, A., P. C. Whitford, ., J. N. Onuchic. 2007. Mutations as trap-
doors to two competing native conformations of the Rop-dimer. Proc.
Natl. Acad. Sci. USA. 104:17674–17679.

12. Zuckerman, D. M. 2004. Simulation of an ensemble of conformational
transitions in a united-residue model of calmodulin. J. Phys. Chem. B.
108:5127–5137.

13. Camilloni, C., and L. Sutto. 2009. Lymphotactin: how a protein can
adopt two folds. J. Chem. Phys. 131:245105.

14. Ramı́rez-Sarmiento, C. A., J. K. Noel,., I. Artsimovitch. 2015. Inter-
domain contacts control native state switching of RfaH on a dual-
funneled landscape. PLoS Comput. Biol. 11:e1004379.

15. Ciryam, P., R. I. Morimoto,., E. P. O’Brien. 2013. In vivo translation
rates can substantially delay the cotranslational folding of the Escher-
ichia coli cytosolic proteome. Proc. Natl. Acad. Sci. USA. 110:E132–
E140.

16. O’Brien, E. P., P. Ciryam, ., C. M. Dobson. 2014. Understanding the
influence of codon translation rates on cotranslational protein folding.
Acc. Chem. Res. 47:1536–1544.

17. Nilsson, O. B., R. Hedman, ., G. von Heijne. 2015. Cotranslational
protein folding inside the ribosome exit tunnel. Cell Reports.
12:1533–1540.

18. Fedyukina, D. V., and S. Cavagnero. 2011. Protein folding at the exit
tunnel. Annu. Rev. Biophys. 40:337–359.

19. O’Brien, E. P., M. Vendruscolo, and C. M. Dobson. 2012. Prediction of
variable translation rate effects on cotranslational protein folding. Nat.
Commun. 3:868.

20. Trovato, F., and E. P. O’Brien. 2016. Insights into cotranslational
nascent protein behavior from computer simulations. Annu. Rev. Bio-
phys. 45:345–369.

21. Yu, C.-H., Y. Dang, ., Y. Liu. 2015. Codon usage influences the local
rate of translation elongation to regulate co-translational protein
folding. Mol. Cell. 59:744–754.

22. O’Brien, E. P., J. Christodoulou, ., C. M. Dobson. 2011. New sce-
narios of protein folding can occur on the ribosome. J. Am. Chem.
Soc. 133:513–526.

23. Trovato, F., andV. Tozzini. 2014.Diffusionwithin the cytoplasm: ameso-
scale model of interacting macromolecules. Biophys. J. 107:2579–2591.

24. Cheung, M. S. 2013. Where soft matter meets living matter–protein
structure, stability, and folding in the cell. Curr. Opin. Struct. Biol.
23:212–217.

25. Hyeon, C., and D. Thirumalai. 2011. Capturing the essence of
folding and functions of biomolecules using coarse-grained models.
Nat. Commun. 2:487.

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30393-4
http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30393-4
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref1
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref1
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref1
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref4
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref4
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref4
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref5
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref5
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref5
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref10
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref10
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref10
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref10
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref12
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref12
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref12
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref13
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref13
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref14
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref14
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref14
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref15
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref15
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref15
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref15
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref17
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref17
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref17
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref18
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref18
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref19
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref19
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref19
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref20
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref20
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref20
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref21
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref21
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref21
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref22
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref22
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref22
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref23
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref23
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref24
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref24
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref24
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref25
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref25
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref25


Fast Synthesis Helps Cotranslational Folding
26. Sharma, A. K., B. Bukau, and E. P. O’Brien. 2016. Physical origins of
codon positions that strongly influence cotranslational folding: a
framework for controlling nascent-protein folding. J. Am. Chem. Soc.
138:1180–1195.

27. Tanaka, T., N. Hori, and S. Takada. 2015. How co-translational folding
of multi-domain protein is affected by elongation schedule: molecular
simulations. PLOS Comput. Biol. 11:e1004356.

28. Wang, E., J. Wang,., Y. Xiao. 2015. Computational evidence that fast
translation speed can increase the probability of cotranslational protein
folding. Sci. Rep. 5:15316.

29. Elcock, A. H. 2006. Molecular simulations of cotranslational protein
folding: fragment stabilities, folding cooperativity, and trapping in
the ribosome. PLOS Comput. Biol. 2:e98.

30. Zhang, B., and T. F. Miller, 3rd. 2012. Long-timescale dynamics and
regulation of sec-facilitated protein translocation. Cell Reports.
2:927–937.

31. O’Brien, E. P., M. Vendruscolo, and C. M. Dobson. 2014. Kinetic
modelling indicates that fast-translating codons can coordinate cotrans-
lational protein folding by avoiding misfolded intermediates. Nat.
Commun. 5:2988.

32. Buhr, F., S. Jha,., A. A. Komar. 2016. Synonymous codons direct co-
translational folding toward different protein conformations.Mol. Cell.
61:341–351.

33. Nedialkova, D. D., and S. A. Leidel. 2015. Optimization of codon
translation rates via tRNA modifications maintains proteome integrity.
Cell. 161:1606–1618.

34. O’Brien, E. P., J. Christodoulou, ., C. M. Dobson. 2012. Trigger
factor slows co-translational folding through kinetic trapping while
sterically protecting the nascent chain from aberrant cytosolic interac-
tions. J. Am. Chem. Soc. 134:10920–10932.

35. Chaney, J. L., and P. L. Clark. 2015. Roles for synonymous codon
usage in protein biogenesis. Annu. Rev. Biophys. 44:143–166.

36. Tozzini, V. 2005. Coarse-grained models for proteins. Curr. Opin.
Struct. Biol. 15:144–150.

37. Trovato, F., R. Nifosı̀,., V. Tozzini. 2013. A minimalist model of pro-
tein diffusion and interactions: the green fluorescent protein within the
cytoplasm. Macromolecules. 46:8311–8322.

38. Kouza, M., M. S. Li, ., D. Thirumalai. 2006. Effect of finite size
on cooperativity and rates of protein folding. J. Phys. Chem. A.
110:671–676.
39. Wallin, S., and H. S. Chan. 2009. Conformational entropic barriers
in topology-dependent protein folding: perspectives from a simple
native-centric polymer model. J. Phys. Condens. Matter. 21:329801–
329801.

40. Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual mole-
cular dynamics. J. Mol. Graph. 14:33–38, 27–28.

41. Karanicolas, J., and C. L. Brooks, 3rd. 2002. The origins of asymmetry
in the folding transition states of protein L and protein G. Protein Sci.
11:2351–2361.

42. Chu, J.-W., and G. A. Voth. 2007. Coarse-grained free energy functions
for studying protein conformational changes: a double-well network
model. Biophys. J. 93:3860–3871.

43. Hanazono, Y., K. Takeda, and K. Miki. 2016. Structural studies of the
N-terminal fragments of the WW domain: insights into co-translational
folding of a b-sheet protein. Sci. Rep. 6:34654.

44. Chow, C. C., C. Chow, ., S. Cavagnero. 2003. Chain length depen-
dence of apomyoglobin folding: structural evolution from misfolded
sheets to native helices. Biochemistry. 42:7090–7099.

45. Jennings, P. A., B. E. Finn,., C. R. Matthews. 1993. A reexamination
of the folding mechanism of dihydrofolate reductase from Escherichia
coli: verification and refinement of a four-channel model. Biochemistry.
32:3783–3789.

46. Burns-Hamuro, L. L., P. M. Dalessio, and I. J. Ropson. 2004. Replace-
ment of proline with valine does not remove an apparent proline
isomerization-dependent folding event in CRABP I. Protein Sci.
13:1670–1676.

47. Veitshans, T., D. Klimov, and D. Thirumalai. 1997. Protein folding
kinetics: timescales, pathways and energy landscapes in terms of
sequence-dependent properties. Fold. Des. 2:1–22.

48. Sugita, Y., and Y. Okamoto. 1999. Replica-exchange molecular dy-
namics method for protein folding. Chem. Phys. Lett. 314:141–151.

49. Kim, S. J., J. S. Yoon, ., W. R. Skach. 2015. Translational tuning op-
timizes nascent protein folding in cells. Science. 348:444–448.

50. Thirumalai, D., D. K. Klimov, and S. A. Woodson. 1997. Kinetic par-
titioning mechanism as a unifying theme in the folding of biomole-
cules. Theor. Chem. Accounts Theory Comput. Model. 96:14–22.

51. Hu, S., M. Wang, ., M. He. 2013. Genetic code-guided protein syn-
thesis and folding in Escherichia coli. J. Biol. Chem. 288:30855–
30861.
Biophysical Journal 112, 1807–1819, May 9, 2017 1819

http://refhub.elsevier.com/S0006-3495(17)30393-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref28
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref28
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref28
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref29
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref29
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref29
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref30
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref30
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref30
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref32
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref32
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref32
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref33
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref33
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref33
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref34
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref34
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref34
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref34
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref35
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref35
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref36
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref36
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref37
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref37
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref37
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref38
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref38
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref38
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref40
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref40
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref41
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref41
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref41
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref42
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref42
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref42
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref43
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref43
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref43
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref44
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref44
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref44
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref45
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref45
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref45
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref45
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref46
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref46
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref46
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref46
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref47
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref47
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref47
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref48
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref48
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref49
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref49
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref50
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref50
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref50
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref51
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref51
http://refhub.elsevier.com/S0006-3495(17)30393-4/sref51

	Fast Protein Translation Can Promote Co- and Posttranslational Folding of Misfolding-Prone Proteins
	Introduction
	Materials and Methods
	Constructing the multibasin Gō model
	Starting structures and simulation protocols
	Analyses

	Results and Discussion
	A coarse-grained model that allows for protein misfolding
	Folding kinetics consists of fast and slow phases
	The misfolding-prone protein explores a heterogeneous structural ensemble on the ribosome
	Rapid synthesis through misfolding-prone segments increases cotranslational folding
	A general trend in cotranslational folding versus synthesis time
	Fast elongation promotes folding by reducing the number of pathways involving misfolded states
	Fast synthesis helps protein folding above a threshold-level of energetic frustration
	Robustness with respect to changes in εn
	Posttranslational protein behavior can be influenced by cotranslational events
	The same effects are observed in another artificial misfolding-prone protein
	The ratio of simulation timescales are relevant to one-third of the E. coli proteome

	Conclusions
	Supporting Material
	Author Contributions
	Acknowledgments
	References


