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Abstract A review of the physical principles that are the
ground of the stochastic formulation of chemical kinetics is
presented along with a survey of the algorithms currently
used to simulate it. This review covers the main literature of
the last decade and focuses on the mathematical models
describing the characteristics and the behavior of systems
of chemical reactions at the nano- and micro-scale. Advan-
tages and limitations of the models are also discussed in the
light of the more and more frequent use of these models and
algorithms in modeling and simulating biochemical and even
biological processes.

Keywords Chemical kinetics - Markov processes -
Stochastic simulation algorithms - Spatio-temporal
algorithms - Hybrid simulation methods - Biochemical
systems

Introduction

Stochastic chemical kinetics describes the time evolution of
a chemically reacting system in a way that takes into account
the fact that molecules come in whole numbers and their
collisions are random events. The stochasticity of reaction
events becomes significant when a small number of reactant
species are involved in the system.

The theoretical foundations of stochastic chemical kinet-
ics and its simulation date back to more than 30 years ago
when a mathematical probabilistic formalization of the
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physical processes underlying molecular collisions was giv-
en by Gillespie [1-6], and McQuarry [7]. At the end of the
1970s, Gillespie paved the way for the development of
algorithms able to numerically simulate the time evolution
of systems of coupled chemical reactions, and, several years
later, in 1992, 2001, and 2007, he returned to this topic
[8—10], as the scientific community of modelers and chemists
showed a renewed interest in the numerical simulation of the
time behavior of a chemical system. Especially in the last
decade, researchers are increasingly using a stochastic ap-
proach to chemical kinetics in the analysis of cellular systems
in biology, where the small molecular populations of only a
few reactant species can lead to deviations from the predictions
of the deterministic differential equations of classical chemical
kinetics. Nowadays, a plethora of algorithms and tools are at
the disposal of the researchers who want to simulate the
kinetics of chemical and biochemical systems. In spite of the
large number of available software tools, the mathematical
models and the derived algorithms for the stochastic chemical
kinetics belong principally to four classes: (1) the exact
methods, (2) the approximate methods, that simulate only the
waiting time of reaction and the sequence of reaction events
without taking into account the spatial location of interacting
molecules, the homogeneity of the reaction medium, and the
eventuality of ldiffusion-driven reactions, (3) the spatio-
temporal algorithms that simulate the chemical kinetics in 3D
space, and (4) the hybrid algorithms that simulate fast dynam-
ics subsystems by either ordinary differential equations or
stochastic differential equations and the slow dynamics
subsystem by stochastic simulation algorithms.

This paper reviews the mathematical models rather than
the existent software tools currently implemented to simulate
them. This review exposes—in a detailed and critical way—
the physical foundations, the assumptions, and the extents of
validity of different mathematical “pictures” of a stochastic
chemical reacting system. The main purpose of this review
effort is to guide researchers, practitioners, but also chemists
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and biochemists to adopt the appropriate mathematical frame-
work for a specific problem.

This review does not focus on the technical features and the
performances of the software tools implementing the models.
This kind of review can be found in many other recent works
mainly devoted to the presentation of new tools and to the
comparison with their efficiency with the efficiency of the
existent ones. Some good reviews of the state-of-the-art tools
can be found [11-15]. The motivation of our focus is to provide
a theoretical background to enable researchers, but also stu-
dents in the field, to make them aware of the uses, abuses, and
misuses of models. We are confident that this can help re-
searchers, practitioners, and students to make a rational choice
among the models before choosing from among the tools.

The paper is organized as follows: the next section intro-
duces the Markov processes and chemical master equation,
which are preliminary to the understanding of the mathematical
formalization of the stochastic molecular approach to chemical
kinetics (described in section Molecular approach to chemical
kinetics section ). Fundamental hypothesis of stochastic
chemical kinetics section describes the physics of the reactive
collision between molecules, explaining the meaning of impor-
tant concepts as reaction orders and reaction rate constant.
Then, The reaction probability density function section intro-
duces the concept of reaction probability density function
which—in the stochastic framework—replaces the determinis-
tic reaction rate equation and is necessary to understand
the mathematical formalization of stochastic chemical kinetics
proposed by Gillespie. The next section—The stochastic
simulation algorithms section—reviews the exact stochastic
simulation algorithms, while Time-dependent extension of
the First Reaction Method section reviews a recent extension
of theGillespie exact stochastic simulation algorithm. Approx-
imate stochastic simulation algorithms section switches to the
approximate stochastic simulation algorithm and Advantages
and drawbacks of Gillespie algorithm section discusses the
advantages and the limitations of Gillespie’s stochastic simu-
lation algorithms. Finally, Spatio-temporal algorithms sections,
The Langevin equation section, and Conclusions section
present the responses to the limitation of stochastic simulation
algorithms: the spatio-temporal stochastic algorithm, the
Langevin equation, and the hybrid deterministic/stochastic
algorithms, respectively.

The master equation

The story of the master equation usually begins with Markov
processes. A Markov process is a special case of a stochastic
process. Stochastic processes are often used in physics, bi-
ology, and economy to model randomness. In particular,
Markov processes are often used to model randomness, since
it is much more tractable than a general stochastic process. A
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general stochastic process is a random function f{.X; ¢), where
X is a stochastic variable and ¢ is time. The definition of a
stochastic variable consists in specifying

» aset of possible values (called “set of states* or “sample
space”)
* a probability distribution over this set

The set of states may be discrete, e.g., the number of
molecules of a certain component in a reacting mixture. Or
the set may be continuous in a given interval, e.g., one
velocity component of a Brownian particle and the kinetic
energy of that particle. Finally, the set may be partly discrete
and partly continuous, e.g., the energy of an electron in the
presence of binding centers. Moreover, the set of states may
be multidimensional; in this case, tX is written as a vector X,
for example, X may stand for the three velocity components
of a Brownian particle or for the collection of all numbers of
molecules of the various components in a reacting mixture.

The probability distribution, in the case of a continuous
one-dimensional range, is given by a function P(x) that is
non-negative

P(x)>0
and normalized in the sense
[P(x)dx =1

where the integral extends over the whole range. The prob-
ability that X has a value between x and x+dx is

P(x)dx

Often in physical and biological sciences, a probability dis-
tribution is visualized by an “ensemble”. From this point of
view, a fictitious set of an arbitrary large number N of quantities,
all having different values in the given range, is introduced in
such a way the number of these quantities having a value
between x and x+ dx is NP(x)dx. Thus, the probability distribu-
tion is replaced with a density distribution of a large number of
“samples”. This does not affect any simulation result, since it is
merely a convenience in talking about probabilities, and in this
work, we will use this language. It may be added that it can
happen that a biochemical system does consist of a large number
of identical replica, which to a certain extent constitute a phys-
ical realization of an ensemble. For instance, the molecules of an
ideal gas may serve as an ensemble representing the Maxwell
probability distribution for the velocity. The use of an ensemble
is not limited to such cases, nor based on them, but serves as a
more concrete visualization of a probability distribution.

Finally, we remark that in a continuous range it is possible
for P(x) to involve delta functions,

P(x) = Y p,0(xxn)+P(x),
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Where P is finite or at least integrable and non-negative,
P,>0, and

Xn:pn + Ji’(x)dx =1

Physically, this may be visualized as a set of discrete
states x,, with probability p,, embedded in a continuous range.
If P(x) consists of § functions alone i. e. P(x)=0, then it can
also be considered asa probability distribution p, on the
discrete set of states x,,.

A general way to specify a stochastic process is to define
the joint probability densities for values X1, X,, X3,... at times
ty, ty, t3,... respectively

p(x1, s x2, b2 X3, 135 ... (1)

If all such probabilities are known, the stochastic process
is fully specified, (but, in general, it is not an easy task to find
all such distributions). Using (1) the conditional probabilities
can be defined as usual

P13 X0, 15 Vg, T Y, T2 )

PO TV, T2s )

plxr tisxa by Ty, T2 ) =

Where x;, x,... and yi, y,,... are values at times
tH1>t>"->11>7>.... This is where a Markov process has
a very attractive property. It has no memory. For a Markov
process

p(x1, f15x0, to5 . vy, T s, 25 ..) = p(x1, X, ts . vy, T1)

the probability to reach a state x; at time #; and state x, at time
t1, if the state is y; at time 77, is independent of any previous
state, with times ordered as before. This property makes it
possible to construct any of the probabilities (1) by a transi-
tion probability p_.(x,ty,7), (t>7), and an initial probability
distribution p (x,, t,):

p(xXi,tisx0, b5 . X, 1) =

P_>(x1 ’ tl |x27 12) _>(x2: tZ‘x% ZZv)---p_>(-xrrllrrl |X,,, tn)p(xn: tn)

(2)

A consequence of the Markov property is the Chapman—
Kolmogorov equation

P (et 1) = jpﬁ(x\,n\m) G ol 13)dxs (3)

The master equation is a differential form of the Chapman—
Kolmogorov Eq. 3. The terminology differs between different
authors. Sometimes, the term “master equation” is used only
for jump processes. Jump processes are characterized by
discontinuous motion, that is there is a bounded and non-
vanishing transition probability per unit time

. p (x4 Aty 1)
wlxly, £) = Jim ==

for some y such that |x—y|>e. Here, the function w(x|y;f)=

w(x[y).

The master equation for jump processes can be written

P [ el )t ) s ) @

The master equation has a very intuitive interpretation.
The first part of the integral is the gain of probability from
the state x” and the second part is the loss of probability to x’.
The solution is a probability distribution for the state space.
Analytical solutions of the master equation are possible to
calculate only for simple special cases.

The chemical master equation

A reaction R is defined as a jump to the state X from a state
Xg,» where X,XzeZ". The propensity w(Xg) = v(X) is the
probability for transition from Xz to X per unit time. A
reaction can be written as

w(Xg)

R —

The difference in molecule numbers ny=Xz—X is used to

write the master Eq. 4 for a system with M reactions

" M
w — ; w(X + n)p(X + ng, f)_; w(X)p(X, )

(5)

This special case of master equations is called the chem-
ical master equation (CME) [7, 16]. It is fairly easy to write;
however, solving it is quite another matter. The number of
problems for which the CME can besolved analytically is
even fewer than the number of problems for which the
deterministic reaction-rate equations can be solved analyti-
cally. Attempts to use the master equation to construct trac-
table time-evolution equations are also usually unsuccessful,
unless all the reactions in the system are simple monomo-
lecular reactions [5]. Consider, for instance, a deterministic
model of two metabolites coupled by a bimolecular reaction,
as shown in Fig. 1. The set of differential equation describing
the dynamic of this model is given in Table 1, where the [4]
and [B] are the concentrations of metabolite 4 and metabolite
B, while £, K, and p determine the maximal rate of synthesis,
the strength of the feedback, and the rate of degradation,
respectively.

In the formalism of the Markov process, the reactions in
Table 1 are written as in Table 2. The CME equation for the
system of two metabolites of Fig. 1 looks fairly complex as
in Table 3.
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Fig. 1 Two metabolites 4 and B coupled by a bimolecular reaction.
Adapted from [17]

S
>
Molecular approach to chemical kinetics

To understand how chemical kinetics can be modeled in a
stochastic way, first we need to address the difference
between the deterministic and the stochastic approach in
the representation of the amount of molecular species. In
the stochastic model, this is an integer representing the
number of molecules of the species, but in the deterministic
model, it is a concentration, measured in M (mol per liter).
Then, for a concentration of X of [X] M in a volume of V liters,
there are [X]V'mol of X and hence N, [X]V molecules, where
n,~6.023x10* is the Avogadro’s constant (the number of
molecules in 1 mol). The second issue that needs to be
addressed is the rate constant conversion. Much of the literature
on biochemical reaction is dominated by a continuous deter-
ministic view of kinetics. Consequently, where rate constants
are documented, they are usually deterministic constants . In
the following, we review the expression of the reaction pro-
pensity and the formulae that convert the deterministic rate
constants into stochastic rate constants.

Reactions are collisions

For a reaction to take place, molecules must collide with
sufficient energy to create a transition state. Ludwig
Boltzmann developed a very general idea about how energy
was distributed among systems consisting of many particles.
He said that the number of particles with energy £ would be
proportional to the value exp[—E/kzT]. The Boltzmann dis-
tribution predicts the distribution function for the fractional
number of particles N/N occupying a set of states i which
each have energy E;:

Ni g e*E i /kgT
N Z(T)

where kp is the Boltzmann constant, 7" is temperature
(assumed to be a sharply well-defined quantity), g; is the
degeneracy, or number of states having energy E;, N is the
total number of particles:

N=>Y N,
and Z(7) is called the partition function

2T) = gt

Alternatively, for a single system at a well-defined tem-
perature, it gives the probability that the system is in the
specified state. The Boltzmann distribution applies only to
particles at a high enough temperature and low enough
density that quantum effects can be ignored.

James Clerk Maxwell used Boltzmann’s ideas and applied
them to the particles of an ideal gas to produce the distribu-
tion bearing both men’s names (the Maxwell-Boltzmann
distribution). Maxwell also used, for the energy E, the for-
mula for kinetic energy E=(1/2)mv?, where v is the velocity
of the particle. The distribution is best shown as a graph
which shows how many particles have a particular speed in

Table 1 Reactions of the

chemical model displayed in No. Reaction Rate equation Type

Fig. 1; No. corresponds to the

number in the figure 1 Synthesis

: o) 4 w4 = i
2 A=l vo([A])=plA] Degradation
3 Synthesis
9B vs([B]) = rorhie;

4 B—u(B) ¢ va([B])=plB] Degradation
5 vs([4].[B)=ks[4][B] Bimolecular reaction

A+ B8
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Table 2 Reactions of the chemi-

cal model depicted in Fig. 1, their ~ No. Reaction w(X) ng
propensity and corresponding
“jump” of state vector ng’; 1 M@ 4 wi(@)=Vk/(1+a/VK,)) (=1,0
Vis the volume in which the
reactions occur 2 A—m(@ ¢ wa(a)=pa 1,0
3 b mia) g w3(b)=VK,/(1+b/VKy)) 0,~1)
R
* B wi(b)=pub 0. 1)
5 At Bwlah) ws(a,b)=kyablV 1,1

the gas. It may also be shown with energy rather than speed
along the x axis. Two graphs are shown in Figs. 2 and 3.
Consider a bi-molecular reaction of the form

S1+S—... (6)

the right-hand side is not important. This reaction means that
a molecule of S; is able to react with a molecule of S, if the
pair happen to collide with one another with sufficient ener-
gy, while moving around randomly, driven by Brownian
motion. Consider a single pair of such molecules in a closed
volume V. It is possible to use statistical mechanics argu-
ments to understand the physical meaning of the propensity
(i.e. hazard) of molecules colliding. Under the assumptions

Table 3 Set of chemical master equations describing the metabolites
interaction showed in Fig. 1

2000 — 11p(1,0,1) + pp(0,1,4) +5p(1,1,0)=V (k1 + k2)p(0,0,7)

ot

0(0,b,1) ks
=V 0,b-1,t
o T %Zp( ,b=1,1)

k
+up(1,b,0) + (b + O)p(0,b+ 1,7) + ?3(1) +1)p(1,b+1,0)-

ko
(V| ki + +ub>p(07b,t)
( ( 1+VLKZ>

op(a,0,1) ki
—v ~1,0,1
2 1 +;;K11p(a )+

+ula+1)pla+1,0,1) + pp(a, 1,0)+
k
+§’(a +pla+1,1,0)-

ky
<V<1 n V?(]) + ua)p(a, 0,1)

ap(a>b7 t) kl k2
=V ~1,b,t) + V———p(a,b—1,t
3 1+5;(11p(a 2by1) + 1Jr%/v(a, )+
+ula+Dpla+1,b,t)+ b+ 1)p(a,b+1,1)+

+73(a +1)(b+ Dpla+1,b+1,0)-

k1 k2 kd
-V b) +—ab bt
( <1+V(,K1+1+ b)+#(a+ )+Va )p(a7 1)

VK,

that the volume is not too large or well stirred, and in thermal
equilibrium, it can be rigorously demonstrated that the col-
lision propensity (also called collision hazard, hazard func-
tion or reaction hazard) is constant, provided that the volume
is fixed and the temperature is constant. Since the molecules
are uniformly distributed throughout the volume and this
distribution does not depend on time, then the probabilitythat
the molecules are within reaction distance is also indepen-
dent of time. A comprehensive treatment of this issue is
given in Gillespie [5, 8]. Here, we briefly review it by
highlighting the physical basis of the stochastic formulation
of chemical kinetics. Consider now that the system is com-
posed of a mixture of the two molecular species, S; and S, in
gas-phase and in thermal, but not necessarily chemical equi-
librium inside the volume V. Assume that the S; and S,
molecules are hard spheres of radii 7, and r,, respectively.
A collision will occur whenever the center-to-center distance
between an S; molecule and an S, molecule is less than
ri,=r1+r, (Fig. 4). To calculate the molecular collision rate,
pick an arbitrary 1-2 molecular pair, and denote by vy, the
speed of molecule 1 relative to molecule 2. Then, in the next
small time interval §¢, molecule 1 will sweep out, relative to
molecule 2, a collision volume

2
OV ot = 7TI"12V1251

most probable kinetic energy

average kinetic energy

Probability

activation energy
I
1

!
!
I
!
]
!

Kinetic energy

Fig. 2 Since the curve shape is not symmetric, the average kinetic
energy will always be greater than the most probable. For the reaction to
occur, the particles involved need a minimum amount of energy—the
activation energy
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Fig. 3 Maxwell-Boltzmann 12.00% T

speed distributions at different

temperatures. As the temperature
P P 10.00%

increases, the curve will spread
to the right and the value of the

most probable kinetic energy
will decrease. At temperature
increases the probability of

8.00%

finding molecules at higher
energy increases. Note also that
the area under the curve is

6.00% / 7
4.00%

AN )
\\ |

relative frequency

constant since total probability
must be one

— 473K

///

2.00%

0.00%

g

0 200

i.e. if the center of molecule 2 happens to lie inside 6V,
at time ¢, then the two molecules will collide in the time
interval (¢, t+6f) (Table 4). Now, the classical procedure
would estimate the number of S, molecules whose centers
lie inside V., divide the number by dz, and then take
the limit 6— 0 to obtain the rate at which the S; molecule
is colliding with S, molecules. However, this procedure
suffers from the following difficulty: as dV,.,;—0, the
number of S, molecules whose centers lie inside 6V,
will be either 1 or 0, with the latter possibility become more
and more likely as the limiting process proceeds. Then, in the
limit of vanishingly small ¢, it is physically meaningless to
talk about “the number of molecules whose center lie inside
6Vcoll”~

To override this difficulty, we can exploit the assumption
of thermal equilibrium. Since the system is in thermal equi-
librium, the molecules will at all times be distributed ran-
domly and uniformly throughout the containing volume V.
Therefore, the probability that the center of an arbitrary S,
molecule will be found inside 0V, at time # will be given by
the ratio 8V,,;/V; note that this is true even in the limit of

R: S+ S, CHproducts

MOLECULE 1
Vo8t =0+ Ty
MOLECULE 2
Ty
v, A 5
V12 coll = ®TypV 20t

Fig. 4 The collision volume 0V,,; which molecule 1 will sweep out
relative to molecule 2 in the next small time interval ¢ (adapted from [1]).
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vanishingly small §V,,;. If we now average this ratio over
the velocity distributions of S; and S, molecules, we may
conclude that the average probability that a particular 1-2
molecular pair will collide in the next vanishingly small time
interval 6z is

T, V120t

6Vcoll/ V= %

(7)
For Maxwellian velocity distributions, the average relative
speed vy is

( 8kT )
Vi2 =
Tmi2

where £ is the Boltzmann’s constant, T the absolute tempera-
ture, and mi, the reduced mass mmy/(m,+m,). If we are
given that at time 7 there are X; molecules of the species S|
and X, molecules of the species S,, making a total of X;X5
distinct 1-2 molecular pairs, then it follows from (7) that the
probability that a 1-2 collision will occur somewhere inside V'
in the next infinitesimal time interval (¢, t+dr) is

X1 Xomrd, viadt

- (8)

Although we cannot rigorously calculate the number of
1-2 collisions occurring in ¥ in any infinitesimal interval,
we can rigorously calculate the probability of a 1-2 colli-
sion occurring in ¥ in any infinitesimal time interval.
Consequently, we really ought to characterize a system of
thermally equilibrated molecules by a collision probability
per unit time, namely the coefficient of df in (8) instead of a
collision rate. This is why these collisions constitute a
stochastic Markov process instead of a deterministic rate
process.
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Table 4 Summary of the complexity of the approaches to stochastic simulation algorithms reviewed in this paper

Algorithm Complexity

Direct method

It takes time proportional to the number of reactions M to update the propensities («; s): it takes time proportional to the

number of reactions to calculate X; a; and to generate a random number according to p(u)=a,/ao

First reaction method

The algorithm uses M random numbers per iteration (where M is the number of reactions): it takes time proportional to

M to update the a;s; (ii) it takes time proportional to M to calculate the smallest waiting time of reaction.

Next reaction method

Approximate simulation

algorithms exact simulation algorithms [48].

Spatial algorithms

The complexity is O (In M), where M is the number of reactions.
Performances strongly dependent on Az. When At is sufficiently small, the performances are similar to those of the

The performances depend (1) on the complexity of models of diffusion-driven reaction systems in terms both of

number of reactant species and interactions, and (2) on the stochastic simulation algorithm incorporated in the
modeling and simulation framework. See [48, 50] for state of the art.

Hybrid algorithms

The performances depend on (1) the complexity of models in terms both of number of reactant species and

interactions, and (2) the stochastic simulation algorithm adopted. See [49-52] for state of the art.

Then, we can conclude that, for a bimolecular reaction of
the form (6), the probability that a randomly chosen A-B
pair will react according to R in next dt is

Preaer = {(WW) X exp [—E / (kBT)] } X X1X>

V

_ { (@ exp (—E / (ksT) }Xledt (9)

Reaction rates

The reaction rate for a reactant or product in a particular
reaction is defined as the amount of the chemical that is
formed or removed (in mol or mass units) per unit time per
unit volume. The main factors that influence the reaction rate
include: the physical state of the reactants, the volume in
which the reaction occurs, the temperature at which the
reaction occurs, and whether or not any catalysts are present
in the reaction.

Physical state

The physical state (solid, liquid, gas, plasma) of a reactant is
also an important factor of the rate of change. When reactants
are in the same phase, as in aqueous solution, thermal motion
brings them into contact. However, when they are in differ-
ent phases, the reaction is limited to the interface between the
reactants. Reaction can only occur at their area of contact, in
the case of a liquid and a gas, and at the surface of the liquid.
Vigorous shaking and stirring may be needed to bring the
reaction to completion. This means that the more finely
divided a solid or liquid reactant, the greater its surface area
per unit volume, and the more contact it makes with the other
reactant, thus the faster the reaction.

Volume

The reaction propensity is inversely proportional to the vol-
ume. We can explain this fact in the following way. Consider
two molecules, Molecule 1 and Molecule 2. Let the mole-
cules positions in space be denoted by p; and p,, respective-
ly. If py and p, are uniformly and independently distributed
over the volume 7, for a sub-region of space D with volume
7, the probability that a molecule is inside D is

1
Pr(peD)=— i=1,2
vV

If we are interested in the probability that Molecule 1 and
Molecule 2 are within a reacting distance » of one another at
any given instant in time (assuming that » is much smaller
than the dimensions of the container, sothat boundary effects
can be ignored), this probability can be calculated as

Pr(|pi=ps| < 7) = E(Pr(lp1=ps| < rlp2))

but the conditional probability will be the same for any p,
away from the boundary, so that the expectation in redun-
dant, and we can state that

E(Pr(lp1=ps| < rlps)) = Pr(lpy=ps| < r) = Pr(p;eD)

_ 47073
Y%

This probability is inverse proportional to V.

Arrhenius equation

Temperature usually has a major effect on the speed of a
reaction. Since a molecule has more energy when it is heated,
then the more energy it has, the more chances it has to collide
with other reactants. Thus, at a higher temperature, more
collisions occur. More importantly, however, is the fact that
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heating a molecule affects its kinetic energy, and therefore
the “energy” of the collision.

The reaction rate coefficient £ has a temperature depen-
dency, which is usually given by the empirical Arrhenius
law:

E,
k—Aexp{ ﬁ] (10)

E, is the activation energy and R is the gas constant. Since
at temperature 7 the molecules have energies given by a
Boltzmann distribution, one can expect the number of colli-
sions with energy greater than E, to be proportional to
exp[—E./RT]. A is the frequency factor. This factor indicates
how many collisions between reactants have the correct
orientation to lead to the products. The values for 4 and E,
are dependent on the reaction.

It can be seen that either increasing the temperature or
decreasing the activation energy (for example, through
the use of catalysts) will result in an increase in the rate
of reaction.

While remarkably accurate in a wide range of circum-
stances, the Arrhenius equation is not exact, and various
other expressions are sometimes found to be more useful in
particular situations. One example comes from the “collision
theory” of chemical reactions, developed by Max Trautz and
William Lewis in the years 1916—1918. In this theory, mol-
ecules react if they collide with a relative kinetic energy
along their line-of-centers that exceeds E, This leads to an
expression very similar to the Arrhenius equation, with the
difference that the pre-exponential factor “A” is not constant
but instead is proportional to the square root of temperature.
This reflects the fact that the overall rate of all collisions,
reactive or not, is proportional to the average molecular

speed which in turn is proportional to /7 . In practice, the
square root temperature dependence of the pre-exponential
factor is usually very slow compared to the exponential
dependence associated with E,.

Another Arrhenius-like expression appears in the Transition
State Theory of chemical reactions, formulated by Wigner,
Eyring, Polanyi, and Evans in the 1930s. This takes various
forms, but one of the most common is:

k=——exp RT

kgT AG
ool
where AG is the Gibbs free energy of activation, kg is
Boltzmann’s constant, and h is Planck’s constant. At first sight,
this looks like an exponential multiplied by a factor that is
linear in temperature. However, one must remember that free
energy is itself a temperature-dependent quantity. The fiee
energy of activation includes an entropy term as well as an
enthalpy term, both of which depend on temperature, and when
all of the details are worked out one ends up with an expression
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that again takes the form of an Arrhenius exponential multi-
plied by a slowly varying function of 7. The precise form of the
temperature dependence depends upon the reaction, and can be
calculated using formulae from statistical mechanics (it in-
volves the partition functions of the reactants and of the acti-
vated complex).

Catalysts

A catalyst is a substance that accelerates the rate of a chem-
ical reaction but remains unchanged afterward. The catalyst
increases the rate reaction by providing a different reaction
mechanism to occur with a lower activation energy. In auto-
catalysis, a reaction product is itself a catalyst for that reac-
tion possibly leading to a chain reaction. Proteins that act as
catalysts in biochemical reactions are called enzymes.

The formulation of stochastic chemical kinetics of Gillespie
assumes that temperature and volume do not change in time.
We will see later in this paper how these hypothesis can be
relaxed and the mathematical framework of chemical kinetics
can be reformulated to take into account temperature and
volume variations occurring in a reaction chamber.

The reaction rate constant in the stochastic formulation
of chemical kinetics

Switching from a deterministic framework to a stochastic
one imposes the conversion of the measurement units from
concentration units to numbers of molecules units. In the
following, we review the conversion formulas in the case of
zero-th, first, second and higher order of reaction.

Zeroth-order reactions

These reactions have the following form

R,: ¢5X (11)

Although in practice things are not created from nothing,
it is sometimes useful to mode a constant rate of production
of a chemical species (or influx from another compartment)
via a zeroth-order reaction. In this case, c,, is the propensity
of a reaction of this type occurring, and so

a/L(Yv C,u,) =Cu (12)

For a reaction of this nature, the deterministic rate law is k
Ms !, and thus for a volume ¥, X is produced at a rate n4Vk,
molecules per second, where k, is the deterministic rate
constant for the reaction R,,. As the stochastic rate law is just
¢,, molecules per second, we have

ey =nyVk, (13)
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First-order reactions molecules of species .X;, and so

. . xi(x—1
Consider the first-order reaction a, ( Y, cu) =c, % (20)

R,: X;5 . (14)

Here, c,, represents the propensity that a particular mole-
cule of X; will undergo the reaction. However, if there are x;
molecules of of X;, each of which having a propensity of ¢,
of reacting, the combined propensity for a reaction of this

type is
(15)

First-order reactions of this nature represent the sponta-
neous change of a molecule into one or more other molecules
or the spontaneous dissociation of a complex molecule into
simpler molecules. They are not intended to model the
conversionof one molecule into another in the presence of
a catalysts, as this is really a second-order reaction. However,
in the presence of a large pool of catalyst that can be consid-
ered not to vary in concentration during the time evolution of
the reaction network, a first-order reaction provides a good
approximation. For a first-order reaction, the deterministic
rate law is k,[X] M s ', and so for a volume V, a concentra-
tion [X] corresponds to x=n,[X]V molecules. Since [X]
decreases at rate n4k,[X]V=k,x molecules per second, and
since the stochastic rate law is ¢, x molecules per second,
we have

a, (Yv cu) = CuXi

ey =k,

(16)

i.e. for first-order reactions, the stochastic and the deter-
ministic rate constants are equal.

Second-order reactions

The form of the second-order reaction is the following

Ry:Xi+Xi 5. (17)

Here, ¢, represents the propensity that a particular pair of
molecules X; and X}, will react. But, if there are x; molecule of
X; and x; molecules of X, there are xx; different pairs of
molecules of this type, and so this gives the combined
propensity of
a#(Y, Cu) = CpXiXk

(18)

There is another type of second-order reaction, called the
homodimerization reaction, which needs to be considered:
cy
R,:2X;— ... (19)

Again, ¢, is the propensity of a particular pair of mole-
cules reacting, but here there are only x,(x,—1)/2 pairs of

For second-order reactions, the deterministic rate law is
k [X ][ X M s '. Here, for a volume ¥, the reaction proceeds
at a rate of n .k, [X;][X;]V=Fk,xx;/(nV) molecules per sec-
ond. Since the stochastic rate law is c,x;x; molecules per
second, we have

k

_ K

_I’lAV

Cu (21)

For the homodimerization reaction, the deterministic law
is ku[Xi]z, so the concentration of X; decreases at rate
n A4kH[X,»]2 V=2kux,<2/(n V) molecules per second. The stochas-
tic rate law is ¢, x;(x;—1)/2 so that molecules X; are consumed
at arate of ¢, x,(x;-1) molecules per second. These two laws do
not match, but for large x;, x,(x;-1) can be approximated by x7,
and so, to the extent that the kinetics match, we have

=t (22)

Note the additional factor of two in this case.

By combining Eq. 21 with Eq. 9, we obtain the following
expression for the deterministic rate of a second-order reac-
tion of type (17)

E
— 2 1
ky, = ngviaTri,exp [—

ksT 23)

while for a second-order reaction of type (19), the determin-
istic rate constant is

1 E
k, = EnAv_lsz%zexp {”]

% (24)

Higher-order reactions

Most (although not all) reactions that are normally written as a
single reaction of order higher than two, in fact represent the
combined effect of two or more reactions of order one or two.
In these cases, it is usually recommended to model the reac-
tions in detail rather than via high-order stochastic kinetics.
Consider, for example, the following trimerization reaction

Cﬂ

Cu - 3X—>X3

The rate constant c,, represents the propensity of triples of
molecules of X coming together simultaneously and reacting,
leading to a combined propensity of the form

x(x—1)(x-2)

a#(Y, Cu) = Cp @) = Cp (25)
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However, in most cases, it is likely to be more realistic to
model the process as the pair of second-order reactions

2X - X,
X9+ X—X3

and this system will have a quite different dynamics to the
corresponding third-order system.

In the next section, we will review the derivation of the
general conversion formula of the rate constant given by
Wolkenhauer et al. in [18].

Fundamental hypothesis of stochastic chemical kinetics

Let us now generalize, using a more rigorous approach, the
concepts exposed in the previous section. If we apply the
foregoing arguments specifically to reactive collisions (i.e. to
those collisions which result in an alteration of the state
vector), the chemical reactions are more properly character-
ized by a reaction probability per unit time instead of a
reaction rate. Thus, suppose that S; and S, molecules can
undergo the reactions

R1 . S1 +S2—> (26)

Then, in analogy with Eq. 7, we may assert the existence
of a constant ¢;, which depends only on the physical proper-
ties of the two molecules and the temperature of the system,
such that

c1dt = average probability that a particular 1 — 2
molecular pair will react according to R1 (27)
in the next innitesimal time interval d¢

More generally, if, under the assumption of spatial homo-
geneity (or thermal equilibrium), the volume ¥ contains a
mixture of X; molecules of chemical species S, (i=1,
2,...,N), and these N species can interact through M specified
chemical reaction channels ¢, (1 =1, 2,...,M), we may assert
the existence of M constants ¢, depending only on the
physical properties of the molecules and the temperature of
the system. Formally, we assert that

¢, = average probability that a particular combination
of ¢, reactant molecules will react accordingly to
¢,in the next innitesimal time interval dt.

(28)

This equation is regarded both as the definition of the
stochastic reaction constant c,,, and also as the fundamental
hypothesis of the stochastic formulation of chemical kinetics.
This hypothesis is valid for any molecular system that is kept
“well mixed”, either by direct stirring or else by simply
requiring that non-reactive collisions occur much more fre-
quently than reactive molecular collisions.
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Finally, the reaction propensity a,, per unit time in the
following is defined as follows:

a,dr=c, x {number of distinct molecular combinations

in the state X}
= probability that an ¢, reaction will occur in V in(¢ = dr),

given that the system is in the state(X(, X>, ..., Xy )at time ¢.
(29)

In the next subsection, we will use these concepts to
explain the derivation of a general formula converting the
rate constants of chemical reactions from their deterministic
expression into the stochastic one.

General derivation of the rate constant in the stochastic
framework

The general derivation for ¢, which we are going to present
in this section, has been developed by Wolkenhauer et. al.
[18]. We report the main passages of this derivation and then
we will compare it with the derivationof Gillespie. Let consider
a reaction pathway involving N molecular species s;. A net-
work, which may include reversible reactions, is decomposed
into M unidirectional basic reaction channels R,,

k,
R# : ZMISP(/L,U + lﬂzsp(mz) + ...+ I#L/‘SP(ML;:) — ...

where L, is the number of reactant species in channel R,,,
l,; is the stoichiometric coefficient of reactant species
Sy, j» and the index p(p, j) selects those S; participating
in R,. k, is the rate constant. Assuming a constant tem-
perature and a homogeneous mixture of reactant mole-
cules, the generalized mass action models (GMA) consist
of N differential rate equations

d u L, Ly
a [Si] = Z Vuik T2, [Sp(u«,j)] ! (30)

p=l1
where v, denotes the change in molecules of S; resulting
from a single reaction R,,. We write, for concentrations and
count of molecules, respectively

5= G1)
and
4S = SN, (32)

where N4 is the Avogadro’s number. The units of [S] are mol
per liter, M=mol/liter. In this context, S is the number of
moles and #S is the count of molecules.

Let use the following example for a chemical reaction

S1+ aS; gﬁS3 E)Oész + vS4
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which for the purpose of a stochastic simulation is split into
two reaction channels

R1 : S1 + OéSzﬁ)ﬂS3

. (33)
Ry : (353 E>OéSz +vS4

The GMA representation of these reactions is given by the
following rate equations

d[S]
dr

% = aky[S1][S2] + ok, [S5)” a4

= —k[S1][S2]*

% = Bk1[S1][S2)"~ k2S5
d[s4] /
dr Yk[S5]”

Substituting (31) and (32) in (30) gives

M

d
S =>_

p=1

V#ik#

Ly 1/1,;'
WLt T2 #S i)

(35)

where

L,
K, = E Zuj
=1

denotes the molecularity of the reaction channel R,. The
differential operator is justified only with the assumption of
large numbers of molecules involved, such that near contin-
uous changes are observed.

Now, the “particle-O.D.E.” for the temporal evolution of
<#S>is

d o ,
S =Y ik I )" (36)
p=1
Comparing (35) with (36), we find
, k,
e 7

This equation then describes the interpretation of the rate
constant, dependent on whether we consider concentrations
or counts of molecules.

Let us now arrive at a general expression for the propen-
sity a,,. Note that, from (36), the average number of reactions
R,, occurring in (¢, t+dt) is

Ry) = k/uH ?:’1 <#SP(W) >lmdt (38)

Let #R,, be the number of reactions R,,. If we consider #R,,
a discrete random variable with probability distribution func-
tionp, = Prob{#R, = r,},wherer,, is the value assumed

by the random variable #R,,, the expectation value (#R,,) is
given by

HRY = rulpry) ru=10,1,2, .. (39)
where
a,dt+o(dt) ifr, =1
pr, =1 l-a,dt+o(dt) ifr,=0 (40)
o(dt) if r, >0

where o(dt) is a negligible probability for more than one
R,, reaction to occur during dt. Since pr,, is randomly varying
and then the average (pr,,) over the ensemble is in (39), and
Eq. 39 becomes

#R.Y = 0-py+ Lpy+ > ru(p,,)

From (39) and (40), we then have
(41)

where, from (38) and (41), the propensity of R, reaction to
occur in dt is given as

#R,) = (a,dt) + o(dt)

e l,

(ap) =k, II 2 HS p(yu )™ (42)

As already seen in the previous section, the propensity a,,

for a reaction R, is expressed as the product of the stochastic

rate constant c,, and the number /,, of distinct combinations
of reactant molecules of R,

a, = cyhy, (43)

In the literature, 4, is known as the redundancy function.
This function varies over time in the following way

L, (n,(p.j)
h#(n){ IT% ( pl:jj ) for 7,5 >0

(44)
0 otherwise

If ny,q.; is large and [,,>1, terms like (7, ,—1),...,
(Mp(u—1+1) are not much different from n,, ;, and we
may write
l/// L,, lu/’
e o)™ T2 (1)
h# A — J (45)

=lj=1 N L,
Lt Hjlzllllf!

We can write an alternative expression for a,, by substitut-
ing (45) into (43) and considering the average

L, L
T2 (#Spu.) “> (46)

L,
Hj:lluj!

where #S,,(,, ;) is the random variable whose value is 1,(f1,/).
Comparing (42) with (46), we obtain

(@) = e
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L,
c,u(Hj:] <#Sp(/z,j) >[W>
Ly
[1 j;ll/4/ !
Making the assumption of zero covariance (i. e. (#Si#S;) =
(#S;) (#S;) means for i #j nullifying correlation, and for i=;
nullifying random fluctuations) gives

" ke L _
kT #Spup™” =

’ C/,,

k,=—F"—— (47)
Ly,
" Hj’:lluj!
which can be turned into an expression for ¢,
! L#
e =k, T Lyt (48)
Inserting (37) for k%;, we arrive at
k 7 L,
Cy = (W) 'Hj:lluj! (49)

Equation 49 is the law of conversion of the deterministic
rate constant k,, into the stochastic rate constant c,, and is
used in most implementations of Gillespie-like stochastic
simulation algorithms. Note that if, above, we substitute
(S)/Vin (30) for [S] instead of (#S)/(N V), the only difference
to (37) and (49) is that NA would not appear in these
equations.

This derivation is different from the one given by Gillespie
in [6]. The difference is that Wolkenhauer et al. introduced the
average number of reactions (Eq. 38) to move from the
general GMA representation (30), which is independent of
particular examples, to an expression that allows to derive
parameter c,, of the stochastic simulation (49) without refer-
ring to the temporal evolution of moments of CME. This
makes the derivation more compact. Moreover, in [6], the
temporal evolution of the mean is derived for examples of
bi- and tri-molecular reactions only.

Finally, we add some comments to this derivation and its
implications in a simulation algorithm. First, using the ap-
proximation (45) for h,u is valid for large numbers of
molecules with 1,; >1. In the simulations presented in this
paper, this does not lead to significant differences. More
important, however, is the fact that the derivation (49) relies
on the rate constant of the GMA model. Nevertheless, this
does not mean that the CME approach relies on the GMA
model, since, to derive rather than postulate a rate equation,
one must first postulate a stochastic mechanism from which
the GMA arises as a limit.

The existence of a relationship between deterministic and
stochastic models assumes the existence of a way to compare
these two approaches. In principle, we can assert that the
GMA model (30) has the following advantage with respect
to the CME model: its terms and parameters are the direct
translation of the biochemical reaction diagrams that capture
the biochemical relationships of the molecules involved. On
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the contrary, rate equations are in virtually all cases simpler
than CME. However, for any realistic pathway model, a
formal analysis is not always feasible and a numerical solu-
tion (simulation) is the only way to compare two models. In
this case, the Gillespie algorithm, which will be presented in
the following sections, provides an efficient implementation
to generate the realization of the CME (i.e. it is a realization
of a time-continuous Markov process).

The reaction probability density function

In this section, we introduce the foundation of the sto-
chastic simulation algorithm of Gillespie. If we are given
that the system is in the state X=Xj,..., Xy at time ¢,
computing its stochastic evolution means “moving the
system forward in time”. In order to do that, we need to
answer two questions.

1. When will the next reaction occur?
2. What kind of reaction will it be?

Because of the essentially random nature of chemical
interactions, these two questions are answerable only in a
probabilistic way.

Let us introduce the function P (7, p) defined as the
probability that, given the state X at time ¢, the next reaction
in the volume 7 will occur in the infinitesimal time interval
(t+7,t+7+d7), and will be an R, reaction. P (7, i) is called
the reaction probability density function, because it is a joint
probability density function on the space of the continuous
variable 7(0<7<o0) and the discrete variable u (u=1, 2, ..., M).

The values of the variables 7and p will give us answer to
the two questions mentioned above. Gillespie showed that,
from the fundamental hypothesis of stochastic chemical ki-
netics (see Section 4), it is possible to derive an analytical
expression for P (7, 1), and then use it to extract the values
for 7 and p. Gillespie showed how to derive from the funda-
mental hypothesis and from an analytical expression of
P (1, p). First of all, P (7, p) can be written as the
product of Py(7), the probability that given the state X
at time ¢, no reaction will occur in the time interval (¢,
t+dt), times a,dr, the probability that an R, reaction
will occur in the time interval (¢+7,¢+7+d7)

P(p,7)dT = Po(T)a,dt (50)
In turn, P, (7) is given by
M
Po(t +d7') = Po(7') [I—Z a,‘dT/‘| (51)
=1
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where [1-Y M ,a,d7'] is the probability that no reaction will
occur in time d7’ from the state X. Therefore,

M
- E a;T
i=1

fo(7) = exp (52)

Inserting (51) into (50), we find the following expression for
the reaction probability density function

_ Jauexp(—aor) if 0<T < infly
Plp,m) = {0 otherwise (53)
where a,, is given by (43) and
M M
a()EZ aiEZ hic (54)
=1 =1

The expression for P (p, 7) in (53) is, like the master
equation in (5), a rigorous mathematical consequence of
the fundamental hypothesis (28). Notice finally that P (7,
1) depends on all the reaction constants (not just on c,,) and
on the current numbers of all reactant species (not just on the
R, reactants).

The stochastic simulation algorithms

In this section, we review the three formulations of stochastic
simulation variants of Gillespie algorithm: Direct, First Reaction,
and Next Reaction Method.

Direct method

On each step, the Direct Method generates two random
numbers, r; and 7, from a set of uniformly distributed
random numbers in the interval (0, 1). The time for the next
reaction to occur is given by #+7, where 7 is given by

()
7=—In|—
ap ry

The index p of the occurring reaction is given by the
smallest integer satisfying

I3
E a; > rap
J=1

The system states are updated by X(¢+7)=X(#)+v,, then
the simulation proceeds to the next occurring time.

(55)

(56)

Algorithm

1. Initialization: set the initial numbers of molecules for
each chemical species; input the desired values for the M
reaction constants ¢j, ¢a,...,cp. Set the simulation time
variable 7 to zero and the duration 7 of the simulation.

2. Calculate and store the propensity functions a; for all the
reaction channels (i=1,...,M), and a,.

Generate two random numbers r; and r, in Unif'(0, 1).
Calculate 7according to (55)

Search for p as the smallest integer satisfying (56).
Update the states of the species to reflect the execution of
w(e. g. if R, :S;+S,— 28, and there are X; molecules of
the species S; and X, molecules of the species S,, then
increase X; by 1 and decrease X, by 1). Set t«—z+7.

7. If t<T then go to step 2, otherwise terminate.

SN kW

Note that the random pair (7, 1), where 7 is given by (55)
and p by (56), is generated according to the probability
density function in (53). A rigorous proof of this fact may be
found in [1]. Suffice here to say that (55) generates a random
number 7 according to the probability density function
P1(7) = apexp(—aoT) (57)
while (56) generates an integer 1 according to the probability
density function

a,
Py(p) == (58)
ao

and the stated result follows because
P(7, ) = Py(7)-P2(p)

Note finally that, to generate random numbers between 0
and 1, we can do as follows. Let Fy(x) be a distribution
function of an exponentially distributed variable X and let
U~ Unif[0,1) denote an uniformly distributed random vari-
able U on the interval (0, 1).

Fx(x) = {é_ew

F. (x) is a continuous non-decreasing function and this
implies that it has an inverse Fi'. Now, let X(U)=Fy '(U)
and we get the following

if x>0

ifx<O0 (59)

P(X(U)<x) = P(Fy(U)<x) (60)
= P(U<Fyx(x)
= FX()C> : (61)
It follows that
Fw) =29 g (62)

In returning to step 1 from step 7, it is necessary to re-
calculate only those quantities ;, corresponding to the reac-
tions R; whose reactant population levels were altered in step
6; also, ag must be re-calculated simply by adding to it the
difference between each newly changed «; value and its
corresponding old value. This algorithm uses M random
numbers per iteration, takes time proportional to M to update
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the a;s, and takes time proportional to M to identify the
smallest putative time.

First reaction method

The First Reaction Method generates a 7, for each reaction
channel R, according to

1 1

where 7y, 7,...,ry are M statistically independent samplings
of Unif (0, 1). Then, 7and p are chosen as

T=min{7y,72, ..., T} } (64)
and

p = the index ofmin{7, 72, ...7y }. (65)

Algorithm

1. Initialization: set the initial numbers of molecules for
each chemical species; input the desired values for the M
reaction constants cj, ¢s,...,cys. Set the simulation time
variable ¢ to zero and the duration 7 of the simulation.

2. Calculate and store the propensity functions a; for all the

reaction channels (i=1, dots. M), and a.

Generate M independent random numbers from Unif(0, 10).

Generate the times 7;, (i=1, 2,...,M) according to (63).

Find 7and p according to (64) and (65), respectively.

Update the states of the species to reflect the execution of

reaction p. Set t«—¢+T.

7. If t<Tthen go to step 2, otherwise terminate.

AN

The Direct and the First Reaction methods are fully
equivalent to each other [1, 5]. The random pairs (7, p)
generated by both methods follow the same distribution.

Next reaction method

Gibson and Bruck [19] transformed the First Reaction Method
into an equivalent but more efficient new scheme. The Next
Reaction Method is more efficient than the Direct method
when the system involves many species and loosely coupled
reaction channels. This method can be viewed as an extension
of the First Reaction Method in which the unused M-1 reac-
tion times (64) are suitably modified for reuse. Clever data
storage structures are employed to efficiently find 7 and .

Algorithm
1. Initialize:

— set the initial numbers of molecules, set the simulation
time variable ¢ to zero, generate a dependency graph G;
— calculate the propensity functions «, for all i
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— for each i, (i=1,2,...,M), generate a putative time
T;, according to an exponential distribution with
parameter a;

— store the 7; values in an indexed priority queue P.

2. Let p be the reaction whose putative time 7, stored in P,
is least. Set 7¢—7,,.

3. Update the states of the species to reflect the execution of
the reaction 1. Set 77,

4. For each edge (i, o) in the dependency graph G

— update a
— ifa#pu, set

A old

(Ta—t) +1t (66)

Ta$
Ao new

— if a=p, generate a random number » and compute
T, according to the following equation

aal(t) In G) 1 (67)

— replace the old 7, value in P with the new value

Ta =

5. Go to step 2.
Two data structures are used in this method:

—  The dependency graph G is a data structure that tells
precisely which a; should change when a given
reaction is executed. Each reaction channel is de-
noted as a node in the graph. A direct edge connects
R; to R; if and only if the execution of R; affects the
reactants in R;. The dependency graph can be used
to recalculate only the minimal number of propen-
sity functions in step 4.

—  The indexed priority queue consists of a tree structure
of ordered pairs of the form (i, 7;), where i is a reaction
channel index and 7; is the corresponding time when
the next R; reaction is expected to occur, and an index
structure whose ith element points to the position in
the tree which contains (i, 7;). In the tree, each parent
has a smaller 7 than either of its children. The mini-
mum 7 always stays on the top of the node and the
order is only vertical. In each step, the update changes
the value of the node and then bubbles it up or down
according to its value to obtain the new priority
queue. Theoretically, this procedure takes at most 1n
(M) operations. In practice, usually there are a few
reactions that occur much more frequently. Thus, the
actual update takes less than 1n (M) operations.

The Next Reaction Method takes some CPU time to main-
tain the two data structures. For a small system, this cost
dominates the simulation. For a large system, the cost of
maintaining the data structures may be relatively smaller com-
pared to the savings. The argument for the advantage of the
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Next Reaction Method over the Direct Method is based on two
observations: first, in each step, the Next Reaction Method
generates only one uniform random number, while the Direct
Method requires two. Second, the search for the index p of the
next reaction channel takes O(M) time for the Direct Method,
while the corresponding cost for the Next Reaction Method is
on the update of the indexed priority queue which is O(In(M))

Time-dependent extension of the First Reaction Method

The Gillespie algorithm has been used on numerous occasions
to simulate biochemical kinetics and even complex biological
systems. Its success is due to its proved equivalence with
Master Equation and its efficiency and precision: no time is
wasted on simulation iterations in which no reactions occur,
and the treatment of the time as a continuum allows the gener-
ation of exact series of 7 values based on rigorously derived
probability density functions. However, all the formulations of
the algorithm are grounded on the fundamental hypothesis of
stochastic chemical kinetics and do not consider the effects on
the rate constant of eventual temporal changes of volumes and
temperature of the reaction chamber, the activation energy, and
the presence of catalyst concentration. In this section, we
review an extension of First Reaction Method to the case of
time-depending rates. This extension has been developed by
Lecca [20, 21] and is inspired by [22]. It focuses on the time
dependency of the kinetic rates on volume and temperature
deterministic changes. This re-formulation has been adapted to
be incorporated in the framework of stochastic 7t-calculus and
its implementation has been applied to a sample simulation in
biology: the passive glucose cellular transport [20, 21].

Assume that the volume V; () contains a mixture of
chemical species, X; (i=1,...,N) which may interact through
the reaction channels R, p=1,...,M. Let suppose further-
more that a subset of these channels is characterized by the
time-dependent propensities

as(1) = a,/V (1),

and another sub-set is characterized by the time-dependent
propensities

aq(t) = a:{/V(t)a

Where a, and (a(;) are the time-independent propensities,
that have to be computed using Eqgs. 12, 15 and 18, according
to the type of reaction.

Following the Gillespie approach, let introduce these
probabilities:

s=1,...,8 (68)

g=S+1,...M (69)

1. P(7,u|Y,t)dr: probability that, given the state Y=
(X1,...,Xy) at time ¢, the next reaction will occur in the
infinitesimal time interval (¢+7,¢+7+d7), at it will be
reaction R,

2. a,, () dt: probability that, given the state Y=(X,...,Xy) at
time ¢, reaction R,, will occur within the interval (¢, 1+dr).

P(1,u|Y, f)dT is computed as a product of the probabilities
that no reaction will occur within (z, #+7) times the prob-
ability that R,, will occur within the subsequent interval
(t+T,t+7+d7)

P(,p|Y,t)dr = Py(7|Y,t)-a,(T + t)dr (70)
where, summing over all reaction channels p=1,...,M and
splitting the sum in the two terms over s and ¢
Po(T +d7|Y,1)
s M
= Py(7]Y,1) lldrz as(t+ 7)—dr Z ag(t+ 1)
s=1 g=S+1
(71)

With the initial condition Py(7=0|Y,#)=1, the solution of
this differential equation is

Po(T|Y l)

—exp[Z/ S(t+7)dr’ Z/ J+7) 1
(72)

Now, by combining Eq. 70 with Eq. 72, we obtain

P(r,ul,Y,»)

_ a,, t+T exp{ Z/

(i +7) Z/ }

(73)

By introducing two functions f; (7) and f; (7) describing
the variation of volume in time, the time-dependence of the
volumes can be described by these expressions:
Vi(t+71)=

VS(t)fs(T) and Vq(t + T) = V‘](t)fq (T)

Consequently, the propensities are

as(t+ 1) = as(t) /f (1) and ay(t + 7) = a,(¢)/f (7).

Substituting these expressions in Eq. 73, and introducing,
for convenience

B t+1 1 , B —=+T 1 ,
F‘g(r)z/t 7 dr’ and Fy (1) = /t 7. dr
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so that Eq. 73 can be re-written as

as(t)
ParulY.e) = /- ;&3
fq(7)

Finally, the probability of any reaction occurring between
time ¢ and the time 7+7¢, is obtained by integrating Eq. 74
over time and summing over all channels:

/ZP(T,MY,t)dT
07
'S a0
- €X
_ /OZS’:‘fs(T)

/0 ZZ:SJA;:,((;-))@XP [~AFy(1)=Ag Fy(7)]dT

exp[~A; Fy(7)=Ag Fy ()]
(74)

exp[~A Fy(1)~Ay F ()]

p [*As Fy(1)=A4F, (T)} dr

(75)

Generalizing, in systems where the physical reaction
space is divided into n sub-spaces whose volumes change
in time, the probability density function of reaction is split
into n exponential terms multiplied by theratio between
reaction propensity and volume of the sub-space. The vol-
ume of each sub-space can follow a different temporal be-
havior. Consequently, a different reaction probability and a
different expression of reaction time are obtained for each
sub-regions of the space.

Approximate stochastic simulation algorithms

The stochastic simulation algorithm is exact in the sense that
it is rigorously based on the same microphysical premise that
underlies the chemical master equation; thus, a history or
“realisation” of the systems produced by the stochastic sim-
ulation algorithm (SSA) gives a more realistic representation
of the system’s evolution than would a history inferred from
the conventional deterministic reaction rate equation. How-
ever, the huge computational effort needed for exact stochas-
tic simulation entailed a lively search for approximate simu-
lation methods that sacrifice an acceptable amount of accu-
racy in order to speed up the simulation. A good review of
the approximated stochastic simulation algorithm is a recent
paper of Pahle [23].

The proposed methods often involve a grouping of reac-
tion events, i.e. they permit more than one reaction event per
step. Namely, the time axis is divided into small discrete
chunks, and the underlying kinetics are approximated so that
advancement of the state from the start of one chunk to
another can be made in one go. Most of the methods work
on the assumption that the time intervals have been chosen to
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be sufficiently small that the reaction hazards can be as-
sumed constant over the interval.

Poisson timestep method

A point process with constant hazard is a (homogeneous)
Poisson process. Based on the definition of the Poisson
process, we assume that the number of reactions (of a given
type) occurring in a short time interval has a Poisson distri-
bution (independently of other reaction types).

For a fixed small time step Az, we can use an approximate
simulation algorithm as follows.

1. Initialize the system with time t«—0, rate constants c,
state X, and stoichiometry. Set the simulation time 7
Calculate the propensities @; (X, ¢;) and simulate the u-
dimensional reaction vector 7, with i-th entry a
Po(a(X;,c;)Ar) random quantity

3. Update the state according to X«—X+S5r.

4. Update t«t+ At

5. If¢<Treturn to step 2.

N

The Poisson method is a precursor of the 7-leap method
originally developed by Gillespie in 2001 [9].

The 1-leap method

The 7-leap method [9] and its recent variants [3, 24-28] are
an adaptation of the Poisson timestep method to allow
stepping ahead in time by a variable amount 7, whereeach
time step 7is chosen in an appropriate way in order to ensure
a sensible trade-off between accuracy and algorithmic speed.
This is achieved by making 7 as large as possible but still
satisfying some constraint designed to ensure accuracy. In
this context accuracy is determined by the extent to which
the assumption of constant hazard over the time interval is
appropriate.

Let us suppose that the history of the system is to be
recorded by marking on a time axis the successive instants
t1, t, t3,... at which the first, second, third, ..., reaction
events occur, and also appending to those points the indices
J1,J2, j3,... of the respective reaction channels R;, that “fire”
at those instants. This “history axis” completely describes a
realization of X (¢); this can be constructed by monitoring the
T, i-generating procedure of the stochastic simulation algo-
rithm as it dutifully steps us from each ¢, to ¢,.;. This
“stepping” among the history axis is both a point of strength
and point of weakness. It is a point of strength because the
precise construction of every individual reaction event gives
a complete and detailed history of X (). It is a weakness
because that construction is a time-consuming task for chemical/
biochemical system of realistic size.

The system history axis can be divided into a set of
contiguous subintervals is such a way that, if we could only
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determine how many times each reaction channel fired in
each subinterval, we could forego knowing the precise in-
stants at which those firings took place. Such a circumstance
would allow us to leap along the system’s history axis from
one subinterval to the next, instead of stepping along from
one reaction event to the next. If enough of the subintervals
contained many individual reaction events, the gain in sim-
ulation speed could be substantial (provided that each sub-
interval leap could be done expeditiously).

Now, let us go deep into the mathematical formulation of
the 7-leap method. Consider the probability function

o(t,X,1)

which is the probability, given X(f)=x, that in the time
interval (¢, 1+7) exactly k; firings of reaction channel R; will
occur for each j=1,...M. (M is number of reactions).

Q is the joint probability density function of the M integer
variables

K;(t,x,1)

giving the number of times, given X(#)=x, that reaction
channel R; will fire in the time interval (¢, t+7). (j=1,...M).

To determine Q(7,X,?) for an arbitrary 7 is fairly hard,
but we can get a simple approximate form for O(7,X,t) if
we impose the following condition on 7. It is known as
the Leap Condition and requires p to be small enough that
the change in the state during (¢, t+7) is so slight that no
propensity function suffers a macroscopical change in its
value.

If the Leap Condition is satisfied, during the time interval
(¢, t+7), the propensity function for each reaction channel R;
will remain constant at the value a; (x). This means that a; (x)
dt is the probability that reaction channel R; fires during any
infinitesimal interval dt inside (¢, #+7), regardless of what the
other reaction channels are doing. In that case, K (7, x, £) will
be a Poisson random variable

K;(t,x,1) :Po(aj(x,r)) j=1...,.M

and since these M random variables K;(7,x,?),...,K(T,x,t) are
statistically independent, the joint density function is the prod-
uct of the density functions of the individual Poisson random

variables
O(7,X,1) = II'L, P, (kjsa;(x, 7)) (76)

where Pp, (k;at) denotes the probability that Po(a,f)=*.
It is easy to show that

Po(0,a,t) = exp(—at)

and by the laws of probability, we have for any integer k>1,

t
Pp,(k,a,t) = / Pp,(k=1,a,{) x adi x P,y(0,a,t-1)
t/

Using this recursion relationship, we can establish by
induction that

e (at)*

Ppn(k,a,t) = Xl

(k=0,1,2,...)
We can show from this result that the mean and the
variance of Pp, (k;at) are both equal to at:

E(Pp,(k;a,t)) = Var(Pp,(k : a,t)) = at (77)

The Eq. 77 is the basis for the following well-known rule-
of-thumb:

"for random events occurring at a rate ‘a’, i.e. with mean
time per event a — 1, the number of events expected in a time t is

ati\/a

Note that the Poisson random variable Po (a,f) is defined
to be the number of reaction events that occur in a time ¢,
given that a-dt is the probability for an event to occur in any
next infinitesimal time interval dz. The parameters a and ¢ can
be any positive real numbers; however, the random variable
Po (a,?) itself in a non-negative integer.

If the Leap Condition is satisfied, we can leap down the
history axis of the system by the amount 7 from state x at
time ¢ by proceeding as follows.

—  For each reaction channel R; generates, a sample value ;
of the Poisson random variable Po(a/(Xx), ).
k; will be the number of times reaction channel R; fires in
(t,t+7). Since each firing of R; changes the S; population
by v;; molecules, the net change in the state of the system
in (¢,t+7) will be

M
A=Yk
j=1

where v; is the state-change vector, whose i-th, v;;, is the
number of S; molecules produced by one R; reaction
(j=1,...,M and i=1,...,N).

(78)

Algorithm

1. Choose a value of Tthat satisfies the Leap Condition; i. e.
a temporal leap 7 resulting in a state change A which is
such that, for every reaction channel R;

’aj(x—&— v)—aj(x)|

is “effectively infinitesimal”.

2. Generate for each j=1,...,M a sample value k; of the
Poisson random variable Po(a,(x,7)) and compute A as
in formula (78).

3. Effect the leap by replacing ¢ with #+7 and x by x+ A\

The accuracy of the 7-leap algorithm depends upon how
well the Leap Condition is satisfied.
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In trivial case, none of the propensity functions depend on
x. In this case the Leap Condition is satisfied for any 7, and
the 7 leaping will be exact. In a realistic case, most common-
ly, the propensity functions depend linearly or quadratically
on the molecular populations, and 7-leaping will not be
exact. Since each reaction event changes the reactant popu-
lation by no more than one or two molecules, then if the
reactant molecule populations are very large, the algorithm
will need to perform a very large number of reaction events
to change the propensity functions noticeably.

So, if we have large molecular populations, in order to make
the 7-leap algorithm efficient we have to be able to satisfy the
Leap Condition with a choice of 7 that allows many reaction
events to occur in (#,¢+7); that will result in a “leap” on the
history axis of the system that is much longer than the single
reaction “‘step” of the exact stochastic simulation algorithm. On
the other hand, in order to satisfy the Leap Condition, 7must be
so small that only a very few reactions are leaped over. There-
fore, it would be faster to forego leaping and use the exact
stochastic simulation algorithm!

For example, if we take

T= w (79)
where ao=Y,-,"a;. Consequently, the resultant leap would
be the expected size of the next time step in exact SSA (see
Gillespie Direct Method), and very likely one of the gener-
ated k;’s would be 1 and all the others would be 0. Still, a
choice of smaller 7 would result in leaps in which all the k;’s
would likely be 0. This situation would gain us nothing!

To use 7-leap method when 7< ﬁ(x) is inefficient, but not

incorrect. What we expect is that as 7 decreases to ﬁ(x) or less,
the results produced by the 7-leap algorithm will follow
smoothly the results that would be produced by the exact SSA.
In order to successfully employ the 7-leap algorithm in
practical situations, we need to determine the /argest value of
7 that is compatible with the Leap Condition.
A procedure for determining 7 may be the following.

Since the mean (or expected value) of £; is

E(Po(aj(x, T))) =a;(x)T

then the expected net change in state in the interval (z,¢+7)
will be

M
EAx,7) =Y vja;(x)T = 7E(x) (80)
=1
where
M
EX)=Y 1 a;(x)v; (81)
=1

& (x) is the mean or expected state change in a unit of time.
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Now, assume that the expected changes in the propensity
functions in time 7 is bounded by some specified 0<e<1 of
the sum of all the propensity functions:

laj(x + EQ\)—a;(x)|<€ap(x) j=1,...M (82)
We can estimate the difference on the left side of Eq. 82,

by a first-order Taylor expansion

N

a;(x + E(N)-a,()=EN)| Va(x) = 3 r€i(x) a%aj(x)

i=1
So, defining

_ 0a;(x)

= =1,...,.N 83
- =1 (53)

bj(x) j_l,...,M

where M is the number of reactions and N is the number of
chemical species, Eq. 82 becomes

N

S & @bi)

i=1

r <eay(x) (84)

The largest value of 7that is consistent with this condition
is

€a,(X)

= min N
JellM] ’Zi:lgi(x)bji(){)’

T

(85)

StochSim algorithm

In 1998, Morton-Firth [29] developed the StochSim algo-
rithm. The algorithm treats the biological components, for
example, enzymes and proteins, as individual objects
interacting according to probability distribution derived from
experimental data. In every iteration, a pair of molecules is
tested for reaction. Due to the probabilistic treatment of the
interactions between the molecules, Stochsim is capable of
reproducing realistic stochastic phenomena in the biological
system. Both the Gillespie algorithm and the Stochsim algo-
rithm are based on identical assumptions [29, 30]. A detailed
proof of the equivalence of physical assumptions in the
Gillespie and StochSim algorithms can be found in [31].

The main diferences that distinguish the StochSim algo-
rithm from the Gillespie approach are the following: (1) the
reaction system is composed of two sets: the “real” mole-
cules and the “pseudo-molecules”; (2) the time is quantized
into a series of discrete, independent time-slices, the sizes of
which [are] determined by the most rapid reaction in the
system; and (3) reaction probabilities are precomputed and
stored in a look-up table, so that they need not to be calcu-
lated during the execution of each time slice.
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In each time slice, StochSim selects one molecule at
random from the population of “real” molecules, and then
makes another selection from the entire population including
the “pseudo-molecules”. If two molecules are selected, they
are tested for all possible bimolecular reactions, retrieved
from the look-up table for the particular reactant combina-
tion. If one “real” molecule and one “pseudo-molecule” are
selected, the “real” molecule is tested for all possible
unimolecular reactions it can undergo. StochSim iterates
through the reactions and their probabilities and computes
the cumulative probabilities for each of them. The set of
cumulative probabilities can then be compared with a single
random number to choose the reaction, if any occurs. If a
reaction does occur, the system is updated accordingly and
the next time slice begins with another pair of molecules
being chosen.

The probabilities stirred in the look-up table for uni- and
bi-molecular reactions (P; and P,, respectively) are

_ kin(n + no) At

po = LI (30
_ kan(n + ng) At
P2 = N,V (87)

where k, and k, are the deterministic rate constants for uni-
and bi-molecular reaction, respectively, At is the size of the
time slice, # is the total number of molecules in the system,
no is the number of pseudo-molecules, and ¥ the volume of
the system

Advantages and drawbacks of Gillespie algorithm

The Gillespie algorithm makes time steps of variable length,
based on the reaction rate constants and population size of
each chemical species. Both the time of the next reaction 7,
and the time of the next reaction y, are determined by the rate
constants of all reactions and the current numbers of their
substrate molecules. Unlike the common simulation strate-
gies of discretizing time into finite intervals, as in the
StochSim procedure, the Gillespie algorithm benefits from
both efficiency and precision, i.e. no time is wasted on
simulation iterations in which no reactions occur, and the
treatment of time as continuum allows the generation of an
“exact” series of 7 values based on rigorously derived prob-
ability density functions. However, the precision of the
Gillespie approach is guaranteed only for spatially homoge-
neous, thermodynamically equilibrated systems in which
non-reactive molecular collisions occur much more fre-
quently than reactive ones. Therefore, the algorithm cannot
be easily adapted to simulate diffusion, localization, and
spatial heterogeneity. A second limitation of the Gillespie

algorithm is that it results in computational infeasibility
when the species contain multi-state molecules. For exam-
ple, a protein which has ten binding sites will have a total of
210 states and it requires the same number of reaction chan-
nels to simulate this multi-state protein in the Gillespie
algorithms. Since the Gillespie algorithm scales with the num-
ber of reaction channels, it is impossible to conduct such a
simulation [32] The StochSim algorithm can be modified to
overcome this problem by associating the states to the mole-
cules without introducing many computational difficulties.

Although the Gillespie algorithm solves the master equa-
tion exactly, it requires substantial efforts to simulate a
complex system. Three situations cause an increase of the
computational effort. These conditions decrease the time
step of each iteration, thus forcing the algorithm to run for
a larger number of iterations to simulate a given environ-
ment. The conditions are the following:

* increase in the number of reaction channels
* increase in the number of molecules of the species
» faster reactions rate of the reaction channels.

However, under special circumstances when the num-
ber of reactions is small and the number of molecules is
large, the Gillespie algorithm is more efficient than the
Stochsim algorithm.

Spatio-temporal algorithms

Previous sections have covered the stochastic algorithms for
modeling biological pathways with no spatial information.
However, the real biological world consists of components
which interact in a 3D space. Within a cell compartment, the
intracellular material is not distributed homogeneously in
space and molecular localization plays an important role,
e.g., diffusion of ions and molecules across membranes and
propagation of an action potential along a nerve fiber’s axon.
Thus, basic assumption of spatial homogeneity and large
concentration diffusion is no longer valid in realistic biolog-
ical systems [33]. In this context, stochastic spatio-temporal
simulation of biological systems is required.

The enhancement on the performance of Gillespie algo-
rithms has made the spatio-temporal simulation tractable.
Stundzia and Lumsden [34] and Elf et al. [33] extended the
Gillespie algorithms to model intracellular diffusion. They
formalized the reaction—diffusion master equation and the
diffusion probability density functions. The entire volume of
a model was divided into multiple subvolumes and, by
treating diffusion processes as chemical reactions, the Gil-
lespie algorithm was applied without much modification.
Stundzia has showcased the application of the algorithm on
calcium wave propagation within living cells and has ob-
served regional fluctuations and spatial correlations in the
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small particles limit. However, this approach requires detailed
knowledge about the diffusion processes that are available, in
order to estimate the probability density function for diffusion.
Furthermore, the algorithms have only been applied to small
systems with finite numbers of molecular species but requires
large amounts of computational power.

Shimizu [32] also extended the Stochsim algorithm to
include spatial effects of the system. In his approach, spatial
information was added to the attributes of each molecular
species and a simple two-dimensional lattice was formed to
enable interaction between neighboring nodes. The algo-
rithm was applied to study the action of a complex of
signaling proteins associated with the chemotactic receptors
of coliform bacteria. He showed that the interactions among
receptors could contribute to high sensitivity and wide dy-
namic range in the bacterial chemotaxis pathway.

Another way of simulating stochastic diffusion is to di-
rectly approximate the Brownian movements of the individ-
ual molecules (MCell; [35]). In this case, the motion and
direction of the molecules are determined by using random
numbers during the simulation. Similarly, collisions with
potential binding sites and surfaces are detected and handled
by using only random numbers with a computed binding
probability. MCell is capable of treating stochastic and a 3D
biological model that involves a discrete number of mole-
cules. Though MCell incorporates 3D spatial partitioning
and parallel computing to increase algorithmic efficiency,
the simulation is limited to the microphysiological processes
such as synaptic transmission due to high computational
requirement.

Recently, Redi (Reaction—diffusion simulator) has been
developed by Lecca et al. [36]. Redi implements a general-
ization of Fick’s law in which the diffusion coefficients
depends of the local concentration, frictional force,s and
local temperature. This diffusion model has been incorporat-
ed in a Gillespie-like simulation framework and used to
simulate complex biochemical systems, such as the growth
of non-small lung cancer tumor cells chemo-therapically
treated [37] and the diffusion of bicoid morphogen in Dro-
sophila melanogaster [36].

Apart from the enhancements on various algorithms, the
simulation of a spatio-stochastic biological system is still
infeasible. Regardless of the fact that the knowledge is
incomplete, it is still unclear how to extract diffusion coeffi-
cients from experimental results and to track 3D shapes or
structural changes in the cells.

The Langevin equation
While internal fluctuations are self-generated in the system,

and they can also occur in closed and open systems, external
fluctuations are determined by the environment of the system.
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We have seen that a characteristic property of internal fluctu-
ations is that they scale with the system size and tend to vanish
in the thermodynamics limit. External noise has a crucial role
in the formation of ordered biological structures. External
noise-induced ordering was introduced to model the ontoge-
netic development and plastic behavior of certain neural struc-
tures [38]. Moreover, it has been demonstrated that noise
can support the transition of a system from a stable state
to another stable state. Since stochastic models might
exhibit qualitatively different behavior than their deter-
ministic counterpart, external noise can support transitions
to states which are not available (or even do not exist) in a
deterministic framework [39].

In the case of extrinsic stochasticity, the stochasticity is
introduced by incorporating multiplicative or additive sto-
chastic terms into the governing reaction equations [88].
These terms, normally viewed as random perturbations to
the deterministic system, are also known as stochastic dif-
ferential equations. The general equation is:

dx

== )+ &) (88)

The definition of the additional term &, differs according
to the formalism adopted. In Langevin equations [9], &, is
represented by Eq. 89. Other studies [40] adopt a different
definition where &; (£) is a rapidly fluctuating term with zero
mean {[{(?)]=0}. The statistics of i (t) are such that
{[£(0E(t")] =0}=DJ;(t—t") to maintain independence of
random fluctuations between different species (D is propor-
tional to the strength of the fluctuation).

&) = ViJaX (ON,(1) (89)
J=1

where Vj; is the change in number of molecules of species i
brought by one reaction j and N, are statistically independent
normal random variables with mean 0 and variance 1.

Use and abuse of Langevin equation

The way in which Langevin introduced fluctuations into the
equation of molecular population level evolution does not
carry over nonlinear systems. This section briefly sketches
the difficulties to which such a generalization leads. External
noise denotes fluctuations created in an otherwise determin-
istic system by the application of a random force, whose
stochastic properties are supposed to be known. Internal
noise is due to the fact that the system itself consists of dicrete
particles. It is inherent in the mechanism by which the state of
the system evolves and cannot be divorced from its evolution
equation. A Brownian particle, with its surrounding fluid, is a
closed physical system with internal noise. Langevin, howev-
er, treated the particle as a mechanical system subject to the
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force exerted by the fluid. This force he subdivided in a
deterministic damped force and a random force, which he
treated as external, i.e. its properties as a function of time were
supposed to be known. For the physical pictures, these prop-
erties will not be altered if an additional force on the particle is
introduced.

In more recent years, however, Eq. 88 has also been used
in modeling the evolution of biochemical systems, although
the noise source in a chemical reacting network is internal
and no physical basis is available for a separation into a
mechanical part and a random term with known properties.
The strategy used in the application of the Langevin equation
in modeling the evolution of a system of chemical reacting
particles is the following. Suppose there is a system whose
evolution is described phenomenologically by a determinis-
tic differential equation

dx

o= (90)

where x stands for a finite set of macroscopic variables, but
for simplicity in the presernt discussion we take the case that
x is a single variable. Let us suppose to know that for some
reason there must also be fluctuations about these macro-
scopic values. Therefore, we supplement (90) with a
Langevin term

dx

— = L(t 91

== S +L0) o1)
Note now that, on averaging (91), one does not find that

<x> obeys the phenomenological Eq. 90, rather than

04) = (1) = £(09) + 5 (r)DF () + .

It follows that (x) does not obey any differential equation
at all. This reveals the basic flaw in the application of the
Langevin approach to the internal noise of systems whose
phenomenological law is nonlinear. The phenomenological
Eq. 90 holds only in the approximation in which fluctuations
are neglected. That implies that f{x) is determined phenom-
enologically with an inherent margin of uncertainty of the
order of fluctuations. If we deduce a certain form of f(x) from
a theory or experiment in which fluctuations are ignored,
there is no justification for postulating that f{x) is to be used
in (91). There may be a mismatch between both of the same
size as the fluctuations that would not show up in macro-
scopic results, but cannot of course be neglected in the
equation of the fluctuations themselves.

Hybrid algorithms

Biological systems are stiff by nature in the sense that pro-
cesses with very different time scales are coupled. Some
molecules are quickly synthesized and degenerated (typically

metabolites) and take a long time to run over (typically mac-
romolecules). Some biochemical reactions involve a chain of
many steps, while other reactions just involve a single associ-
ation or dissociation event. This difference in time scales can
be exploited by assuming quasi-equilibrium and using the
equilibrium constant to eliminate some components from the
model, and thus to reduce its complexity.

Stochastic algorithms suffer from the same “stiffness”
problems as those of deterministic algorithms. In order to
capture the fast dynamics of the system, the entire simulation
is slowed down significantly. Hence, the basic idea of hybrid
algorithms aims to exploit the advantages of other algorithms
to offset the disadvantages of the stochastic algorithms.

Several attempts have been made to illustrate the rele-
vance and feasibility of hybrid algorithms. Bundschuh et al.
[41], Haseltine and Rawlings [42], and Puchalka and
Kierzek [43] have used a similar approach to integrate
ODE/Langevin with Gillespie algorithms. In both cases,
the modeler has to identify methods and criteria to partition
the system into fast dynamics and slow dynamics sub-
systems. The fast dynamics subsystem can be handled by
either ODE or Langevin equations while the slow dynamics
subsystem can be handled by Gillespie algorithms. In addi-
tion, numerical treatment such as the “slow variables” in
[41], and the “probability of no reaction” in [42], is required
to maintain the accuracy of the solutions. The algorithms
show promising results and the results are consistent with
those from Gillespie algorithms. Haseltine and Rawlings in
[42] showed the applicability of hybrid algorithms by simu-
lating the effect of stochasticity to the bi-modality of an
intracellular viral infection model using the algorithm. Kiehl
et al. [44] also tested the algorithms on the A phage model.

The relevance of hybrid algorithms has been pointed out
in several papers ([45—47]). Bockmayr and Courtois used
hybrid constraint programming methods to model an alter-
native splicing regulation model. This implementation is
very useful under circumstances where detailed knowledge
about the model is unavailable. Meanwhile, Alur et al. used
CHARON, a formal description language of hybrid system
which combines ODE with “mode switching” mechanism to
model the quorum sensing phenomenon in Vibrio fischeri, a
marine bacterium that involves the Lux regulon. A Hybrid
Petri Net [46] approach has been employed to model a hybrid
system using ODEs and discrete events. This method has been
used to model the growth pathway control of A phage.

Hybrid algorithms aim to close the gap between macro-
scopic and mesoscopic scales of the system. In particular, the
relevance of hybrid modeling has been proved necessary to
capture the behavior of a real biological system. Moreover,
hybrid algorithms have substantially cut down the computa-
tional cost of large-scale modeling and simulation. One major
drawback here is that, by introducing additional numerical
treatment to the algorithms, more parameters have to be
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defined and the accuracy of the solutions is dependent on the
accuracy of parameters. Mostly, the simulations result in
solutions of highly tuned parameters. Although these hybrid
approaches show significant improvements in the computa-
tional cost, there are still lots of computational issues to be
resolved before they can be applied to a realistic problem.
Some of the issues are:

* accuracy of results,

» consistency of system parameters between different
levels of abstraction,

* highly non-linear system,

* methodology to separate the systems into different sub-
systems, dynamic switching between different mathe-
matical formalisms.

Conclusions

This paper provides a detailed critical review of stochastic
modeling approaches relevant to chemistry and biochemis-
try. Modeling is an attempt to describe, in a mathematical
formalism, our understanding of the components of a system
of interest, their states, and their interactions. The model
should be sufficiently detailed so that it can be used to
simulate the behavior of the system on a computer, but it
should not even be too complex to avoid difficulties in
changing, integrating its specification and in understanding
its outcomes. Therefore, the first question to address when
embarking in a modelling project is to decide which features
to include in the model, and in particular, the level of details
that the model is intended to capture (see Table 4 for a
summary about the complexity of different stochastic simu-
lation approaches). The use of the mathematical formalisms
to describe the physical processes is familiar to the physicists
almost since the birth of physics. The use of mathematical
formalisms in biochemistry and in biology is more recent
and is based on the physical model of molecular collisions.
The recent and closer and closer convergence of biology,
physics, mathematics, and computer science has lead to a
intense use of computer simulation of mathematical models
of biochemical systems of several molecules and several
reactions at the level of detail required by a stochastic mo-
lecular approach. Many software tools have been developed
in these last years with the intention to allow the simulation
of the kinetics of complex and large systems of molecules.
It is timely to provide a critical review of the models
implemented by the majority of the tools to make users
aware of the level of abstraction of which a model, and
consequently a tool, is capable. At the same time, this review
highlights that none of the existing models fits all problems
and warns the user about the advantages and limitations of
each of the presented methods.

@ Springer

This review ends by indicating two promising directions:
the spatio-temporal models and algorithms, and the hybrid
methods. The first deal with the problem of diffusion-driven
reactions simulation and the second deals with the important
problem of stiffness, which is often present in (bio)chemical
models. Both models appear to be flexible enough to allow
for general stochastic solvers in the future even for very big
and heterogeneous models. However, an established type of
partitioning (reaction-wise and/or species-wise, space-wise
and/or time-wise) are still missing. Hybrid algorithms are the
most challenging methods to implement. Most of them also
still need much user supervision. These are open questions to
be addressed in the near future.
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