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Abstract Molecular dynamics (MD) simulations using all-
atom and explicit solvent models provide valuable informa-
tion on the detailed behavior of protein–partner substrate bind-
ing at the atomic level. As the power of computational re-
sources increase, MD simulations are being used more widely
and easily. However, it is still difficult to investigate the ther-
modynamic properties of protein–partner substrate binding
and protein folding with conventional MD simulations.
Enhanced sampling methods have been developed to sample
conformations that reflect equilibrium conditions in a more
efficient manner than conventional MD simulations, thereby
allowing the construction of accurate free-energy landscapes.
In this review, we discuss these enhanced sampling methods
using a series of case-by-case examples. In particular, we re-
view enhanced sampling methods conforming to trivial trajec-
tory parallelization, virtual-system coupled multicanonical
MD, and adaptive lambda square dynamics. These methods
have been recently developed based on the existing method of
multicanonical MD simulation. Their applications are
reviewed with an emphasis on describing their practical im-
plementation. In our concluding remarks we explore exten-
sions of the enhanced sampling methods that may allow for
even more efficient sampling.

Keywords Molecular dynamics simulation . Enhanced
sampling .Multicanonical . Conformational ensemble .

Protein interaction

Introduction

Interactions between biomolecules (such as that between a
receptor and a ligand) are crucial and fundamental events in
biological activity because a biomolecule, such as a protein,
must bind to and recognize its target molecule for signal trans-
duction, catalytic action, storage, among others. Therefore, the
determining factors which regulate the strength of such inter-
actions are pertinent research questions to be studied and an-
swered. The interaction strength is characterized by the bind-
ing affinity between the receptor and the ligand, which is
quantified by the free-energy difference between the isolated
(i.e., free) and bound states. When the bound state is more
stable than the isolated state at a given concentration of the
receptor and ligand, then the free energy of the bound state is
lower than that of the isolated state. Physical factors that sta-
bilize the bound state originate from hydrogen bonding, salt
bridges, van der Waals interactions, and hydrophobic interac-
tions. The dominant factors among these have been identified
by investigating the specific receptor–ligand complex struc-
tures using structural biology methods. Structurally ambigu-
ous regions in some complex structures have been shown to
contribute to binding due to the fact that the affinity of the
complex is altered when the ambiguous region is removed.
Along the same line, complexes, which are less stable than the
most stable complex structure, may be formed in the ligand–
receptor interaction process and may play an important role in
exerting their biological functions. Those complexes
possessing potentially important structural ambiguity or mul-
tiple complex forms have been referred to as Bfuzzy
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complexes^ (Tompa and Fuxreiter 2008). In addition, such
structural ambiguity/multiple complex forms may be related
to each other, although uncovering such relations by experi-
mental means is difficult. Molecular simulation is an extreme-
ly powerful tool for investigating the microscopic conforma-
tions involved in the binding process. Recently, efficient com-
putational samplingmethods have been applied to the study of
free-energy and conformational profiles associated with the
conversion from free to bound states.

Molecular simulation provides microscopic conformations
as snapshots at an atomic resolution. Under exhaustive sam-
pling conditions, the free energy is estimated from the ensem-
ble of the snapshots. In such cases, the calculation of the
binding affinity can be turned into a counting problem through
enumeration of the number of snapshots in both the bound and
isolated states. From knowledge of the density of states, the
free-energy profile along the binding process can be then ob-
tained. The free-energy profile, defined in relation to a specific
reaction coordinate, is referred to as the free-energy landscape
(FEL). One facile example of a reaction coordinate is the
separation distance between the receptor and the ligand. In
this case, the FEL is expressed as a function of the separation
distance. Not only the bound state but also intermediate states
or encounter complexes may be identified in the FEL, with a
knowledge of all species helping to provide an understanding
of the binding mechanism. Amore rigorous means to describe
the FEL is to use two structural parameters, such as the sepa-
ration distance and the relative molecular orientation between
the receptor and the ligand. In this case, the FEL is expressed
two-dimensionally, which gives it a higher resolution than
one-dimensional FELs and thereby allows easier identifica-
tion of the intermediate or encounter complexes. Here, we
note that the reliability of the FEL strongly depends on the
quality of the simulation data. Typically, there are two practi-
cal problems in generating FELs: imperfect force fields and
limited sampling times. The former results from the difficulty
in determining physical parameters to calculate the potential
energy. For example, the torsion energy for the protein back-
bone affects the secondary structure contents of the snapshots
(Ikebe et al. 2007; Kamiya et al. 2005). Tuning of the torsion-
energy parameters is still an extremely active research topic in
this field (Maier et al. 2015; Sakae and Okamoto 2014). The
second problem, which is related to the statistical accuracy of
the resultant FEL, is the focus of this review. In the following
sections we explain sampling techniques aimed at improving
statistical accuracy and introduce the novel methodology we
have developed.

We first consider the limitation of sampling time. With
respect to biological molecules, the simulation of the equilib-
rium state at temperatures near that of room temperature is of
primary concern. Conventional molecular dynamics (MD)
simulations (i.e., canonical MD) at constant temperature and
constant volume yield a conformational ensemble (ensemble

of snapshots) that will only cover part of the entire ensemble
of conformations at equilibrium. In the ideal case in which
simulation proceeds with exhaustive sampling, this entire en-
semble is called the canonical ensemble. In reality, however,
although conventional MD simulation using an all-atommod-
el is a powerful and precise tool for producing biomolecular
conformations, the simulation time is limited up to micro- or
milliseconds, even with use of state-of-the-art computers.
Given these time constraints, the conventional method is in-
sufficient to sample the entire ensemble at room temperature
to complete the FEL of the biomolecular system (Fig. 1). In
general, there are many energy minima (or energy basins) in a
space that express the conformation of the biomolecule(s).
This space, called the Bconformational space^, is character-
ized by a series of energy basins separated by energy barriers
(Fig. 1). In a completely general manner we may suppose that
our simulated system is in an energy basin. In order to access
the surrounding conformational space the system must over-
come an energy barrier, i.e., make it to the next energy basin.
When the energy barrier is high, the system is trapped in the
energy basin, and the system cannot escape from the basin
quickly. Successful barrier crossing corresponds to a Brare
event^. To search various conformations, barrier crossing
should be facilitated (Fig. 1), as it is these time-consuming
events which limit efficient sampling within the contraints of
simulation time. Enhanced sampling methods have been de-
veloped to avoid such non-productive trapping. These repre-
sentative enhanced sampling methods are discussed in the
next section.

Enhanced conformational sampling methods

There are a number of enhanced sampling methods (Bernardi
et al. 2015; Christen and van Gunsteren 2008; Mitsutake et al.

Fig. 1 Schematic view of the ragged free-energy landscape (FEL) of a
biomolecule. There are three energy barriers and four basins. The four
representative conformations at each of the four basins are shown as
chains of filled circles. The shaded regions of each basin correspond to
the respective conformation with high probability at room temperature.
Within the constraint of simulation time for conventional molecular
dynamics (MD), the MD trajectory (dashed curved line) spends most of
the time in one basin, ultimately surpassing an energy barrier but unable
to search all of the basins for the highlighted regions
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2001). Here we only discuss those methods which produce the
equilibrium ensemble at room temperature from the stock of
snapshots without any additional simulation. Two such
methods deserving particular attention are umbrella sampling
and parallel tempering.

Umbrella sampling The umbrella sampling method
(Chandler 1987; Deng and Roux 2009) facilitates sampling
by introducing bias potential functions (so-called umbrella
potential). During a simulation, the system is guided by the
bias potential functions so that the system fluctuates in re-
gions where the bias is low. Each umbrella potential is usu-
ally designed as a convex-downward harmonic potential,
and the minima of these umbrella potential functions are
typically set at points reflecting the high-free energy bar-
riers. After umbrella sampling, the probability calculated
from the sampled snapshots is, of course, affected by the
umbrella potential functions. The probability independent
of the umbrella potential can be estimated using the weight-
ed histogram analysis method (WHAM; Kumar et al.
1992), and the FEL is reconstructed for the correct unbiased
probability. Here, it is worth pointing out a practical as-
pect—that the choice of the variable (reaction coordinate)
and the weight for the umbrella potential determine the
sampling efficiency and that this choice is highly system-
dependant.

Parallel tempering The parallel tempering method is a wide-
ly used enhanced sampling method (Earl and Deem 2005) and
is also known as the temperature replica exchange method
(tREM) (Sugita and Okamoto 1999). In tREM, a set of differ-
ent temperatures is utilized that range from a lower tempera-
ture (i.e., room temperature) to a significantly higher temper-
ature. Multiple conventional canonical MD runs are started
simultaneously at these different temperatures such that each
simulation has a different temperature. Each run is named a
replica. During tREM, the temperature of a replica is ex-
changed with the temperature of one of its two neighboring
replicas when the principle of detailed balance is satisfied to
keep equilibrium. The temperature of a trajectory then fluctu-
ates over a wide temperature range. At a higher temperature,
the system can escape readily from a trapped state. As a prac-
tical check, when performing tREM, one might monitor how
frequently exchange occurs. If no exchange occurs, the sam-
pling is not enhanced because the run is simply a conventional
canonical simulation. For the case of tREM, the fewer the
transitions, the less effective is the sampling. Such situations
generally occur when the difference in temperature between
replicas is relatively large, as well as the system (i.e., many,
many atoms). Very recently, the replica-permutation method
(RPM) (Itoh and Okumura 2013b) and Bheat bath like
criteria^ (HLC) method (Kondo and Taiji 2013) have been
proposed. These methods uses the Suwa–Todo algorithm

(Suwa and Todo 2010) to obtain an equilibrium ensemble
without imposing the detailed balance criterion, which in-
creases the exchange ratio between the different temperatures
among the replicas. With such developments the RPM and
HLC may ultimately prove to be more efficient than tREM.

There are also other types of enhanced sampling methods
which modify the potential energy directly to lower the energy
barrier. Examples of this approach include an extended tREM,
accelerated MD (aMD) (Doshi and Hamelberg 2015;
Hamelberg et al. 2004), metadynamics (Laio and Parrinello
2002), and multicanonical MD methods. In the extended
tREM, the replicas have different physical parameters [van
der Waals radius (Itoh et al. 2010); coulomb potentials (Itoh
and Okumura 2013a), model resolution (Lyman et al. 2006),
and umbrella potentials (Okumura and Itoh 2013)] instead of
different temperatures. Exchange between replicas involves
transition between the different simulation runs under the
detailed-balance condition. These extended methods of
tREM could be generalized as the replica exchange umbrella
sampling method (Sugita et al. 2000) and Hamiltonian replica
exchangemethod (Fukunishi et al. 2002). In aMD, a particular
potential energy is scaled by a user-defined factor, and the
scaled energy is used throughout the simulation. After the
aMD simulation, the probability with the genuine energy is
reconstructed. In metadynamics, the bottom level of an energy
basin along a reaction coordinate is raised gradually during
simulation. Raising the bottom level pushes the conformation
out of the energy basin where it is trapped and, consequently,
the system can travel widely along the reaction coordinate. In
the multicanonical method, the potential energy travels ran-
domly and continuously in a wide potential energy range.
How to achieve such sampling by the multicanonical method
is described in the next section.

The basics of the multicanonical method were developed
Berg and Neuhaus (1992) and are based on the Monte Carlo
scheme and applied to the simple statistical mechanical
Potts model. Hansmann and Okamoto (1993) applied the
multicanonical method for searching the lowest energy
conformation of the 5-residue peptide, Met-enkephalin.
The multicanonical method was then incorporated into a
MD scheme (Hansmann et al. 1996; Nakajima et al.
1997). The multicanonical MD (McMD) simulation has
been improved and applied to larger protein systems with
an all-atom model in an explicit solvent. The McMD meth-
od has been used to obtain the FELs for a chameleon se-
quence (Ikeda and Higo 2003), the binding between lyso-
zyme and a saccharide (Kamiya et al. 2008), and domain-
size protein folding (Ikebe et al. 2011a). In the following
section, we provide a concise description of McMD. In
subsequent sections, we introduce the theory and applica-
tion of more efficient enhanced sampling methods, namely
trivial trajectory parallelization (TTP) (Ikebe et al. 2011b),
virtual-system coupled McMD (V-McMD) (Higo et al.
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2013), and adaptive lambda square dynamics (ALSD)
(Ikebe et al. 2014).

McMD simulation

To construct an accurate FEL, a well-equilibrated conforma-
tional ensemble must be obtained. McMD (Hansmann et al.
1996; Nakajima et al. 1997) provides a way to overcome
energy barriers in the conformational space by scaling the
potential energy, thereby allowing markedly faster sampling
of the ensemble than is possible using conventional canonical
MD. Here we briefly explain McMD simulation.

McMD is an MD simulation at constant temperature T0
with a modified potential energy Emc,

Emc ¼ λmc E; T0ð ÞE ¼ 1þ RT 0lnPc E; T 0ð Þ
E

� �
E

¼ E þ RT0lnPc E; T0ð Þ; ð1Þ

instead of the original potential energy, E. In this case, the
forces acting on atoms are derived from derivatives of Emc

rather than E. We represent Emc with three equivalent expres-
sions in Eq. 1. The first expression means that McMD modu-
lates E by a scaling factor λmc. When 0<λmc<1, the potential
energy is scaled down and, consequently, the forces are also
scaled down. This scaling enhances conformational change of
the simulated system because it weakens interaction energy to
stabilize the conformations. As a result, the system explores a
greater conformational space than canonical MD. The second
expression provides details on λmc, where R is a gas constant
and Pc(E,T0) is a probability distribution function of energy
for a well-equilibrated canonical ensemble (canonical proba-
bility distribution) at T0 on the E axis, although the functional
form of Pc(E,T0) is unknown a priori. The factor λmc is de-
signed to realize a random walk of the system on the E axis
[for more details on the derivation, the reader is referred to the
review of Higo et al. (2012)]. The random walk efficiently
facilitates the overcoming of energy barriers and the search
for various energy minima in the conformational space. In a
practical McMD procedure, a canonical MD simulation run is
first performed to approximate the unknown function Pc(E,
T0), followed by gradual refinement of Pc(E,T0) by iterative
McMD runs. After these iterative runs, a productive McMD
simulation run using the refined Pc(E,T0) is performed to sam-
ple the ensemble. The productive run provides an ensemble
(i.e., multicanonical conformational ensemble) which realizes
a flat multicanonical probability distribution Pmc(E,T0) on the
E axis due to the random walk. The third expression explains
how the McMD formalism can be regarded as a type of com-
plex umbrella sampling MD (Chandler 1987; Deng and Roux
2009) with an umbrella potential RT0lnPc(E,T0). A canonical
ensemble at an arbitrary temperature T can be reconstructed

from the multicanonical conformational ensemble with a
reweighting scheme (Higo et al. 2012) as

Pc E; Tð Þ ¼ Pmc E;T 0ð ÞWmc E; T0;Tð Þ
¼ Pmc E; T0ð Þexp λmc E;T0ð ÞE=RT 0f gexp −E=RTð ÞC

ð2Þ
where Wmc is a reweighting factor for McMD and C is a
normalization constant. Assigning a probability Pc(E,T) to
each snapshot, whose real energy is E in the multicanonical
conformational ensemble, the canonical conformational en-
semble at T is constructed, and through mapping of these re-
weighted snapshots to a conformational space, a FEL can be
generated.

Trivial trajectory parallelization of McMD

Although McMD allows for more efficient conformational
sampling than canonical MD it still requires long simulation
times for large systems in order to generate statistically reli-
able data. Parallel computing of MD simulation is a common-
ly used technique to speed up conformational sampling.
Parallel computing with MPI (Message Passing Interface
Standard) and/or OpenMP (Open Multi-Processing) is gener-
ally implemented in MD simulation programs with multiple
central processing units (CPUs). The MD technique with a
general-purpose graphics processing unit (GPGPU) (Götz
et al. 2012; Mashimo et al. 2013; Pall et al. 2014; Salomon-
Ferrer et al. 2013) is growing in importance due to multiple
processors being less expensive than CPUs. Hardware archi-
tectures specialized for MD, such as Anton (Shaw et al. 2009)
andMD-GRAPE (Narumi et al. 2006), have enabled extreme-
ly long-time scale MD simulations (Kikugawa et al. 2009;
Lindorff-Larsen et al. 2011; Shaw et al. 2010). These special-
ized architectures speed up a single MD simulation run and
provide an increased number of conformations from the long
MD trajectory. Combining these architectures and McMD
would further enhance efficient generation of FELs.

Another form of parallel computing is to perform multiple
MD runs. The benefit of this type of parallelization is that no
additional device need be implemented in theMD code and no
costly machine is required. The method provides an increased
number of conformations, not from a single long trajectory,
but from independent multiple trajectories, each of which may
be short. The parallel computing method with multiple
McMD runs, trivial trajectory parallelization of McMD
(TTP-McMD) (Higo et al. 2009; Ikebe et al. 2011b), provides
a conformational ensemble where the multiple McMD runs
use a common Emc and are started from different initial con-
formations that are widely distributed in conformational space
(Fig. 2). Our group has empirically examined the efficiency of
TTP-McMD for a short peptide system (Higo et al. 2009) and
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have provided a theoretical framework for its interpretation
(Ikebe et al. 2011b). The latter study demonstrated that TTP-
McMD with N runs generates a more accurate FEL than a
single McMD run N-times longer than each TTP-McMD
run. In the iterative simulations of TTP-McMD, the final snap-
shot of each trajectory is used as the initial one for each fol-
lowing iterative run. This treatment is of essential importance
for efficient sampling (Ikebe et al. 2011b). As mentioned
above, this method requires neither special hardware nor high-
ly adjusted software to improve sampling efficiency.
Furthermore, its parallelization efficiency is always 100 %.
The TTP procedure enables McMD to search FELs of com-
plex systems, such as proteins and their substrates. Moreover,
TTP is readily applicable to other sampling methods, such as
V-McMD and ALSD (to be discussed later in this review).

Applications of TTP-McMD to interactions
between intrinsically disordered proteins
and its partner protein

In this section, we describe the application of TTP-McMD to
systems of intrinsically disordered proteins (IDPs) (Uversky
2013; Wright and Dyson 2015), which are involved in cellular
signaling and transcriptional machinery (Dunker et al. 2002).
In general, an ordinary protein folds into a specific and stable
conformation (i.e., a specific tertiary structure) under physio-
logical conditions, and the ordered conformation determines
its unique function. We designate this specific structural con-
formation as Css in this review. In contrast, IDPs have no
specific conformation and interconvert among semi-stable
conformations in the free state (unbound state). When the

IDP interacts with its partner protein, it often folds into the
Css form and the complex structure is formed. This folding
mechanism of IDP accompanied by binding to the partner is
referred to as the Bcoupled folding and binding^ mechanism.
Two representative schemes have been suggested to explain
this mechanism, namely, population shift (Bosshard 2001;
James and Tawfik 2003; Monod et al. 1965) and induced fit
(Koshland 1960). In the former scheme, Css is intrinsically
included even in the conformational ensemble of the unbound
single-chain IDP, even though its population for Css may be
small. The partner protein then selects Css when the complex
is formed. In the latter scheme, IDP first binds to the partner
with conformations different from Css, and then Css is in-
duced. At the present time it is still unclear which scheme is
appropriate. The detailed binding mechanisms have been in-
vestigation in two experimental settings where TTP-McMD
was applied to two IDPs: the N-terminal repressor domain of
neural restrictive silencer factor (NRSF) (Higo et al. 2011) and
the phosphorylated kinase-inducible domain (pKID) of the
cyclic-AMP response element binding protein (CREB)
(Umezawa et al. 2012).

The complex structure of NRSF and its partner protein, the
paired amphipathic helix (PAH) domain of mSin3 (Nomura
et al. 2005), has been determined experimentally (Fig. 3a). For
simplicity, we refer here to the molecule as mSin3. To obtain
the conformational ensembles of NRSF, TTP-McMD of
NRSF was conducted in the absence and presence of mSin3
with these two systems denoted as single-chain NRSF and the
NRSF-mSin3 system, respectively. To initiate either simula-
tion, the NRSF conformation was randomized. In the NRSF-
mSin3 system, the two proteins were separated from each
other. The proteins were also immersed in an explicit solvent
for both systems. No artificial restraint to movement was
placed on NRSF while the conformation of mSin3 was weak-
ly restrained to the experimental structure throughout the sim-
ulation (discussed later in this review). From the TTP-McMD
simulations, FELs of NRSF were constructed for both sys-
tems. The FEL of the NRSF-mSin3 system could be clustered
into a number of states. Importantly, the largest cluster (i.e.,
thermodynamically most stable cluster or the lowest free-
energy cluster) corresponded to the native-like complex struc-
ture. Three super clusters were apparent, one of which in-
volved the largest cluster, and free-energy barriers existed
among the super clusters. The existence of the super clusters
led to the proposal of the following scenario for complex
formation: once an encounter complex, which is involved in
a cluster other than the main (and largest) cluster is formed,
NRSF should change in conformation to overcome the free-
energy barriers among the clusters to reach the native-
complex structure.

The single-chain NRSF system produced a conformational
ensemble consisting of various conformational clusters char-
acterized by α-helix and β-strand secondary structural

Fig. 2 Schematic figures showing sampling with multicanonical MD
(McMD; a) and trivial trajectory parallelization-McMD (McMD; b).
Boxes represent conformational spaces, curved lines capped at each end
by circles showMcMD simulation trajectories. Open and filled circles at
the termini of the trajectories Initial and final snapshots of the McMD
trajectories, respectively. McMD explores conformational space using of
a single long trajectory. In contrast, TTP-McMD explores conformational
space that by N-independent trajectories that are widely distributed in the
conformational space. TTP-McMD with N runs generally constructs a
more accurate FEL than a McMD run which is N-times longer than a
single TTP-McMD run
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elements as well as other structural elements. Interestingly, a
majority of those NRSF conformations were found in the en-
semble of the NRSF–mSin3 coexisting system. Therefore, the
population shift paradigm may readily incorporate the exis-
tence of various encounter complexes. However, the confor-
mation of the encounter complex should undergo sufficient
change to reach the native complex, as mentioned above. In
this context, the induced fit takes place and folding and bind-
ing in the NRSF-mSin3 system proceeds in a way that the
conformational shift and induced fit are coupled.

The other application of TTP-McMD targeted pKID. pKID
in complex with its partner, the KIX domain of CREB binding
protein (CBP), adopts a specific conformation composed of
N- and C-terminal helices (these regions are denoted as αA
and αB, respectively, even when the segments do not adopt
helical conformation in a simulation snapshot) and a loop
region spacing these helices (Radhakrishnan et al. 1997)
(Fig. 3b). Using the same procedure as for the NRSF systems,
we conducted TTP-McMD of two systems of pKID in the
absence and presence of the KIX domain, denoted as the
single-chain pKID and pKID-KIX systems, respectively.

The FEL of the single-chain pKID system showed that the
helical propensity for the αB region is considerably smaller
than that of the αA region, which is in agreement with exper-
imental results (Radhakrishnan et al. 1998). In the pKID-KIX
coexisting system, FEL illustrated a number of semi-stable
bound forms, including the native-like complex conformation.
Subsequent analyses determined that the coupled folding and
binding mechanism of the αA and the αB regions are differ-
ent. The αA region bound with KIX exhibited large fluctua-
tions, and therefore discernment of the appropriate mechanism
for the αA region could not be concluded. When categorized,
the binding of the αA region could be seen to follow the
population shift mechanism. To the contrary, the αB region
follows the induced fit mechanism. TheαB region folds into a
helix when it binds to either one of two distinct hydrophobic
sites on the KIX domain: the native binding site (genuine
binding site) in the native structure and another binding site,
whose location is far from the native binding site (Fig. 3b, c).
Interestingly, the latter corresponds to the binding site for an-
other KIX-binding transcription factor, the mixed-lineage leu-
kemia protein (MLL) (Fig. 3b, c), where a segment of MLL

Fig. 3 Folded structures of target intrinsically disordered proteins (IDPs)
[N-terminal repressor domain of neural restrictive silencer factor (NRSF)
and phosphorylated kinase-inducible domain (pKID) of CREB] in the
complex with their partner proteins. a Native complex structure of
NRSF is shown as black ribbon on the mSin3 surface (PDB ID:
2CZY). NRSF is bound to the cleft of mSin3. b Black ribbon
represents the native structure of pKID on the KIX surface (PDB ID:
1KDX). The two helices (αA, αB) are attached in the shallow concave
on the surface of KIX. Dashed-line circleMLL binding site. c Left panel

Native structure of MLL in the triple complex with KIX and pKID (PDB
ID: 2LXT), corresponding to the top view of b. The MLL and pKID
structures are represented as black ribbons and the KIX as its surface.
Right panel Conformation of pKID binding to the MLL-binding site of
KIX, which was taken from the TTP-McMD ensemble of the pKID-KIX
system. The viewing angle at right is the same as that of the left. The
shapes of the KIX surfaces are different between the left and the right
views because KIX has dynamic side chains and its C-terminus is flexible
in the simulation
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adopts a helical conformation (Brüschweiler et al. 2013; De
Guzman et al. 2006) (PDB IDs: 2AGH, 2LXS, 2LXT).
Experimental results suggest that pKID also binds to the
MLL-binding site (Sugase et al. 2007), although a detailed
structure of the complex has not been determined. A benefit
of molecular simulation is that the simulation can provide
atomistic information for the molecular structure. Such
simulations suggested a conformation of pKID on the
MLL-binding site that was helical and overlapped well with
the bound form of the MLL segment (Fig. 3c). Thus, TTP-
McMD yielded pictures that furthers our understanding of
the binding mechanism and conformational characteristics
of IDPs; such information cannot be obtained from
experiments.

However, we should add a note of caution regarding the
technical treatment of the partner proteins in both the
NRSF-mSin3 and pKID-KIX coexisting systems. The part-
ner molecules, mSim3 and KIX, respectively, are ordered
proteins. Since the McMD simulation scales the whole en-
ergy of the systems (i.e., the whole energy is elevated to a
high temperature during the simulation), the partner pro-
teins may undergo unfolding. Therefore, the conformation
of the ordered partner proteins is restrained weakly around
the native structure to avoid such undesired sampling for
the unfolded state of the partner, while the targeted IDP is
not restrained. Herein, our cautionary note is that very
strong structural restraints on the partner can yield artificial
outputs. In the native NRSF-mSin3 complex, the natively
bound NRSF is buried in the closed crevice of the mSin3
surface. Thus, if the structural restraints are so strong as to
freeze the open/close fluctuations of the crevice, NRSF
might not reach the natively bound form in the simulation.
Also in the pKID-KIX system, the strong restraint seems to
be inadequate if the research is focused on an allosteric
mechanism of the KIX domain (Law et al. 2014).
Therefore, a method free from the application of structural
restraints is useful to remove any artificial effects induced
within the sampling. Such a restraint-free method is de-
scribed in the section Adaptive Lambda Square Dynamics
of this review.

Theory of virtual-system coupled McMD

Enhanced sampling methods, such as McMD, provide a flat
probability distribution over a wide range of energy or reac-
tion coordinates, meaning that the system walks randomly
over a wide range. In McMD, the system can search low-
energy conformations by overcoming the energy barriers. If
we imagine that the McMD simulation starts from a non-
equilibrated conformation in a low-energy region, then the
energy of the system transitions to a high-energy region when
climbing an energy barrier, and to a low energy region when

the barrier is overcome. Since the McMD simulation is a
method to obtain an equilibrated ensemble at an arbitrarily
temperature, these up-and-down motions of energy lead the
system to a relaxed conformation in the low-energy range.
Thus, traffic between the low- and high-energy regions is very
important for the system to rapidly reach a well-equilibrated
conformational ensemble. However, some systems may have
an energy surface where the low-energy regions and high-
energy regions are connected by a very narrow pathway. In
such cases simple McMD sampling may not sufficiently im-
prove the sampling efficiency (Higo et al. 2012; Higo and
Nakamura 2012).

To achieve the efficient traffic in multicanonical sampling,
a variant of McMD, named Bvirtual-system coupled
multicanonical molecular dynamics^ (V-McMD), was devel-
oped (Higo et al. 2013). First, a brief introduction of the virtual
system: imagine an abstract degree of freedom (i.e., virtual
degree of freedom) v, which expresses a system (virtual sys-
tem). Because v does not actually exist, we need not define a
specific system for the virtual system. It is assumed that v
varies discretely (v= v1,v2,…), and the discrete values are
termed Bvirtual states^. The number and the energy of the
virtual states are denoted as Nv and EVi (i=1, 2, 3, …, Nv),
respectively.

Note that the entire system (the molecular system + the
virtual system) is specified by the potential energy, E, of the
molecular system and the virtual state, vi. If there are no direct
interactions between the molecular system and the virtual sys-
tem, E is apparently expressed only by the coordinates of the
molecular system. We then design the energy of the entire
system as

EVi Eð Þ ¼ E þ RT 0ln
Pc Eð Þ
gi Eð Þ

� �
¼ RT0ln

n Eð Þ
gi Eð Þ

� �
; ð3Þ

where Pc(E) is the canonical probability distribution function
of E and gi(E) is a arbitrary function of E under the condition
that the virtual system is in the i-th virtual state. Note that gi(E)
is defined by both E and the virtual state number i, which
means that EVi involves interference between the molecular
and virtual systems despite E not involving vi. The resulting
probability distribution of E in the i-th virtual state, is given as:

PVi Eð Þ∝n Eð Þexp −
EVi

RT 0

� �
∝gi Eð Þ: ð4Þ

When gi(E) is a constant, a flat energy distribution results,
similar to that for the conventional McMD simulation.

Up to this point, the method for time development of the
system has not been given. In V-McMD, the time develop-
ment for the molecular system is performed by integrating the
Newtonian equations as usually done for MD. However, the
time development for the virtual system is done with the
Monte Carlo scheme, with the transition probability from the
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i-th to j-th virtual states set so that the transition satisfies the
detailed balance, as per Eq. 5.

PVi→V j Eð Þ ¼ min 1; exp −
EV j−EVi

RT0

� �� �
¼ min 1;

g j Eð Þ
gi Eð Þ

� �
⋅

ð5Þ

In actual sampling, the molecular system moves according
to the multicanonical MD scheme for a time interval of τ,
during which the virtual system is kept in a virtual state.
Then, at the end of the interval, the transition among virtual
states is attempted according to the Monte Carlo scheme, at
which point the molecular system is then fixed at the current
conformation. After the trial, the molecular system time-
develops for another interval of τ, and so on. What is impor-
tant is that we can set the function shape for gi arbitrarily
because the virtual system is literally a virtual object. gi(E)
and gi + 1(E) are designed as

gi Eð Þ ¼
0
1
0

EMax
V i

< E
� 	
EMin
V i

≤E≤EMax
V i

� 	
E < EMin

V i

� 	

8>>><
>>>:

and gi þ 1 Eð Þ ¼
0
1
0

EMax
V iþ1

< E
� 	
EMin
V iþ1

≤E≤EMax
V iþ1

� 	
E < EMin

V iþ1

� 	

8>>><
>>>:

;

ð6Þ
respectively, where the boundary parameters are aligned as
EMin
V i

< EMin
V iþ1

< EMax
V i

< EMax
V iþ1

. We call the overlapping

range EMin
V iþ1

;EMax
V i

h i
between non-zero ranges of gi(E) and

gi + 1(E) as the Bzone^, then the transition probability from
the i-th to j-th virtual states is 1 in the zone, and 0 outside
the zone (illustrated in Fig. 4). Thus, the multicanonical dis-
tributions at the i-th and j-th virtual states are connected, there-
by maintaining the detailed balance criterion. Here, the key
point of V-McMD is that the connection is achieved with the
probability of 1 so that the traffic is driven with keeping the
equilibrium condition (for details, see Higo et al. 2013).

In practical terms, multiple runs (i.e., TTP procedure) can
be applied to V-McMD in a straightforward manner—a pro-
cess referred to as BTTP-V-McMD^. One trajectory taken
from the multiple V-McMD runs migrates to another trajecto-
ry, where the migration occurs unconditionally. Therefore, it
should be once again noted that this migration facilitates the
traffic (the low-to-high and the opposite transition of the en-
ergy) during simulation, and it yields more rapid equilibration
than conventional MD simulations. The equilibration speed is
discussed in the following section.

Applications of virtual-system coupled methods
for a peptide homodimer

In the study of Hoh et al. (2004), the target for TTP-V-McMD
was a bioactive peptide, Endothelin-1 derivative (KR-CSH-

ET1), which forms a stable antisymmetric homodimer
(Fig. 5a). The dimerization of KR-CSH-ET1 was investigated
by Higo et al. (2013) to test the equilibration speed of TTP-V-
McMD as compared with TTP-McMD. Two molecules of
KR-CSH-ET1 were separated from each other and immersed
in an explicit solvent for the initial conformation of TTP-V-
McMD, and both TTP-V-McMD and TTP-McMD were per-
formed with the same number of multiple runs. The protocol
is described in detail in Higo et al. (2013). Although both

Fig. 4 The transition probabilities between the i -th and (i+ 1)-th virtual
states in virtual-system coupled McMD (V-McMD). For definition of the
symbols, see text in section Theory of virtual-system coupled McMD.
Functions gi(E) and gi + 1(E) are defined in Eq. 6.Dashed lines denote the
energy boundaries for the two virtual states: EMin

V i
and EMax

V i
for gi(E), and

EMin
V iþ1

and EMax
V iþ1

for gi + 1(E). When the system with energy E attempts to
transfer from the i -th to (i + 1)-th state (gray arrow), the transition
probability PVi→V iþ1 Eð Þ equals 1 in the zone (EMin

V iþ1
≤E≤EMax

V i
) and 0

outside the zone. On the other hand, from the (i+ 1) -th to i -th state (black
arrow), the transition probability PViþ1→V i Eð Þ equals 1 in the zone and 0
outside the zone. Thus, the transition between the two states succeeds
undoubtedly in the zone. If three virtual states exist (Nv = 3), there are
zones between the first and second states and between the second and
third states. The system can then travel from the first/third to the third/first
states via two sequential transitions as from the first/third to the second
and from the second to the third/first

Fig. 5 Native structures of target homodimers of the Endothelin-1
variant (KR-CSH-ET1). a The X-ray crystal structure of KR-CSH-ET1
(PDB ID: 1T7H), with one chain shown in gray and the other in black.
The inter-molecular hydrophobic interaction of phenylalanine and the salt
bridge between glutamate and arginine stabilizes the homodimer. Their
side chains are displayed as the stick model. The inter-molecular main-
chain interaction with the anti-parallel β-sheet also contributes to the
stability. b The two segments of Amyloid-β peptide (sequence: ALA-
ILE-ILE-GLY-LEU-MET) shown in gray and black, respectively, as tak-
en from amyloid fibril structure (PDB ID: 2Y3J)

52 Biophys Rev (2016) 8:45–62



TTP-V-McMD and TTP-McMD produced the native-like di-
mer for the most thermodynamically stable conformation, the
convergence speed of TTP-V-McMD was faster than that of
TTP-McMD.

The virtual-system and trajectory-parallelization proce-
dures are extendable to other enhanced sampling methods.
Here we describe the method for adaptive umbrella sampling
(AUS), which is abbreviated as TTP-V-AUS (Higo et al.
2015). The TTP-AUS (i.e., trajectory-parallelization of the
conventional AUS) yields a random walk over a wide range
of reaction coordinates. In TTP-V-AUS, the range of the re-
action coordinate is divided into the virtual states, as done for
the energy axis in TTP-V-McMD, and the transitions among
the virtual states are defined as the same way as for TTP-V-
McMD (for details, see Higo et al. 2015). The traffic was
compared between TTP-V-AUS and the conventional TTP-
AUS with sampling association/dissociation of two
Amyloid-β peptides in an explicit solvent, where the separa-
tion distance between the two peptides was adopted as the
variable for the sampling enhancement. This peptide is known
to form an amyloid fibril (Fig. 5b). The free-energy landscape
shows that various complex forms, such as the antiparallel β
sheet, parallel β sheets, α-helix, and other complex forms, are
distributed in a conformational space. In comparison between
TTP-V-McMD and TTP-McMD, TTP-V-AUS realized
quicker convergence than TTP-AUS. Thus, it would appear
that the virtual-system method improves the traffic along the
reaction coordinate in comparison to methods without the vir-
tual system (Higo et al. 2015).

Adaptive lambda square dynamics simulations

Adaptive lambda square dynamics (Ikebe et al. 2014) has been
developed from two free energy calculation methods, namely,
adaptive umbrella sampling (Mezei 1987) and λ dynamics
(Kong and Brooks CL III 1996), and is an effective method
for sampling the ensemble of a complex system that is not
dependent upon the application of structural restraints. As
previously described, the imposition of strong restraints may
cause artifacts. ALSD enhances sampling only for a part of the
system. For this purpose, the potential energy E is divided into
a number of terms, and these terms are differently scaled. The
division of E is accomplished through two stages, energy term
division (ETD) and spatial energy division (SED), which are
sequentially processed.

A potential energy is decomposed usually as

E ¼ Ebond þ Eangle þ Etors þ Eimp þ Eele þ EvdW; ð7Þ

where the subscripts Bbond^, Bangle^, Btors^, Bimp^, Bele^,
and BvdW^ stand for the bond length, bond angle, torsion
angle, improper torsion angle, electrostatic, and van der

Waals potential energies, respectively. In the ETD stage, the
terms are classified into two groups: interesting terms
(Eint_term) and others (Erest_term). In the original article on
ALSD (Ikebe et al. 2014), three terms, namely, Etors, Eele,
and EvdW, were selected for Eint_term because these three terms
may affect the global conformation of the system more than
the other terms do: Eint_term =Etors +Eele +EvdW. E is then
expressed as:

E ¼ Eint term þ Erest term; ð8Þ

In SED, the system is divided spatially into an interesting
region (region A) and the other region (region B) in order to
selectively enhance the sampling of region A. For a complex
system, it would be reasonable that the substrate (ligand) and
the other components (receptor protein, ions, and solvent mol-
ecules) are set as region A and B, respectively (Fig. 6a).
According to this spatial division, each interaction term in
Eint_term is assigned to Bintra-A^, Binter-A–B^, or Brest^. For
a pairwise interaction between two atoms, the interaction is
assigned to intra-A or rest, when both atoms are in region A or
B. When the atoms belong to different regions, the interaction
is done to inter-A–B. To assign a torsion angle interaction that
is specified by a straight chain of four atoms, A–B–C–D,
bound with covalent bonds, atoms A and D are considered
to interact. All interactions in Erest_term are assigned to rest.
As a result, E is decomposed into three terms:

E ¼ EintAA þ EintAB þ Erest; ð9Þ

where the subscripts BintAA^,BintAB^, and Brest^ denote
intra-A , inter-A–B, and rest, respectively.

ALSD is an MD simulation on an extended coordinate
space (r, λ) at constant temperature T0 with a modified
Hamiltonian:

HALSD r; r:;λ;λ
:
 � ¼ λ2EintAA rð Þ þ λEintAB rð Þ þ Erest rð Þ

þ K r
:ð Þ þ 1

2
mλλ

: 2 þ RT0lnPex λ; T0ð Þ;
ð10Þ

where r and r
:
are sets of atomic coordinates and their veloc-

ities, respectively, λ is a scaling factor for ALSD as an extra
dynamic variable with the fictitious mass mλ, K is the kinetic

energy of the system, λ
:
is the velocity of λ, and Pex(λ, T0) is a

canonical probability distribution on the λ axis obtained from
a well-equilibrated canonical MD simulation with the scaled
potential energy Eex (=λ

2EintAA+λEintAB+Erest) in the (r, λ)
space. During anALSD simulation, the scaling factor λmoves
as a variable obeying HALSD and scales only the potential
energy terms with respect to region A (i.e., EintAA and
EintAB). When 0<λ<1, EintAA and EintAB are scaled down
and only the conformational changes of region A are en-
hanced. Meanwhile, the conformation of region B is
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maintained in thermal fluctuations at T0 without structural
restraint forces. As with McMD, HALSD is designed to realize
a randomwalk on the λ axis. Iterative ALSD runs are required
to estimate a priori the unknown Pex(λ,T0). A canonical en-
semble at λ=1 is reconstructed by a reweighting scheme. The
reader is referred to the original article by Ikebe et al. (2014)
for more details.

An application of ALSD to a highly polarized system

Ikebe et al. (2015) applied ALSD to conformational sampling
of the histone tails on a nucleosome system (Fig. 7). The
nucleosome is a fundamental conformational unit of DNA in
a eucaryotic nucleus and is composed of DNA wrapped
around histone proteins. Although the structures of the core
region of the nucleosome have been determined by X-ray
crystallography, the flexible N-terminal regions of the histone
proteins, referred to as histone tails, have no specific stable
conformation. It is known that chemical modifications on the
histone tails induce conformational changes of the histone tail
itself, DNA, and nucleosome. These conformational changes
concomitantly regulate biologically important DNA func-
tions, such as transcription, duplication, splicing, and DNA
repair (Jenuwein and Allis 2001; Sidoli et al. 2012; Strahl
and Allis 2000). To elucidate the mechanism of the

conformational changes by the chemical modifications, it is
necessary to obtain the conformational ensemble of the his-
tone tails on a nucleosome.

However, it had been difficult to sample the ensemble be-
cause the system is highly polarized compared to general pro-
tein–substrate complex systems: negatively charged DNA
covers the surface of the nucleosome, and the histone tails
include a lot of positively charged lysine and arginine resi-
dues. The attractive electrostatic interactions between them
make the histone tails stick to DNA and constrain the confor-
mational changes of the histone tails. To realize efficient con-
formational sampling, it is important to dissociate the histone
tails from the DNA during the simulation. An McMD simu-
lation of a histone tail (H3 histone tail) on the nucleosome
system could not sufficiently sample a variety of conforma-
tions of the histone tail (data not shown). The H3 histone tail
has 13 positively and no negatively charged amino acids in the
N-terminal 40 residues. To dissociate the histone tail from the
DNA, the histone tail must break all electrostatic contacts with
DNA simultaneously. Although the McMD equally scaled
down all interactions, including electrostatic interactions be-
tween DNA and the histone tail, when λmc<1, the scaling was
not sufficient to dissociate them even when the λmc was quite
small (=0.5).

To the contrary, ALSD, which sets the histone tail to region
A (Fig. 6b) and Eint_term=E, was able to dissociate them and

Fig. 6 Examples of spatial energy division (SED) in adaptive lambda
square dynamics (ALSD). ALSD enhances conformational sampling of
region A while maintaining the conformation of region B in thermal
fluctuations at the simulation temperature. a An example of SED for a
complex system consisting of receptor protein (region B) and the ligand
(region A). McMD tends to enhance conformational changes not only for
the ligand but also for the protein. Thus, in McMD for such complex
system, weak restraint forces are applied to the protein to maintain the
conformation. On the other hand, ALSD can maintain the protein
conformation without the restraint forces. b SED for an H3 histone tail
on a nucleosome system. The histone tail and the nucleosome core
particle (NCP) were assigned as region A and B, respectively. This
system is highly polarized: negatively charged DNA covers the surface
of the NCP, and the histone tail includes a many positively charged lysine
and arginine residues. McMD could not sufficiently sample
conformations of the histone tail because the histone tail is stuck to
DNA by strong electrostatic interactions. To the contrary, SED in
ALSD realized dissociation of the histone tail from DNA and sampled

the various conformations. See Section Adaptive lambda square
dynamics simulations for details. c SED in ALSD, as originally
described in Ikebe et al. (2014). ALSD was originally developed as a
more efficient conformational sampling method than McMD. In the
original article, ALSD was applied to a short peptide (poly-lysine
decapeptide, region A) system in explicit solvent (region B) to compare
its sampling efficiency with that by McMD. To sample various
conformations of the peptide, McMD must explore a wide potential
energy range of the whole system, composed of the peptide and many
water molecules. To the contrary, ALSD selectively enhances the
conformational sampling of the peptide by exploration only in a
narrower potential energy range with respect to the peptide. This
focused sampling reduces the conformational space to be sampled for
the solvent and concomitantly increases the sampling efficiency for the
peptide. This system was also used in this review for ALSD simulations
to investigate the efficient operation procedure of energy term division
(ETD) on the sampling efficiency
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sampled a variety of conformations of the H3 histone tail.
Although the ALSD scaled down interactions of DNA with
the histone tail when λ<1, it did not scale down those with
ions and solvent, unlike McMD: in ALSD, DNA preferential-
ly interacted with positive ions and positively polarized hy-
drogen atoms of solvent water rather than the histone tail,
which allowed the histone tail to dissociate from DNA. This
result showsn that ALSD is a promising method for highly
polarized systems, which pose difficulties to sampling by oth-
er methods, such as McMD.

Efficient operation procedures for ALSD

Here we note efficient operation procedures for ALSD.
Although Eint_term can be set arbitrarily in theory, Eele and
EvdW should not be individually treated in the ETD stage. To
present the problem, we performed three ALSD simulations of
a short peptide (poly-lysine decapeptide), which is the same
one as that studied in the original ALSD article (Ikebe et al.
2014), at different settings of ETD: Eint_term=Eele (referred to
as BALSDele^), E in t_term = EvdW (BALSDvdW^), and
Eint_term=Eele +EvdW (BALSDboth^). In these simulations, the
peptide and the solvent were selected as region A and B,
respectively (Fig. 6c). These simulations were performed un-
der the same simulation condition: seven iterative runs to re-
fine Pex(λ, T0) and the productive run to sample the ensemble
with TTP (10 ns × 64 trajectories). Note that the total simula-
tion time for each simulation was shorter than that in the
original ALSD article (30 ns × 72 trajectories). In theory, these
ALSD simulations provide the equivalent canonical ensem-
bles at λ= 1 if the simulation times are sufficiently long.

However, the different setting of ETD affects the sampling
efficiency when the simulation times are insufficient.

The correlations between λ and the radius of gyration (Rg)
of the peptide are shown as FESs in Fig. 8. The free energy
was calculated as −RT0lnP(λ, Rg) and normalized for each λ
where T0 was 300 K and P(λ, Rg) was a probability distribu-
tion function at (λ, Rg). The peptide is known to have two
stable conformations: a compact α-helix and an elongated
polyproline II helix-like conformation (JiJi et al. 2006;
Tiffany and Krimm 1968) corresponding to an Rg of approx-
imately 6.5 and 9 Å, respectively (Fig. 8a, b). Although
ALSDele sampled these two stable conformations at λ=1,
the peptide was compact at small λ (Fig. 8c). Scaling-down
of Eele corresponds to scaling-down of point charge parame-
ters for region A. For more detail, the reader is referred to the
original article (Ikebe et al. 2014). Thus, the scaling-down of
Eele without the scaling-down ofEvdWmakes the peptide more
hydrophobic and concomitantly compact. In contrast,
ALSDvdW sampled elongated conformations for small λ
(Fig. 8d). It should be remembered that the conformational
ensemble at 300 K is the same as that at λ=1. The scaling-
down of EvdW weakens the collision energy of atoms in region
A, and exposure of the peptide to the solvent induces a de-
crease of the potential energy. Thus, the scaling-down of EvdW

without any scaling-down of Eele makes the peptide elongate
with decreasing λ. The authors of the original ALSD article
(Ikebe et al. 2014) have suggested that such unbalanced sam-
pling at λ<1 provides a worse sampling efficiency. However,
ALSDboth sampled various conformations of the peptide in a
wide range of Rg with decreasing λ in (Fig. 8e) because the
compaction by scaling-down ofEele and the elongation by that
of EvdW offset each other. The ALSD method extends the

Fig. 7 a An X-ray crystal structure of a nucleosome (PDB ID: 1KX5).
The nucleosome is composed of 147 base pairs of DNA (orange)
wrapped around a histone octamer, which is composed of two copies of
H3 (blue), H4 (red), H2A (green), and H2B (yellow) histone proteins. b
Locations of histone tails in the nucleosome. Although crystal structures

of the nucleosome core region (gray) have already been determined, the
N-terminal regions (histone tails, red) of the histone proteins have not yet
been determined due to their inate structural flexibility. The histone tail
conformations in 1KX5 are modeled ones. In the applied research of
ALSD, conformational sampling of an H3 histone tail was performed
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potential surface by including λ. The force field parameters for
Eele and EvdW work in a complementary manner, with the
result that the extended potential surface is simple to sample.
We strongly recommend that Eele and EvdW should be scaled
together for efficient sampling.

Of course, the SED procedure also affects the sampling
efficiency. An arbitrary setting of region A does not necessar-
ily realize efficient sampling. For an extreme example, we
consider an ALSD simulation of a complex system at a tem-
perature that is sufficienty low to freeze the solvent. When the
substrate is set as region A, the substrate is not sampled suffi-
ciently because the frozen solvent suppresses the conforma-
tional motions of the substrate. Note that ALSD presupposes
that conformational fluctuations in region B are sufficiently
large to allow efficient sampling for region A.

For a practical case of protein–ligand binding, another pre-
caution may be useful: a protein is relatively rigid and the
conformational changes are slow. As such, a long simulation
time is required to realize binding and dissociation of the
ligand during a simulation. It may therefore be useful to set
region A not only to the ligand but also to the prospective
binding sites on the protein.

Future perspective of enhanced sampling methods

We have described enhanced sampling methods in general, as
well as our specific enhanced methods to sample the equilib-
rium ensemble with all-atom models in an explicit solvent.
Despite the limitations of simulation time, these methods
could provide the reliable conformational ensembles to

construct the accurate and fine-grained FELs. In this final
section, we introduce studies that have gone beyond the
fine-grained model and which possibly represent new strate-
gies for further development of enhanced sampling methods.

The MD simulation evolves the system at each small time-
step. The size of the time-step is set to safely simulate the
fastest motion (i.e., avoid numerical violation). An atom with
a light mass usually moves rapidly, and the vibrational mo-
tions of a chemical bond are rapid. The gold standard method
of the SHAKE algorithm maintains the length of the covalent
bonds with hydrogen atoms so that the time-step elongates by
approximately 2 fs, which is the time-step elongation that we
used in the studies described in the preceding sections of this
review. If we could take a larger time-step, however, the MD
simulation would concomitantly be generated over a longer
time-scale for the same computational output. To achieve this,
early researchers simply increased the masses of all atoms (or
alternatively only hydrogens) to slow these rapid motions,
resulting in an increase in the total mass of the system. An
unwanted side-effect of the increase in total mass, however,
was the scale down of the whole motion of the system (not
only the fast, but also the meaningful dynamics). Subsequent
studies led to the exploration of the repartitioning of masses
(Feenstra et al. 1999), such that a heavier mass was assigned to
hydrogen atoms and smaller masses were assigned to heavy
atoms, with the result being that the total mass was kept con-
stant. The long-time MD simulation with the hydrogen-mass
repartitioning (HMR) method (Hopkins et al. 2015) reported
that a 4-fs time-step provided a numerically safe result and did
not influence thermodynamic properties. Furthermore, reduc-
ing the solvent viscosity by rescaling the mass of water

Fig. 8 Representative structures
showing compact α-helix (a) and
elongated polyproline II helix-
like conformations of poly-lysine
decapeptide (b) obtained from
ALSDboth at an λ of 1. It is known
that the peptide adopts these two
conformations as the
thermodynamically stable ones in
the canonical ensemble. The
terminal regions colored in red are
the N-termini of the peptide. c–e
Free energy landscapes on a space
composed of λ and the radius of
gyration (Rg) of the peptide
obtained from ALSDele (c),
ALSDvdW (d), and ALSDboth (e).
See text in section Efficient
operation procedures for ALSD
for explanation of terms
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molecules was effective (Gee and van Gunsteren 2006; Lin
and Tuckerman 2010). Under low-viscosity conditions, the
biomolecule moves smoothly. Another method for a larger
time-step is the reversible multiple time-scale algorithm
(RESPA) (Tuckerman et al. 1992), which enables a larger
time-step of about 4 fs for the long-distant interaction terms
because the long-distant interactions vary slowly. Combining
such longer time-step methods with the enhanced sampling
method may realize less computational cost to obtain the con-
formational ensemble.

The energy and the forces on atoms are calculated in MD
simulations. Rapid calculation methods have been developed
by approximating long-distance interactions, with the particle
mesh Ewald (PME) (Darden et al. 1993) for periodic bound-
ary condition and multipole method (Ding et al. 1992) for
spherical solvent boundary (droplet) being frequently used
examples. Cutoff methods, where the interactions over a
threshold distance are neglected or approximated, are also
used. A zero-dipole method (Fukuda et al. 2011) (or zero-
multipole method generally) (Fukuda 2013) for the periodic
boundary condition has recently been developed as an exten-
sion of the cutoff method. The zero-dipole method is imple-
mented to take advantage of massively parallelized computa-
tional resource rather than PME because it needs less commu-
nication for parallelization. Importantly, the electrostatic accu-
racy of the zero-dipole method is compatible with that of the
PME method.

Computational costs can be lowered by using alternate
methods. Most of the computational cost of such studies re-
sults from including the interaction terms for the solvent mol-
ecules. When solvation effects are treated approximately
using the pair-wise function among solute atoms, the compu-
tational cost can be smaller. In such treatments, the system
does not contain solvent atoms explicitly, rather it exhibits
the solvation effect and is thus described as implicit solvent.
In the implicit solvent, solute atoms move smoothly because
collisions between solute and solvent atoms vanish. There are
several implicit solvent models based on the continuum sol-
vent model, namely, the EEF (effective energy function) 1
model (Lazaridis and Karplus 1999), the generalized-born
(GB) model (Still et al. 1990), and their variants (Kleinjung
and Fraternali 2014). A distance-dependent dielectric treat-
ment had been used for many years as a convenient approxi-
mation. However, it is a crude approximation for the all-atom
model of biomolecules as the solvent effect is of critical im-
portance in determining the stability of the peptide conforma-
tion and FEL (Mitomo et al. 2006; Shell et al. 2008; Zhou and
Berne 2002). As such implicit solvent models should be
employed carefully. Rigorous methods for the solvation free
energy have been developed by the three-dimensional
reference-interaction-site-model (3D-RISM) theory
(Kovalenko and Hirata 2000a; Kovalenko and Hirata 2000b)
and the morphometric approach (Roth et al. 2006), which are

based on statistical physics. Although the more rigorous
methods require computational cost, they are especially pow-
erful for distinguishing the native structure outside of the
pools, including decoy (close but not native) conformations
(Yasuda et al. 2011). The combination of conventionalMcMD
and the RISM theory was attempted to calculate the ensemble
of Met-enkephalin (Mitsutake et al. 2000).

Restriction on the translational space of substrate is also
useful when the aim is to compute the binding free energy.
Without the restriction, the substrate tends to travel through all
space of the system volume. When the substrate is significant-
ly far from the receptor, the potential of mean force should be
homogeneous. Then, confining the substrate to a spherical or
cone-shaped space by the restriction can reduce the computa-
tion cost for the homogeneous part. This confinement method
has been combined with metadynamics to obtain the binding/
unbinding kinetics as well as the binding free energy
(Limongelli et al. 2013; Tiwary et al. 2015). It should be noted
that this confinement space should be designed so that its
center locates at the determinate binding site. If the binding
site is known in advance, this method can therefore be select-
ed. Similar to reducing sampling space, there is a method to
sample the conformations and FEL along a certain binding
pathway: the filling potential method (Fukunishi et al.
2003). Application of the confinement method without any
knowledge of the binding site has also been reported with
the use of the replica exchange method (Anselmi and
Pisabarro 2015), where the ligand resides inside a receptor-
shaped closed surface larger than the receptor surface. This
procedure can be useful for finding the binding mode and
binding affinity at the same time.

Coarse-grained (CG) models for biomolecules (Saunders
and Voth 2013; Takada 2012; Tozzini 2005) have been used
to investigate the behavior of large biomolecules. In the CG
models, the biomolecule is modeled with a particle that rep-
resents a sum of several atoms. For example, one particle
represents one amino acid residue of protein, and the chain
of the particles depicts the protein. The time-step for the CG
model can be larger than that for the all-atom model. The
energy function for the CG model may involve the solvation
effect implicitly. A type of CG model uses a specific structure
(such as the experimental structure or native structure) of bio-
molecule to determine the bottom of the energy funnel with
this approach, also known as a Go-like model or native
structure-based model (Clementi et al. 2000; Karanicolas
and Brooks 2003). Studies with the Go-like model have re-
vealed a protein folding mechanism (Onuchic and Wolynes
2004), and a binding mechanism of biomolecular interaction
has been proposed (Levy et al. 2007). Energy functions for the
CG model that do not require the specific structure have been
developed and used for prediction of protein folding (Gront
et al. 2008). Such energy functions are referred to as physics-
based or sequence-dependent potentials. The energy functions
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of these models are defined in various ways, with physics-
based potentials using physical relations specified between
atoms (or coarser united atom representations) while statistical
potentials infer relations from the examination of a large num-
ber of structures gathered in a structural database. Statistics-
based energy functions are also referred to as knowledge-
based (Sippl 1995). A combination of physics-based models
and native structure-based models have been used to investi-
gate protein–protein (Ganguly et al. 2012; Kim and Hummer
2008; Okazaki et al. 2012), protein–DNA (Terakawa et al.
2012; Vuzman et al. 2010), and protein receptor–small com-
pound association/dissociation mechanisms (Negami et al.
2014). The inter-molecular interactions were treated by the
physics-based model, while the intra-molecular interactions
were treated with native structure-based model. Research into
the use of CG models is focused on the kinetic behaviors of
binding/unbinding as well as thermodynamics. The tREM and
McMDmethods have been used to sample the conformational
ensemble by the CG models (Li et al. 2012; Nanias et al.
2006). The improved sampling methods introduced in this
review may contribute to even more rapid simulation proce-
dures based on the use of CG models.

The multicanonical algorithm is specific for the flat distri-
bution method. The interested reader may realize that the iter-
ation procedure is crucial to both the refinement of the canon-
ical distribution function in Eq. 1 and equilibration of the
conformational ensemble. Although V-McMD requires fewer
iterations, it still takes time. However, if no iteration technique
is available, it is the generally more useful method. There are
two types of non-iteration techniques: on-the-fly and one-
time. The former technique, also known as the Wang–
Landau method (Shimoyama et al. 2011; Wang and Landau
2001), involves updating the estimation of the canonical prob-
ability at every step of the simulation. When the probability
function converges, the Wang–Landau simulation is finished.
After that, the conventional McMD with the converged prob-
ability is performed to obtain an equilibrated conformational
ensemble. The one-time technique was proposed by Terada
et al. (2003). The canonical probability distribution function in
a wide energy range is estimated only once from multiple
canonical runs at different temperatures. Such techniques
can be useful for small systems. However, when the system
is large and complex, the techniques are less efficient, espe-
cially for the low-energy range because of shortage of cover-
ing conformational space. We use the one-time technique in
V-McMD and ALSD to produce the first guess of the proba-
bility distribution function with subsequent iterative improve-
ment. The estimation of correct canonical probability is inex-
tricably associated with an efficient search for the conforma-
tional space. The rapid conformational searchmethod (Harada
et al. 2015; Klvana et al. 2009; Lüdemann et al. 2000) can then
be useful for generating initial widespread conformations al-
though their conformations are non-equilibrated.

Summary

Molecular dynamics simulations using all-atom models in ex-
plicit solvent can provide meaningful biomolecular conforma-
tions that can be hard/impossible to determine experimentally.
However, it is still difficult to correctly sample the conforma-
tional ensemble, with the result that errors are introduced into
all estimates of the FEL of biomolecular interactions. These
difficulties are due to the problem of overcoming numerous
time-consuming energy barriers in the entire conformational
space. This has led to the development of enhanced sampling
method to achieve efficient sampling of the total conforma-
tional space. It is these methods which we have reviewed in
this article. We also introduced the theory and application of
three improved enhanced sampling methods, namely, TTP-
McMD, V-McMD, and ALSD. In the final section, we intro-
duced computational techniques, such as larger time-step and
implicit solvent, which can be combined with the enhanced
sampling methods. These enhanced sampling methods can be
extrapolated from the all-atom model to the CG models for
larger biomolecules. Such enhanced sampling methods are
important applications to determine the thermodynamic prop-
erties of biomolecules by computational methods.
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