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Abstract Intrinsic flexibility is closely related to protein
function, and a plethora of important regulatory proteins have
been found to be flexible, multi-domain or even intrinsically
disordered. On the one hand, understanding such systems de-
pends on how these proteins behave in solution. On the other,
small-angle X-ray scattering (SAXS) is a technique that ful-
fills the requirements to study protein structure and dynamics
relatively quickly with few experimental limitations.
Molecular chaperones from Hsp70 and Hsp90 families are
multi-domain proteins containing flexible and/or disordered
regions that play central roles in cellular proteostasis. Here,
we review the structure and function of these proteins by
SAXS. Our general approach includes the use of SAXS data
to determine size and shape parameters, as well as protein
shape reconstruction and their validation by using accessory
biophysical tools. Some remarkable examples are presented
that exemplify the potential of the SAXS technique. Protein
structure can be determined in solution even at limiting protein
concentrations (for example, human mortalin, a mitochondrial
Hsp70 chaperone). The protein organization, flexibility and
function (for example, the J-protein co-chaperones), oligomer-
ic status, domain organization, and flexibility (for the Hsp90
chaperone and the Hip and Hep1 co-chaperones) may also be
determined. Lastly, the shape, structural conservation, and
protein dynamics (for the Hsp90 chaperone and both p23

and Aha1 co-chaperones) may be studied by SAXS. We be-
lieve this review will enhance the application of the SAXS
technique to the study of the molecular chaperones.
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Introduction

The comprehension of biological systems depends on an un-
derstanding of highly dynamic macromolecules and process-
es. Multi-domain, flexible or intrinsically disordered proteins
cannot be neglected in the genome (Fukuchi et al. 2011). In
fact, 75% of signaling proteins havemore than 30 amino acid-
long segments that are predicted to be disordered and/or flex-
ible (Dunker et al. 2008). Flexible regions can work as linkers
connecting folded domains in a multi-domain protein, speci-
fying some preferred conformation. They can also work in
inter-domain signal transduction (Ma et al. 2011). They serve
as binding sites for interacting partners, helping in molecular
recognition, working as activation/inhibition modules,
exhibiting post-translational modification sites (Berlow et al.
2015; Dunker et al. 2002; Tompa 2005, 2011; Tompa and
Csermely 2004; Trudeau et al. 2013; Uversky et al. 2000;
Wang et al. 2011), among others. Hence, protein dynamics
is closely related to protein function.

A direct consequence of flexible regions is an increase in
protein conformational dynamics in solution, resulting in con-
formational polydispersity (Kikhney and Svergun 2015).
Therefore, more than one biophysical technique is usually
required to study flexible proteins (Putnam et al. 2007).
Indeed, structural studies of such proteins by protein crystal-
lization are limited by several factors including high confor-
mational dynamics, protein degradation, and a low propensity
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to crystallize. Nuclear magnetic resonance (NMR) spectros-
copy is the method of choice to study protein structure and
dynamics (Berlow et al. 2015; Lemak et al. 2014), but it also
has its own limitations like protein size and concentration, as
well as its high cost (Putnam et al. 2007).

Usually, eukaryotic multi-domain proteins are difficult to
purify due to their instability and propensity to aggregate and
degrade (Berlow et al. 2015). Alternatively, folded domains
can be isolated and their structures studied by crystallization.
However, despite the invaluable contribution of this approach,
information about full-length protein dynamics is needed to
understand protein structure-function-dynamic relationships.
Thus, full-length protein behavior must be checked by some
coherent method once is unknown how disordered regions
participate in protein function in vivo.

In this context, small-angle X-ray scattering (SAXS) stud-
ies can provide structural information of flexible/disordered
proteins, and contribute to knowledge on hydrodynamic be-
havior and shape/topology of macromolecules (Kikhney and
Svergun 2015; Tompa 2011; Rambo and Tainer 2011;
Barbosa et al. 2013).

Molecular chaperones from the Hsp70 and Hsp90 families
and many of their co-chaperones are multi-domain and/or
flexible proteins involved in protein folding and degradation,
translocation through membranes, avoidance of aggregation–
disaggregation, and other processes (Batista et al. 2015a;
Borges and Ramos 2005; da Silva and Borges 2011;
Kampinga and Craig 2010; Nillegoda et al. 2015).
Therefore, these proteins exert critical control over cellular
protein quality (Batista et al. 2015a). They are formed by
one or more folded domains connected by flexible linkers,
and they can present intrinsically disordered regions.

Figure 1 depicts the primary structure organization of the
Hsp70 and Hsp90 families and some of their co-chaperones,
which are the focus of this review. The presence of autono-
mous domains/regions as well as flexible/disordered regions
is indicated by zigzag lines.

Here, we review the application of SAXS for studying
multi-domain molecular chaperones containing flexible
linkers and/or disordered regions. Briefly, our approach after
SAXS data collection involves: (1) application of ab initio
modeling strategies, such as DAMMIN or DAMMIF; (2) val-
idation of the generated model by correlating hydrodynamic
properties predicted for the ab initio model with the experi-
mental ones determined by SAXS, analytical ultracentrifuga-
tion (AUC) and analytical size exclusion chromatography
(aSEC); and (3) use of available three-dimensional structures
for the proteins or their domains to infer about protein organi-
zation and dynamics, programs such as GENFIT, CRYSOL
and EOM, to name a few, were used in the latter approach. In a
general way, this approach provides an understanding of the
domain organization of the target protein and insights into
their mechanisms of action. However, some systems studied

by SAXS do not conform to this general strategy, so here we
show additional examples of how to use this remarkable tech-
nique to study proteins in solution.

SAXS: principles and applications

SAXS is an important tool in the analysis of biological-
ly relevant macromolecules like proteins, micelles and
liposomes (from surfactants or lipids) and nucleic acids
in solution (Barbosa et al. 2013; Blanchet and Svergun
2013). The technique is based on the scattering of
X-rays as they interact with the electrons from the scat-
tering particle. Figure 2 illustrates the experimental set-
up. First, a collimated beam of X-rays can be produced
in a conventional X-ray tube, or in a synchrotron ring
or even in a free electron laser source (FELS) like the
one under construction in Hamburg, Germany. The main
difference between the X-ray sources is the beam
brilliance.

After the X-ray beam exits a monochromator, it passes
through two or three slits to collimate the beam. It then hits
the sample holder and is scattered to the detector positioned
tens of centimeters to a few meters from the sample.

The photons that cross the sample, but do not scatter, are
called the direct beam, and the scattering angle is defined as
the angle between a certain photon and the direct beam
(Fig. 2). The scattering vector is related to the scattering angle,
and is used to express the scattered intensity as follows:

q ¼ 4π
λ

sin θð Þ ð1Þ

where λ is the X-ray wavelength and 2θ the scattering angle
(Fig. 2).

SAXS can be applied to a large number of systems and in
this review we show the main features of the technique and its
application to the study of modular proteins in solution, par-
ticularly molecular chaperones.

Guinier’s law

One of the first interesting physical quantities that can be
easily extracted from a SAXS curve is the protein Radius of
Gyration (Rg). It is related to the way that the protein mass is
distributed with respect to its center of mass. Andre Guinier
(1911–2000) discovered the relationship between the
scattered intensity in the small angle region (q→ 0) and
the scattering particle Rg (Guinier 1939). Guinier showed that
the scattered intensity in this region can be expressed as
(Guinier 1939; Guinier and Fournet 1955):

I q→0ð Þ≈I 0ð Þ e− qRgð Þ2
3 ð2Þ
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Thus, a plot of Ln (I(q)) versus q2 should be a straight line
and the modulus of the angular coefficient equal to Rg2/3,
whereas the linear coefficient is the forward scattered intensi-
ty, I(0), which is related to the protein molecular weight. Such
an approximation is an interesting tool for studying proteins in
solution, particularly when only the main structural features
are of interest.

Kratky plot

The Kratky plot is another interesting tool that can be
used to characterize globular or (partially) unfolded pro-
teins (Kratky and Porod 1949; Glatter and Kratky
1982). It was first proposed by Kratky to study poly-
mers in solution (Kratky and Porod 1949), but is now
also widely used in the analysis of protein SAXS data.

This plot is sensitive to the degree of compactness of a
protein, thus it is particularly interesting for the study of
folding/unfolding processes and of natively unfolded,
intrinsically disordered proteins. The Kratky plot is ob-
tained by simply representing the experimental data as
I(q) q2 versus q where a globular protein is represented
as a bell-like shaped Kratky plot. For globular proteins,
intensity is proportional to q−4 for large q values. For
unfolded proteins, however, the Kratky plot should pres-
ent a plateau, since scattering intensity is proportional to
q− 2 (Kratky and Porod 1949; Barbosa et al. 2013;
Glatter and Kratky 1982).

The Kratky plot is indeed a useful tool in the study of
proteins in solution, in particular because it does not require
any pre-treatment of the experimental data except for the prop-
er subtraction of the buffer from the protein scattering curve.

Fig. 1 Domain architecture of Hsp70 and Hsp90 molecular chaperones
families and some of their co-chaperones that form the focus in this
review. The abbreviated names of the domains are placed above the
domain (see text for identification). The size of the domains and regions

corresponds to their peptide lengths. Protein domains are described in the
text. Zigzag lines represent flexible regions or intrinsic unfolded
sequences

Fig. 2 Small-angle X-ray
scattering experimental setup
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In fact, if there are problems such as an uncorrected buffer
subtraction, the Kratky plot should be avoided, since it can
lead to a misinterpretation of the SAXS data.

The pair distance distribution function

This is probably the most used tool for the SAXS data analysis
of proteins in solution. The pair distance distribution
function (PDDF, p(r)), can be obtained from the experimental
scattering curve without any geometrical model assumption.

For diluted systems, e.g., where the interference function
does not take place over the SAXS curves or where the scat-
tering system is monodisperse, an indirect Fourier transform
connects the scattering intensity, I(q), to the PDDF, p(r). The
PDDF function is related to the scattering particle inner struc-
ture such that it gives information on the protein size (maxi-
mum dimension, Dmax) and shape (Glatter and Kratky 1982;
Guinier and Fournet 1955; Svergun et al. 1987). The PDDF is
of particular interest in the study of molecular chaperones
since knowledge of their envelope is often relevant.
Furthermore, SAXS allows the application of several different
analyses. It is commonly used for the reconstruction of protein
shape (ab initio methods), and can be combined with different
methods such as molecular dynamics simulation (Avila et al.
2014). We usually use GNOM software to calculate the p(r)
curves (Svergun 1992).

Ab initio low resolution shape reconstruction

The protein envelope is a key challenge in the study of mo-
lecular chaperones. They undergo conformational changes to
perform their cellular activities, and thus the knowledge of
protein shape under a variety of environments is of great in-
terest. A few software algorithms can reconstruct the protein
envelope using the PDDF. The most common are the
DAMMIN (Svergun 1999) and DAMMIF (Franke and
Svergun 2009), both developed by the research group of
Prof. D. I. Svergun at the EMBL, Hamburg, Germany
(Svergun 2015). Briefly, both search for an ensemble of a
few thousand spheres (Bdummy atoms^) in certain positions
in such a way that the theoretical SAXS curve calculated with
this configuration is similar to the experimental one.

This procedure has several advantages, but it also has
some disadvantages such as the number of possible math-
ematical solutions that can be achieved without physical
meaning. In order to overcome this problem, the software
applies penalties to ensure the protein envelope compact-
ness and inter-connectivity (Svergun 1999). Moreover, to
ensure that the final envelope is the most probable one,
analyses should be repeated several (few dozen) times and
averaged using DAMAVER software (Volkov and Svergun
2003) to get the final protein envelope. One should bear
in mind that these methods require the monodispersity of

the system, since the software looks for a mean structure
that describes the scattering profile and the presence of
more than one scattering particle in the system will disturb
the final result.

High-resolution structures

There are some interesting methodologies in the SAXS
data analysis that can be applied to study molecular chap-
erones in solution if their three-dimensional structures are
known. Software is available to calculate theoretical scat-
tering patterns, like CRYSOL (Svergun et al. 1995),
SASMOL (Ortore et al. 2009) and GENFIT (Spinozzi et
al. 2014). These programs rely on knowledge of the pro-
tein structure to calculate the theoretical scattering pattern.
One should bear in mind that in order to apply these
methods the protein structures in the crystals and in solu-
tion must be alike. This must be checked before any fur-
ther analysis. Moreover, it is also important to check if the
available protein three-dimensional structure (the PDB
file) is complete (i.e., with all the residues). This is im-
portant because the absence of some specific regions in
the crystallographic structure (like flexible regions that are
generally missing in the PDB file) can affect the theoret-
ical calculation of the SAXS profile.

Ensemble optimization

EOM is generally applied in the study of multi-domains pro-
t e in s , w i th pa r t i a l l y known th ree -d imens iona l
structures (Bernado et al. 2007; Tria et al. 2015). This is of
particular interest for proteins with compact domains linked
by flexible regions, such that they could adopt several possible
conformations in solution. EOM creates a pool of random
conformations (around 10,000 structures), or conformers
using the protein domain structures and the primary structure
to account for flexible regions. An ensemble of possible
conformations (around 50 structures) is then chosen based
on the adjustment of the average theoretical scattering pattern
of the ensemble on the experimental curve. Hence, the soft-
ware chooses the best ensemble to produce the theoretical
profile.

Several different methods can be applied to the study
of proteins in solution. This review does not aim to cover
all the SAXS methods and a more detailed description of
these models can be found elsewhere (Barbosa et al. 2013;
Hura et al. 2009; Jacques and Trewhella 2010; Koch et al.
2003; Mertens and Svergun 2010; Putnam et al. 2007;
Rambo and Tainer 2010, 2011). In the next section, we
show some examples based on our experience using
SAXS to understand molecular chaperones.
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Understanding molecular chaperones by SAXS

Mortalin: human mitochondrial Hsp70

Molecular chaperones belonging to the Hsp70 family perform
a central role in proteostasis, defined as the concept of com-
peting and integrated biological pathways within cells that
control the biogenesis, folding, trafficking, and degradation
of proteins, among others. It plays a pivotal role together with
other molecular chaperone families (Batista et al. 2015a;
Borges and Ramos 2005; da Silva and Borges 2011).
Several activities have been ascribed to Hsp70, which can be
executed by multiple induced or non-induced isoforms.
Several co-chaperones control its mechanical cycle, different
regulatory mechanisms, and organelle-specific isoforms
(Arndt et al. 2007; Bukau et al. 2006; Daugaard et al. 2007;
Hartl and Hayer-Hartl 2002; Mayer and Bukau 2005;
Meimaridou et al. 2009).

Humanmortalin is the mitochondrial Hsp70 that acts mainly
in importing and folding cytosolic proteins to the mitochondrial
matrix (Bohnert et al. 2007; Dolezal et al. 2006; Fan and Young
2011; Mokranjac and Neupert 2009). It is also present in other
subcellular locations related to its action in p53 Bkidnapping^
and cancer (Kaul et al. 2007; Ran et al. 2000; Wadhwa et al.
1993). As observed for all Hsp70 isoforms, mortalin is a mod-
ular protein formed by two conserved domains (Fig. 1). The N-
terminal nucleotide-binding domain (NBD) has ATPase activi-
ty critical for their cycle mechanism, while the C-terminal pep-
tide-binding domain (PBD) is involved in the interaction with
client proteins (Batista et al. 2015a; da Silva and Borges 2011).
A highly conserved hydrophobic linker works as a bidirectional
allosteric signaling component connecting both domains (da
Silva and Borges 2011; Kampinga and Craig 2010).
Nevertheless, the study of the recombinant human mortalin,
as with other mitochondrial Hsp70 proteins, is limited by its
tendency to aggregate at higher concentrations (Dores-Silva et
al. 2013; Sichting et al. 2005; Zhai et al. 2008). Thus, to inves-
tigate the structure and function of this protein, a special co-
chaperone and dilute concentrations, which are usually appro-
priate for some spectroscopic techniques such as circular di-
chroism and fluorescence, are necessary (see below).

Recently, we reported on structural analyses of the recom-
binant human mortalin by SAXS and other biophysical tools
(Dores-Silva et al. 2015a). The mortalin SAXS curves were
obtained at dilute and aggregation-free concentrations
(~0.6 mg.mL−1) allowing the determination of structural pa-
rameters like MM (Molecular Mass), Rg and Dmax as well as
the construction of an ab initio model. MM and Rg were
~70 kDa and 36 Å, respectively, indicating protein was both
homogeneous and monomeric. The p(r) curves generated by
GNOM software (Svergun 1992) showed mortalin has a Dmax

of around 130 Å. Thus it was possible to create a reliable ab
initio model for this protein using DAMMIN and DAMAVER

(Svergun 1999; Volkov and Svergun 2003). The first program
generated 20 independent models that were merged using the
latter. The final mortalin ab initio model had an elongated
shape that presented hydrodynamic properties predicted by
the HydroPro program (de la Torre et al. 2000), and similar
to those experimentally observed by AUC and aSEC. Both
NBD and PBD crystallographic structures were well accom-
modated into the mortalin ab initio model required by the
above assumptions. Moreover, GENFIT (Spinozzi et al.
2014) and the crystallographic structures of DnaK in open
(PDB ID: 4B9Q) and closed (PDB ID: 2KHO) conformations
were used to show that apomortalin behaves as an equilibrium
of these conformations that shifts to the closed state in the test
conditions (Dores-Silva et al. 2015a). Therefore, the SAXS
technique is a powerful tool for unveiling the structure of
limited amounts of recombinant human mortalin at spectro-
scopic concentrations (Dores-Silva et al. 2015a).

J-proteins: elongated and flexible proteins

J-proteins form a large group of proteins considering the do-
main organization and cellular localization (Kampinga and
Craig 2010; Mayer and Bukau 2005). They are involved in
protein folding, since they interact with client proteins through
hydrophobic surfaces and avoid protein aggregation (Borges
and Ramos 2005; Cyr and Ramos 2015; Fan et al. 2003;
Kampinga and Craig 2010; Mayer and Bukau 2005;
Summers et al. 2009). J-proteins are Hsp70 co-chaperones
that stimulate ATPase and act as client protein scanning fac-
tors (Kampinga and Craig 2010; Karzai andMcMacken 1996;
Laufen et al. 1999; Rudiger et al. 2001; Summers et al. 2009).

From the structural point of view, J-proteins are character-
ized by the presence of an α-helical domain (the J-domain),
which binds to Hsp70 and stimulates its ATPase activity
(Greene et al. 1998; Kampinga and Craig 2010; Szabo et al.
1994). Based on domain organization, the J-protein family can
be divided into four types of which the best studied are types I
and II (Cyr and Ramos 2015; Kampinga and Craig 2010).
They have the J-domain at their N-terminal regions (Fig. 1)
followed by a flexible and disordered G/F-rich region
(Szyperski et al. 1994), which works as a spacer between the
J-domain and the rest of the protein (Borges et al. 2012;
Kampinga and Craig 2010; Silva et al. 2011; Summers et al.
2009).

The central and C-terminal regions of type I and II J-
proteins are formed by the C-terminal domain (CTD), which
can be shared into two similar β-sheet folded subdomains
(CTDI and CTDII) (Li et al. 2003; Sha et al. 2000). The
CTDI is the main client protein binding site (Li et al. 2003;
Sha et al. 2000) and delivers client protein to Hsp70 (Borges et
al. 2012; Kampinga and Craig 2010; Rudiger et al. 2001; Silva
et al. 2011; Summers et al. 2009). In type I J-proteins, there is
a Cys-rich region forming a zinc-finger-like region (ZFLR;
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Fig. 1) between the G/F-rich region and CTDI. Some type II J-
proteins have a Gly/Met (G/M)-rich region instead of a ZFLR.
Type III J-proteins only have the conserved J-domain in a part
of the protein, not necessarily in the N-terminal region (Mayer
and Bukau 2005), and select client proteins for Hsp70
(Kampinga and Craig 2010). Type IV J-proteins have the J-
domain with a degenerated HPD motif responsible for inter-
action with Hsp70 and activation of its ATPase activity (Botha
et al. 2007).

Types I and II J-proteins are structurally the most similar
and form homodimers through the DD located in the C-termi-
nus. Except for some type II J-proteins, the homodimers are
critical for their intrinsic chaperone activity (Cyr and
Ramos 2015; Kampinga and Craig 2010; Li et al. 2003; Sha
et al. 2000). The main differences lie in the central portion of
these proteins (Fig. 1).

Recently, the importance of type I and II J-proteins in
metazoa was emphasized by their synergic effect in the disag-
gregation action of Hsp70 plus Hsp110, a Hsp70 nucleotide
exchange factor (Nillegoda et al. 2015). Indeed, these proteins
interact with each other through a mechanism that depends on
J-domain coupling in the CTD (Nillegoda et al. 2015).

Interestingly, human J-proteins type I (DjA1) and II (DjB4)
were studied by SAXS and hydrodynamic approaches, and
the results indicate they are modular/multi-domain, highly
elongated proteins with different structures (Borges et al.
2005). AUC and SAXS data indicate that DjA1 and DjB4
are both elongated homodimers in solution and long enough
(>150 Å) to simultaneously interact with both Hsp70 domains
(Borges et al. 2005). In spite of the higher MM, DjA1 had a
smaller Dmax than DjB4. Analyzing the ab initio models de-
veloped for these proteins and considering the dimerization
site lies at the C-terminal region, the J-domains of DjB4 were
positioned at opposite ends of the ab initio model, while they
were side-by-side in the DjA1 (Borges et al. 2005). Therefore,
the central portion of these proteins might be responsible for
their divergent structures. Based on additional interaction sites
between type I and II J-proteins with Hsp70, the SAXS results
suggested different interaction mechanisms for these proteins
(Borges et al. 2005).

The yeast J-proteins belonging to types I and II, Ydj1 and
Sis1, respectively, diverge in terms of selectivity to client pro-
teins (Cyr 1995; Lu and Cyr 1998), which was related to their
central portion, since Sis1 has a G/M-rich region while Ydj1
has a ZFLR. In 2004, Cyr and colleagues (Fan et al. 2004)
exchanged the central part of Sis1 and Ydj1, and vice-versa,
yielding two chimeras (called SYS and YSY). Briefly, the
chimeras exhibited exchangeble specificity for client proteins
(Fan et al. 2004). Through SAXS, it was showed that Ydj1
and Sis1 have a similar domain organization to the human
ortologues, i.e. Sis1 is more elongated than Ydj1 (Ramos et
al. 2008). Indeed, the chimeras had their shapes changed.
YSY became similar to Sis1 and was more elongated than

SYS, which resembled Ydj1. Therefore, the central portions
of these proteins are responsible for their structure and func-
tion (Ramos et al. 2008; Summers et al. 2009).

The crystallographic structure of the Sis1 CTD indicated its
dimeric structure resembled a bent horseshoe with a hydro-
phobic cleft capable of binding client proteins. It lies on the
surface of the CTDI (Sha et al. 2000). The CTD of the Ydj1
protomer has an L-shape where the ZFLR is the small leg and
they might be Blooking to each other^ in the dimeric structure.
Like Sis1, the Ydj1 CTDI has a hydrophobic cleft that binds
client proteins (Li et al. 2003). In both cases, the flexible G/F-
regions guarantee independence to the J-domain from the
CTD and are also close to the hydrophobic cleft and can in-
fluence its interaction with client proteins (Johnson and Craig
2001; Sondheimer et al. 2001; Yan and Craig 1999).

In order to study the central portion of Sis1 and Ydj1,
deletion mutants of these regions were prepared and purified
in the folded state. They revealed elongated homodimers, as
evidenced by AUC experiments (Silva et al. 2011). SAXS
experiments indicated that all proteins studied are elongated
and flexible, probably due to the presence of disordered and
flexible regions. Even the truncation of the G/M+CTDI re-
gions from Sis1 did not alter the mutant flexibility as evaluat-
ed by the Kratky plot (Silva et al. 2011). NMR experiments
confirmed that the G/M region of Sis1 is indeed disordered
(Borges et al. 2012). Furthermore, the modular behavior of J-
proteins is critical for client protein transfer to Hsp70 (Borges
et al. 2012; Silva et al. 2011) allowing the Hsp70 ATPase
activation to be executed by the independent J-domain
(Summers et al. 2009) in an Banchoring and docking^ mech-
anism (Cyr and Ramos 2015; Hu et al. 2008). The deletion of
the central region of Ydj1 resulted in a protein with similar
shape and Dmax to that observed in the Sis1 equivalent dele-
tion, confirming this is the region responsible for the Type I J-
protein characteristic shape (Silva et al. 2011).

Using SAXS data obtained for yeast J-proteins, truncated
mutants as well as crystallographic structures available for
Sis1 and Ydj1 domains, different modeling routines and rigid
body simulations were performed to understand their organi-
zation (Silva et al. 2011). Similar aproaches were used for
human J-proteins (Borges et al. 2005), yeast J-proteins and
chimeras (Ramos et al. 2008). All cases took into account
the dimeric structure of the dimerization site located at the
C-terminal region (Borges et al. 2005; Sha et al. 2000).
Therefore, the CTD of Sis1 or Ydj1 were positioned at the
center of the ab initio model and the J-domain of each
protomer were placed at opposite ends. In this position, the
J-domain is fully available to stimulate the ATPase activity of
the yeast Hsp70 as experimentally observed, despite a reduc-
tion of the protein Dmax (Silva et al. 2011).

These results agreed with the literature since the J-domain
can stimulate Hsp70 ATPase activity (Laufen et al. 1999;
Pierpaoli et al. 1998). Therefore, this activity depends on the
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availability of the J-domain to interact with Hsp70.
Nevertheless, the truncated mutants could not interact with
model client proteins nor cooperate with Hsp70 to refold lu-
ciferase (Borges et al. 2012; Silva et al. 2011). These results
indicated that the main client-protein binding site in CTDI was
eliminated, and the reduction in the Sis1 and Ydj1 maximum
dimensions, harmed the client protein transfer to Hsp70
(Borges et al. 2012; Silva et al. 2011).

HIP: a highly elongated Hsp70 co-chaperone

Hsc70-Interacting Protein (HIP) is a co-chaperone to enable
cognate Hsp70 to stabilize two chaperone molecules bound to
the same client protein (da Silva and Borges 2011; Hohfeld
et al. 1995). As depicted in Fig. 1, HIP is a dimeric multi-
domain protein composed by three conserved regions
consisting of an N-terminal DD, a tetratricopeptide repeat
(TPR) domain, and a C-terminal region, the latter two being
involved in Hsc70 interaction (Lamb et al. 1995).

Using SAXS and other biophysical tools, our research
group reported the structure of HIP from the protozoan
Leishmania braziliensis (LbHIP) (Dores-Silva et al.
2012). It behaves like a highly elongated dimer in solution
with MM and Rg values of 83 kDa and 54 Å, calculated
using the Guinier analysis. Moreover, the Kratky plot in-
dicated that LbHIP is slightly flexible in solution. Such
behavior is probably due to the presence of several linkers
connecting the α-helical folded domains and some disor-
dered regions. The p(r) curve showed that LbHIP is a
prolate particle in solution with Dmax of around 200 Å.
The protein envelope was consistent with the average ab
initio model that displayed hydrodynamic properties (pre-
dicted by HydroPro) in agreement with the experimental
data determined by AUC and aSEC. Furthermore, the ab
initio model allowed the prediction of the relative position
of the LbHIP conserved domains.

We concluded that both mammalian HIP and LbHIP have
N-terminal DDs located at the center of the ab initio model.
The C-terminal region of each protomer was found at opposite
ends of this model (Dores-Silva et al. 2012). The TPR do-
mains of each protomer were supposed to be located between
the N- and C-terminal regions. In addition, chemical-induced
unfolding followed by SAXS and AUC indicated that LbHIP
dimer is quite stable and the unfolding transition observed at
2.6 M urea should be related to a part of the protein other than
the DD, e.g., the TPR and the C-terminal portion (Dores-Silva
et al. 2012). In summary, SAXS studies were critical for un-
derstanding the LbHIP structural features, validating it as a
scaffold protein for stabilizing two Hsc70 molecules and
interacting with the same client protein, since it has two inde-
pendent binding sites and it is of sufficient size to cooperate
with two Hsp70.

Hep1: polydisperse or partially unstructured?

Hsp70-escort protein 1 (Hep1) is an essential protein for mi-
tochondrial biogenesis since it acts by solubilizing and keep-
ing the mtHsp70 protein, like mortalin, in a functional state
(Burri et al. 2004; Sichting et al. 2005; Szklarz et al. 2005;
Yamamoto et al. 2005). This small protein has a zinc-finger
motif formed by four cysteines in a conserved zinc-finger
domain (ZFD) almost 100 amino acids long (Fig. 1)
(Momose et al. 2007; Vu et al. 2012; Yamamoto et al. 2005).

We reported the structure–function relationship of the
human Hep1 (hHep1) and, surprisingly, it was a mixture
of at least four species in which the monomer was the
main species as shown by AUC data (Dores-Silva et al.
2013). Therefore, information regarding hHep1 shape and
envelope were not obtained by SAXS, since it was not
possible to evaluate the p(r) function. One should bear in
mind that this requires monodispersity of the proteins. It is
well known that the Guinier law can be used for calculat-
ing apparent MM for the scattering particles (Glatter 1977;
Guinier and Fournet 1955). The SAXS data obtained in-
dicated a MM for hHep1 different from that expected for
a monomer or any other monodisperse oligomer,
confirming that hHep1 behaves as a polydisperse system.
Thus, we analyzed the SAXS data by simple visual in-
spection using the I(q→0)/cprot value (Eq. 2) to obtain
information on the protein oligomerization process. The
increment of hHep1 concentration led to a gradual in-
crease in I(q→0)/cprot, suggesting that hHep1 oligomerizes
in a concentration-dependent manner. In addition, the pres-
ence of EDTA modified the increment effect in the I(q→
0)/cprot value as a function of hHep1 concentration, sug-
gesting that some hHep1 oligomers were destabilized by
EDTA (Dores-Silva et al. 2013). Hence, the SAXS tech-
nique provides not only structural aspects of a protein but
also information on the system itself, like eventual inter-
particle interactions.

LbHep1 is the Hep1 orthologue found in the genome of
the L. braziliensis protozoan. It has a conserved ZFD in its
C-terminal region, but it has a 70 amino acid N-terminal
sequence of unknown function that shares similarities with
no known protein. SAXS experiments showed that, unlike
hHep1, LbHep1 behaves as a highly elongated monomer in
solution but in a rather different way from hHep1, at least
at the concentrations tested. SAXS data were collected at
several LbHep1 concentrations and the Guinier approxima-
tion was used to determine the MM and Rg values. The
data revealed that LbHep1 behaves as a monodisperse sys-
tem with MM and Rg of around 20 kDa and 33 Å, respec-
tively, which agrees with the MM value for the monomeric
species (18 kDa) obtained from the primary structure.
Furthermore, the p(r) curve suggested that LbHep1 has
Dmax of about 130 Å, and had a maximum value of p(r)
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for r ~30 Å, suggesting a quite elongated shape consistent
with hydrodynamic data for LbHep1.

These results were explained by the presence of an unstruc-
tured region in the N-terminus (Fig. 1) as observed from cir-
cular dichroism data (Dores-Silva et al. 2015b). Therefore, the
LbHep1 model consists of a disordered N-terminal region of
still unknown function connected to the ZFD domain located
in the C-terminal region, which in turn retains the solubility
action over L. braziliensis mtHsp70 (Dores-Silva et al.
2015b). LbHep1 has dimensions compatible with that ob-
served for L. braziliensis mtHsp70 (unpublished data)
allowing us to hypothesize that LbHep1 might interact with
both domains of that protein.

Hsp90: a multi-domain, dimeric and elongated protein

Hsp90 is a 80- to 90-kDa highly-conserved chaperone that
plays a central role in the cell physiology of eukaryotes. It
participates in protein folding, degradation, protein matura-
tion, signaling, membrane translocation, and others functions
(Batista et al. 2015a; Eckl and Richter 2013; Li and Buchner
2013; Silva et al. 2013). A plethora of proteins are known
Bclients^ of Hsp90 including kinases, glucocorticoid hormone
receptors, transcription factors, and proteins involved in intra-
cellular traffic, genome maintenance and RNA metabolism
(Eckl and Richter 2013; Flynn et al. 2015; Li and Buchner
2013; Mayer and Le Breton 2015; Zhao and Houry 2005).
Since the function of Hsp90 is closely related to critical sig-
naling pathways, it emerged as a potential therapeutic target
against cancer and other diseases such as those caused by
protozoan parasites (Pallavi et al. 2010; Patki and Pawar
2013; Seraphim et al. 2014; Shonhai et al. 2011; Young et
al. 2001).

Hsp90 is a homodimer in solution where each monomer
has three domains (Fig. 1) (Krukenberg et al. 2011; Nemoto
et al. 1995). At the N-terminus, the N-domain (ND) contains
an ATP-binding site with a low ATPase activity. It dimerizes
transiently with the ND of the adjacent Hsp90 protomer dur-
ing the Hsp90 functional cycle (Chadli et al. 2000; Obermann
et al. 1998; Panaretou et al. 1998; Pullen and Bolon 2011). In
Fig. 1, the ND is a site for Hsp90 interaction with some co-
chaperones (Ali et al. 2006; Olesen et al. 2015). The M-
domain (MD) is involved in ATP hydrolysis and forms a plat-
form for client proteins and co-chaperones interaction
(Cunningham et al. 2012; Lotz et al. 2003; Meyer et al.
2003, 2004). The C-domain (CD) is the Hsp90 DD and inter-
acts with client proteins and TPR-based co-chaperones
(Nemoto et al. 1995; Onuoha et al. 2008; Worrall et al. 2008).

Hsp90 proteins are remarkably flexible macromolecules
undergoing conformational changes related to ATP binding
and hydrolysis during its conformational cycle (Krukenberg
et al. 2011; Richter et al. 2008). Hsp90 exists in multiple
conformational equilibria subtly influenced by ATP/ADP-

binding (Mickler et al. 2009; Ratzke et al. 2012). At least three
conformational states have been observed for Hsp90 proteins
in which apo-Hsp90 fluctuates between open and closed con-
formations. ATP-binding Hsp90 tends to favor the closed state
(Southworth and Agard 2008). The third discrete and compact
state corresponds to Hsp90 ADP-bound (Mickler et al. 2009;
Southworth and Agard 2008). Hsp90 conformational changes
upon nucleotide binding are species-specific (Southworth and
Agard 2008).

In the recent years, SAXS has been widely used to under-
stand the structure and dynamics of full-length Hsp90 in so-
lution (Bron et al. 2008; Cunningham et al. 2012; Krukenberg
et al. 2008, 2009a, b; Partridge et al. 2014; Southworth and
Agard 2008; Street et al. 2010, 2011). Using ab initio model-
ing strategies, as discussed above, Bron et al (2008) pointed
out that Hsp90 has an elongated V-shaped solution structure,
resembling the Bflying seagull^ conformation seen in the open
state (Bron et al. 2008). The effects of nucleotides, osmolytes,
temperature and pH on the Hsp90 conformation have already
been monitored by SAXS (Street et al. 2010; Cunningham
et al. 2012; Partridge et al. 2014; Krukenberg et al. 2009a).
Due to the multi-domain and flexible nature of the Hsp90, it
adopts several conformations in solution and changes in the
Hsp90 structure are easily detected by inspecting the p(r) func-
tion. The Hsp90 presents a wide p(r) distribution when in its
open state, whereas a closed state shows a sharper p(r) func-
tion (Cunningham et al. 2012). In spite of these large changes
in the p(r), subtle shifts in the conformational equilibrium of
the Hsp90 might also be detected and even different Hsp90
conformations might be estimated (Street et al. 2010;
Partridge et al. 2014; Krukenberg et al. 2009a). Lastly,
SAXS has been used to compare species-specific Hsp90 struc-
tures and conformational changes (Krukenberg et al. 2009b),
highlighting the use of this technique to understand the fea-
tures of orthologous Hsp90 proteins.

p23: structured conserved proteins

The p23 co-chaperone is a small protein formed by a folded
N-terminal β-sheet domain (βD) and an acidic C-terminal
disordered region (Weaver et al. 2000; Weikl et al. 1999). It
is involved in a plethora of cellular processes like proteostasis,
protein transport, ribosome biogenesis, transcriptional, and
genome stability (Echtenkamp and Freeman 2014;
Echtenkamp et al. 2011). The p23 interacts with the Hsp90
ND and MD, and the ND dimerization upon ATP binding
stabilizes the interaction between the two proteins (Ali et al.
2006; Karagöz et al. 2011; Martinez-Yamout et al. 2006). This
interaction allows p23 to regulate Hsp90 function by
inhibiting its ATPase activity (McLaughlin et al. 2006); how-
ever, the exact role of this inhibition remains controversial.
Some authors described p23 as a stabilizer of Hsp90–client-
protein interaction (Dittmar et al. 1997; McLaughlin et al.
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2006). On the other hand, p23 may be a release factor for
Hsp90 (Young and Hartl 2000). p23 βD is involved in
preventing aggregation by holding partially or fully unfolded
client proteins (Forafonov et al. 2008; Seraphim et al. 2015;
Weikl et al. 1999). The function of the C-terminal tail is un-
clear. Martinez-Yamout and colleagues reported that the C-
terminal region of hp23 is disordered and proposed that it
works like Bfly casting^ to increase hp23 solubility when
bound to a client protein. Moreover, it could work as a flexible
binding site for partners (Martinez-Yamout et al. 2006). A role
in p23 regulation in apoptotic cells and telomerase complexes
has been suggested for this region (Mollerup and Berchtold
2005; Woo et al. 2009).

Recently, we used SAXS to study the structural properties
of p23 proteins from human (hp23) (Seraphim et al. 2015) and
L. braziliensis (Lbp23A and Lbp23B) (Batista et al. 2015b).
To understand how the C-terminal segment of hp23 affects its
structure/function, four hp23 constructs were prepared: full-
length hp23; hp231-142; hp231-131; and hp231-117. Circular di-
chroism spectra of hp23, hp231-142 and hp231-117 were typi-
cally of β-sheet-rich proteins, whereas hp231-131 presented
some α-helix content. In addition, hp23 and hp231-142 had a
higher content of disordered structure compared to hp231-131
and hp231-117 (Seraphim et al. 2015). These results pointed to
the disordered C-terminal tail of hp23 and suggested that the
region between the amino acids 118–131 could be prone to α-
helical structure (Seraphim et al. 2015).

Thermal-induced unfolding experiments revealed that the
thermal stability of hp23 decreased as the length of the dele-
tion increases. Thus, we hypothesized that the hp23 C-
terminus stabilizes the βD structure. SAXS experiments
showed that all hp23 constructs were elongated monomers
in solution with hp231-160 presenting higher Rg and Dmax than
hp231-142. hp231-131 and hp231-117 were smaller than the two
other constructs and had similar dimensions despite their dif-
ferent sequence lengths. This was observed by AUC and
aSEC experiments which showed that the C-terminal region
is responsible for the elongated shape of the hp23 and suggests
118–131 α-helix region likely interacts with the βD
(Seraphim et al. 2015). Thus, we proposed a mechanism
where the C-terminal segment works as an auto-inhibitory
module (Trudeau et al. 2013) regulating the structure and
function of the hp23 (Seraphim et al. 2015).

In contrast to human, L. braziliensis protozoan possesses
two p23 proteins named Lbp23A and Lbp23B that share 21%
of identity. Both structures were obtained foldedwith the same
characteristic p23 signatures as their human and yeast coun-
terparts (Batista et al. 2015b). Notwithstanding the Lbp23A
and Lbp23B similar secondary structures, they were signifi-
cantly different. Lbp23A was more stable than Lbp23B as
shown by thermally and chemically induced unfolding
(Batista et al. 2015b). In addition, Lbp23A had different sub-
strate specificity compared to the Lbp23B in chaperone

activity assays. SAXS profiles of Lbp23A and Lbp23B re-
vealed both are elongated monomers in solution with a similar
size and dimensions. The p(r) curves also revealed similar
overall structures, confirmed by generating ab initio models
using DAMMIN (Svergun 1999) and DAMAVER (Volkov
and Svergun 2003). Despite the low conservation, slightly
different secondary structures, stability and substrate specific-
ity, Lbp23A and Lbp23B had a highly conserved solution
structure (Batista et al. 2015b).

The same comparison was done between Lbp23A and
Lbp23B comparing human p23 with the L. braziliensis pro-
teins. All three had highly conserved solution structures, de-
spite their differences in sequence and functional features.
This strongly suggests that SAXS is valuable for studying
the solution structure of evolutionarily distant proteins.

Aha1: a multi-domain flexible protein

Aha1 is a 38-kDa protein formed by two independent regions,
the N-terminal (Aha1N) and the C-terminal domains (Aha1C)
joined by a flexible disordered linker (Koulov et al. 2010;
Meyer et al. 2004; Panaretou et al. 2002; Seraphim et al.
2013). Aha1 stimulates Hsp90 ATPase activity, participating
in processes such as protein kinase (Lotz et al. 2003; Sun et al.
2012) and glucocorticoid receptor maturation (Harst et al.
2005). In addition, Aha1 acts on metabolic enzymes, mito-
chondrial proteins, membrane transporters, vesicle trafficking,
and protein degradation-related proteins. However, it is not
known if this occurs in an Hsp90-dependent or -independent
manner (Sun et al. 2015).

Aha1 stimulates Hsp90 through a mechanism where its
Aha1N domain interacts primarily with the Hsp90 MD,
followed by an interaction between the Aha1C domain and
the Hsp90 ND (Koulov et al. 2010; Lotz et al. 2003; Meyer
et al. 2004; Retzlaff et al. 2010). The crystal structure of the
yeast Aha1N domain complexed to Hsp90 MD (Meyer et al.
2004) and the NMR structure of the human Aha1C domain
(PDB ID: 1X53) have been solved. In spite of this, the overall
structure of Aha1 and its behavior in solution remained un-
known. In order to fill this gap, we produced and characterized
the recombinant L. braziliensis Aha1 (LbAha1) protein
(Seraphim et al. 2013). LbAha1 is formed by two domains
with different chemical stabilities that behave as a highly elon-
gated monomer in solution, as attested by circular dichroism,
fluorescence, aSEC and AUC techniques (Seraphim et al.
2013).

Using SAXS, we confirmed the protein behaves as an elon-
gated monomer in solution with Rg of 36±2 Å and Dmax of
140±10 Å (Seraphim et al. 2013). This dimension was com-
patible with that observed for the L. braziliensis Hsp90NM
construct (unpublished data) allowing LbAha1 to interact with
both L. braziliensis Hsp90, ND and MD. The LbAha1 ab
initio model was reconstructed using the DAMMIN and
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DAMAVER programs (Svergun 1999; Volkov and Svergun
2003). The final model emphasized the LbAha1 elongated
feature and presented hydrodynamic properties in agreement
with the experimental ones (Seraphim et al. 2013).

To go further into the LbAha1 dynamics, we wondered if
LbAha1 could adopt a preferential organization in solution. To
answer this question, we applied the EOM (Bernado et al.
2007; Tria et al. 2015). This strategy assumes that the scatter-
ing curve of a protein is consequence of a mixture of confor-
mational species due to flexibility. Based on available Aha1N
and Aha1C domain three-dimensional structures, the EOM
generated 10,000 random conformers that could be adopted
by LbAha1. From this pool, the EOM selected the best en-
semble (composed of 20–50 structures) that had an averaged
theoretical SAXS curve similar to the experimental one. It is
important to mention that with this method all the structures in
the ensemble contribute the same weight to the final theoret-
ical SAXS curve (Seraphim et al. 2013).

Such structures were also analyzed by the Hydropro pro-
gram and showed average hydrodynamic properties in agree-
ment with the experimental ones. The Rg and Dmax-values
observed for the selected LbAha1 conformers displayed the
same behavior as the 10,000 initial conformers. We concluded
that LbAha1 has a high flexibility in solution with a relative
independence between Aha1N and Aha1C domains
(Seraphim et al. 2013). Lastly, we found that LbAha1 domains
likely possess some distention-contraction behavior once the
hydrated volume of LbAha1 was similar to that of a hydrated
particle of the same MM, but it is slightly smaller than those
estimated for the ab initio model and EOM selected con-
formers (Seraphim et al. 2013). In summary, our SAXS ap-
proach revealed that LbAha1 has dimension, flexibility and
domain independence in agreement with the proposed general
mechanism for Aha1–Hsp90 interaction.

Conclusions

Comprehension of biological systems relies on a knowledge
of how macromolecules behave in aqueous environments. A
network of dynamic interactions between dynamic macromol-
ecules, such as proteins, drives processes that are essential for
cell developmental and cell physiology. A plethora of proteins
are formed by more than one domain connected through un-
structured or flexible regions, or they present disordered re-
gions, or they can be intrinsically unstructured. These regions
are important sites for regulation and usually mediate protein–
protein interactions. Thus, the study of these highly flexible,
multi-domain and dynamic proteins is needed to comprehend
how their structures are intrinsically linked to their cellular
function.

Few techniques allow the study of the behavior of an over-
all protein in solution without regard for molecular size,

dynamics or sample preparation. Here, we presented an over-
view of an old, but remarkably up-to-date, technique to un-
derstand the behavior of macromolecules in solution. This
review is the result of our understanding of structures and
functions of molecular chaperones of the Hsp70 and Hsp90
families by applying the SAXS technique and other biophys-
ical tools. These proteins belong to a multi-domain class of
proteins and they exemplify the potential of SAXS to study
proteins in solution, well beyond the generation of ab initio
models. SAXS can predict and interpret domain organization
in a large and flexible protein. It can also determine macromo-
lecular behavior such as oligomeric state, conformational
changes, dynamics, and even structure conservation.We show
that the combination of SAXS, NMR and X-ray crystallogra-
phy provide an invaluable understanding of the structural fea-
tures that drive protein function (Berlow et al. 2015; Lemak
et al. 2014; Putnam et al. 2007). Moreover, a comparison of
SAXS-generated models with hydrodynamic measurements
(AUC, aSEC) can validate the SAXS theoretical analyses.
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