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in Group-Randomized Trials: Part 1—Design

In 2004, Murray et al. reviewed

methodological developments

in the design and analysis of

group-randomized trials (GRTs).

We have highlighted the de-

velopmentsof thepast13years

in design with a companion ar-

ticle to focus on developments

in analysis. As a pair, these ar-

ticles update the 2004 review.

We have discussed develop-

ments in the topics of the

earlier review (e.g., clustering,

matching, and individually ran-

domized group-treatment tri-

als) and in new topics, including

constrained randomization and

a range of randomized designs

that are alternatives to the

standard parallel-arm GRT.

These include the stepped-

wedge GRT, the pseudo-

cluster randomized trial, and

the network-randomized GRT,

which, like the parallel-armGRT,

require clustering to be accoun-

ted for in both their design and

analysis. (Am J Public Health.

2017;107:907–915.doi:10.2105/

AJPH.2017.303706)

Elizabeth L.Turner, PhD,FanLi,MSc, JohnA.Gallis, ScM,Melanie Prague, PhD, andDavidM.Murray, PhD

See also Vaughan, p. 830.

Agroup-randomized trial
(GRT) is a randomized

controlled trial in which the
unit of randomization is a group,
and outcome measurements
are obtained for members of the
group.1 Also called a cluster-
randomized trial or community
trial,2–5 a GRT is the best com-
parative design available if the
intervention operates at a group
level, manipulates the physical or
social environment, cannot be
delivered to individual members
of the group without substantial
risk of contamination across study
arms, or if there are other cir-
cumstances that warrant the de-
sign, such as a desire for herd
immunity or a need to estimate
both the direct and indirect in-
tervention effects in studies of
infectious diseases.1–5

In GRTs, outcomes on mem-
bers of the same group are likely to
be more similar to each other than
to outcomes on members from
other groups.1 Such clustering
must be accounted for in the design
of GRTs to avoid underpowering
the study, and itmust be accounted
for in the analysis to avoid under-
estimated SEs and inflated type I
error for the intervention effect.1–5

In 2004, Murray et al.6 pub-
lished a review of methodological
developments in the design and
analysis of GRTs. In the 13 years
since, there have been many de-
velopments in both areas. We
highlight developments in both
areas in a 2-part series of articles. In
this article (part 1), we focus on

developments in design. In the
second article (part 2), we focus on
developments in analysis.7 (The
glossary of terms is available as
a supplement to the online version
of this article at http://www.ajph.
org.) As a pair, these articles update
the2004 review.Withbotharticles,
we provide a broad and compre-
hensive review to guide readers to
seek out appropriate materials for
their own circumstances.

DEVELOPMENTS IN
FUNDAMENTALS
OF DESIGN

Clustering and the choice
between a cohort and a cross-
sectional GRT design are fun-
damental to both the design
and analysis of GRTs.

Clustering
In its most basic form,

a GRT has a hierarchical struc-
ture with groups nested within
study arms and members nested

within groups. Additional levels
of nesting may arise through
repeated measures over time
or from more complex group
structures (e.g., children nested in
classrooms nested in schools).
When designing and analyzing
a GRT, it is necessary to account
for the clustering associated
with the nested design.1–5

The intraclass correlation co-
efficient (ICC), or intracluster
correlation coefficient, is the
clustering measure most com-
monly used in power calculations
and most commonly reported
in published studies.8 Eldridge
et al.9 provide a comprehensive
review of ICC definitions and
measures in general clustered data
for both continuous and binary
outcomes, the most commonly
reported outcomes in GRTs.10,11

Although the ICC for continuous
outcome measures is well defined
and generally well understood,1–4

Eldridge et al.9 highlight some of
the challenges for binary out-
comes and provide several defi-
nitions (Table 1 displays the form
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most commonly presented in
GRTtexts).2,4,5,9Others compare
methods to estimate the ICC of
a binary outcome.12–17 The ICC
isnot easily defined for rates on the
basis of person–time data.2,4 Re-
cent publications have defined
ICC for time-to-event data.18,19

The coefficient of variation
(CV) is a measure of clustering
that is defined for general clus-
tered datawhen the distributional
parameter of interest is a mean,
proportion, or rate.3,17 The CV
and ICC for continuous and bi-
nary outcomes are associated
by a mathematical relationship as
a function of the distributional
parameter of interest (i.e., mean
or proportion) and, for continuous
outcomes, of the within-group
variance, r2

W (Table 1).2,4 Hayes
and Moulton2 advocate the CV
generally in power calculations;
Donner and Klar agree for event
data analyzed as rates.3

Because of the central role of
clustering in planning GRTs,
imprecision in the estimated level
of clustering can lead to an un-
derpowered trial. Multiple au-
thors address imprecision, and
all focus on the ICC.20–26

Simultaneously, increasingly
more publications are reporting
ICCs (e.g., Moerbeek and
Teerenstra27 provide a compre-
hensive list of such articles) to aid
the planning of future studies,
consistent with the CONSORT
(Consolidated Standards of
Reporting Trials) statement on
GRTs.28

Cohort vs Cross-Sectional
Designs

The choice between a cohort
and a cross-sectional GRT
design (or their combination) is
driven by the nature of the re-
search question.1 The cross-
sectional design is preferred
when the question is about
change in a population1 or when
the time to the outcome is so
short as to make a cohort study
impractical (e.g., studies in-
volving acute conditions).2 For
example, to observe enough
participants with malaria at
6-month follow-up time points
and to be able to draw conclu-
sions about population-level
behavior related to malaria
treatment choices, Laktabai

et al.29 chose a cross-sectional
design in which they obtained
different population samples at
each follow-up time point.

By contrast, when interested
in change in specific individuals,
or in mediation, the most natural
choice is the cohort design, in
which a cohort of individuals
is enrolled and followed over
time.1 For example, Turner
et al.30 chose such a design to
study child outcomes in mothers
with prenatal depression.

Similarly, the cohort design is
usually required to generate
event data in individuals.2 A
combination design could be
used whereby the cross-sectional
design is augmented by sub-
sampling a cohort of individ-
uals who are followed over
time, such as in the COMMIT
(Clopidogrel and Metoprolol
in Myocardial Infarction Trial)
study.31 A recent review in-
dicated that the cohort design is
the most common GRT design
(67% of 75 GRTs).32

DESIGN OF
PARALLEL-ARM GRTS

As for individually random-
ized controlled trials, the goal of
randomization in GRTs is to
achieve balance of baseline
covariates. In contrast to in-
dividually randomized controlled
trials, another form of baseline
balance applies toGRTs, namely,
baseline balance of group sample
size. Both forms of balance play
a role in the sample size and
power calculations that are re-
quired to design GRTs.

Baseline Imbalance of
Group Sample Size

An imbalance of group sample
size means that group sizes are
different across the groups ran-
domized in the study, which has

implications for statistical effi-
ciency. Donner discussed varia-
tion in group size for GRTs for
a design stratified by group size.33

Guittet et al.34 and Carter35

studied the impact on power
using simulations, which showed
the greatest reduction in power
with few groups, high ICC, or
both.

Several authors have offered
adjustments to the standard
sample size formula for a GRT to
correct for variability in group
size on the basis of the mean
and variance of the group size or
the actual size of each group.36–39

Others have offered adjustments
on the basis of relative effi-
ciency.40–43

Candel et al.40,41 reported that
relative efficiency ranged from
1.0 to 0.8 across a variety of
distributions for group size,
with lower values for higher
ICCs and greater variability in
group size; the minimum relative
efficiency was usually no worse
than 0.9 for continuous out-
comes. They recommended
dividing the result from standard
formulas for balanced designs
by the relative efficiency for the
expected group size distribution,
which is a function of the
ICC and the mean and variance
of the group size.40 For binary
outcomes, they suggested an
additional correction factor
on the basis of the estimation
method planned for the
analysis.41

You et al.42 defined relative
efficiency in terms of non-
centrality parameters; their
measure of relative efficiency
was a function of the ICC, the
mean and variance of the group
size, and the number of groups
per study arm. Candel and Van
Breukelen43 considered variabil-
ity not only in group size but also
between arms in error variance
and the number of groups per
arm. They recommended

TABLE 1—Two Common Measures of Clustering for General
Clustered Data for Two Common Types of Outcome

Outcome Measure ICC, ra CV, k Relationship of ICC to CVb

Continuous r2
B

�
r2
B þ r2

W

� �
rB=l 1

.
1þ s2

W=k
2m2

� �� �

Binary r2
B

�
p 1� pð Þ rB=p k2p

�
1� pð Þ

Note. CV = coefficient of variation; GRT =group-randomized trial;
ICC = intraclass correlation coefficient. m is the overall mean for continuous
outcome data; p is the overall proportion for binary outcome data; r2

B is
the between-group variance; r2

W is the within-group variance (i.e., residual
error variance). As is common practice, the 2 clustering measures are for
general clustered data and do not focus on the GRT design in which the inter-
vention effect is of primary interest (chapter 2 of Hayes and Moulton,2 e.g.,
provides more detail). The intervention parameter of interest in GRTs is typically
the following: difference of means for continuous outcomes; difference
of proportions; ratio of proportions or odds ratio for binary outcomes;
or rate difference or rate ratio for event outcomes.
aThere aremultipledefinitions of the ICC forbinary outcomes.12–17The specific
formulation we have provided is 1 of the simplest and most commonly used
(e.g., Equation 2.4 of Hayes and Moulton2 and Equation 8 of Eldridge et al.9).
bNote that whereas the relationship for binary outcomes is only a function of
k and the distributional parameter of interest, p, the relationship for con-
tinuous outcomes is a function of both the distributional parameter of in-
terest, m, and r2

W .
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increasing the number of groups
in each arm by the inverse of
the relative efficiency minus 1.
Their estimate of the relative
efficiency was a function of the
number of groups per study arm,
the ICC in each study arm, the
ratio of the variances in the 2
study arms, and the mean and
variance of the group size.

Consistent across these
studies was the recommenda-
tion that expectations for varia-
tion in group sample size be
considered during both the
planning stages and the analysis
stage. Failure in planning can
result in an underpowered
study,40–43 and failure in analysis
can result in type I error rate
inflation.44

Baseline Imbalance of
Covariates

Imbalance of covariates at
baseline threatens the internal
validity of the trial. Yet GRTs
often randomize a limited num-
ber of groups that are heteroge-
neous in baseline covariates and
in baseline outcome measure-
ments. As a result, there is a good
chance of baseline covariate im-
balance.6,45 Restricted ran-
domization strategies such as
stratification, matching or con-
strained randomization can be
implemented in the design phase
to address this issue.

However, stratification may
have limited use in GRTs if
there are more than a handful
of covariates to balance, because of
the small number of groups inmost
trials.46 Pair matching also comes
with several disadvantages,46 be-
cause it affects the proper calcula-
tion of ICC47 and complicates the
significance testing of individual-
level risk factors.48 More recently,
Imai et al. presented a design-based
estimator,49 which led them to
advocate the use of pair matching
on the basis of the unbiasedness and

efficiencyof their estimator. Several
others highlighted features of this
work,50–52 including the authors’
power calculation that does not
depend on the ICC, thus avoiding
the known ICC problem.53

Despite the efficiency gains of
pair matching over stratification,
a simulation study conducted by
Imbens led him to conclude that
stratified randomization would
generally be preferred to pair
matching.54 We note that strata
of size 4 provide virtually all the
advantages of pair matching
while avoiding the disadvantages,
and may be preferred over pair
matching for that reason.

To overcome challenges when
trying to balance on multiple,
possibly continuous, covariates,
Raab and Butcher55 proposed
constrained randomization. It is
on the basis of a balancing crite-
rion calculated by a weighted sum
of squared differences between
the study arm means on any
group-level or individual-level
covariate and seeks to offer better
internal validity than both pair
matching and stratification. The
approach randomly selects 1 al-
location scheme from a subset of
schemes that achieve acceptable
balance, identified on the basis of
having the smallest values of the
balancing criterion.

Carter and Hood56 extended
this work to randomize multiple
blocks of groups and provided an
efficient computer program for
public use. de Hoop et al. pro-
posed the “best balance” score to
measure imbalance of group-level
factors under constrained ran-
domization.57 In simulations with
4 to 20 groups, constrained ran-
domization with the best balance
score was shown to optimally re-
duce quadratic imbalances com-
pared with simple randomization,
matching, and minimization.

Li et al.58 systematically stud-
ied the design parameters of
constrained randomization for

continuous outcomes, including
choice of balancing criterion,
candidate set size, and number of
covariates to balance. With ex-
tensive simulations, they dem-
onstrated that constrained
randomization with a balanced
candidate subset could improve
study power while maintaining
the nominal type I error rate,
both for a model-based analysis
and for a permutation test, as long
as the analysis adjusted for po-
tential confounding.

Moulton59 proposed to check
for overly constrained designs by
counting the number of times
each pair of groups received the
same study arm allocation. He
revealed the risk of inflated type I
error in overly constrained de-
signs using a simulation example
with 10 groups per study arm. Li
et al. further noticed the limita-
tion of overly constrained designs
in that they may fail to support
a permutation test with a fixed
size.58 In practice, if covariate
imbalance is present even after
using 1 of the design strategies
described, such imbalance can be
accounted for by using adjusted
analysis that is either preplanned
in the protocol or through post
hoc sensitivity analysis.7 In sum-
mary, constrained randomization
seeks to provide both internal
validity and efficiency.

Methods and Software
for Sample Size

If the ICC is positive, not
accounting for it in the analysis
will inflate the type I error rate,
and the power of the trial will be
unknown. If the ICC is estimated
as negative, as it can be when the
true value is close to zero and
sampling error leads to a negative
estimate or when there is com-
petition within groups,1–4,9,60

not accounting for it will reduce
the type I error rate so that the test
is more conservative, and the

power of the trial will be lower
than planned.61 Thus, a good
estimate of the ICC is essential for
sample size calculation for all
GRTs.

One of the simplest power
analysis methods often offered for
a standard parallel-arm GRT
with a single follow-up mea-
surement is to compute the
power for an individually ran-
domized trial using the standard
formula and to then inflate this
by the design effect,62 given by
1þ ðm� 1Þq. In this formula,
m is the number of subjects per
group and r is the ICC.

Unfortunately, this approach
addresses only the first of the 2
penalties associated with group
randomization that were iden-
tified by Cornfield almost 40
years ago63: extra variation and
limited degrees of freedom for
the test of the intervention effect.
To accurately estimate sample
size and power for a GRT, it is
necessary to also account for the
limited degrees of freedom that
can arise because of having few
groups to randomize. This can be
achieved by using appropriate
methods detailed in one of the
GRT texts rather than using the
naı̈ve approach of simply in-
flating the individually ran-
domized trial sample size by the
design effect.1–5,61

In general, appropriate
methods calculate sample size
using a variance estimate inflated
on the basis of the expected
ICC and use a t test rather than
a z test to reflect the desired
power and type I error rate, with
degrees of freedom determined
on the basis of the number of
groups to be randomized.

In practice, both cross-
sectional and cohort GRTs are
commonly powered on the basis
of a comparison between study
arms at a single point in time.
Then, for GRTs with cohort
designs, the analysis section of
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the study protocol may state
that power will be gained by
accounting for the repeated
measures design in the analysis.
However, methods exist for di-
rectly computing power in the
case of repeated measures in the
context of both cross-sectional
and cohort designs.1,27

Authors have noted that re-
gression adjustment for covariates
often reduces both the ICC
and the residual variance, thereby
improving power.1,64 Heo
et al.65 and Murray et al.66 pro-
vide methods that use data from
across the entire course of the
study, rather than just comparing
2 means at the end of the study.
In practice, the user would re-
quire estimates of the variance
reduction expected from re-
peated measures or from regres-
sion adjustment for covariates,
which could be obtained from
previous studies or pilot data.

Methods exist to power
GRTs with additional layers of
clustering, whether from addi-
tional structural hierarchies1,67–69

or from the repeated measures in
the cohort design.1,27,64,66,70–73

Konstantopoulos describes how
to incorporate cost into the
power calculation for 3-level
GRTs.74 Hemming et al. discuss
approaches to take when the
number of groups is fixed ahead
of time.75 Two recent articles
focus specifically on binary out-
come variables.13,76 Candel and
Van Breukelen examine the effects
of varying group sizes in the con-
text of a 2-arm GRT.77 Durán
Pacheco et al. focus on power
methods for overdispersed counts.78

Rutterford et al. and Gao et al.
summarize awide arrayofmethods
for sample size calculations in
GRTs,79,80 including for GRT
designs involving 1 to 2 measure-
ments per member or per group
and for designs involving3ormore
measurements per member or per
group. A new textbook on power

analysis for studies with multilevel
data also provides a thorough
treatment.27 Previous textbooks
on the design and analysis ofGRTs
devoted at least a chapter to
methods for power and sample
size.1–5 A range of software and
procedures are available to imple-
ment power and sample size cal-
culations for GRTs (Table 2).

DEVELOPMENTS IN
THE DESIGN OF
ALTERNATIVES

Many alternative designs can be
used in place of a traditional
parallel-armGRT (Figure 1a).We
consider four alternative designs,
all of which involve randomiza-
tion and some form of cluster-
ing that must be appropriately
accounted for in both the design
and analysis (Figure 1, Table 3).
Thus, they share key features of the
standard parallel-arm GRT, yet all
have distinct and different features
that are important to understand.
In practice, some of these designs
are still poorly understood.

Stepped-Wedge GRTs
The stepped-wedge GRT

(SW-GRT) is a 1-directional
crossover GRT in which time is
divided into intervals and all
groups eventually receive the
intervention (Figure 1b).81 Sys-
tematic reviews indicate in-
creasing popularity.82–84 Trials
recently published a special issue
(2015, issue 16) on the design and
analysis of SW-GRTs, and many
issues of the Journal of Clinical
Epidemiology have featured mul-
tiple SW-GRT articles (e.g.,
2012, 65[12] and 2013, 66[9]).

The rationale for this alter-
native is primarily logistical: it
may not be possible to roll out the
intervention in all groups simul-
taneously,85–88 although a stag-
gered parallel-arm GRT design

could alternatively be used in
which blocks of groups are ran-
domized to intervention or
control instead of all groups
eventually receiving the in-
tervention as in the SW-
GRT.89–91 Others propose
a SW-GRT for ethical and ac-
ceptability reasons because all
groups eventually receive the
intervention.82 This second ar-
gument has been discounted
because the intervention could
be delivered to all control groups
at the end of a parallel-arm GRT
design,88,92 often earlier than
would be the case in a SW-
GRT.93 When SW-GRTs are
conducted in low-incidence
settings, Hayes et al. emphasized
that the order and period of in-
tervention allocation is crucial.94

For the parallel-arm GRT, de-
signchoices includecross-sectional82

versus cohort,95 with most SW-
GRT methodological literature
focused on cross-sectional designs,
although most published
SW-GRTs are cohort designs.96

An additional variation is that of

complete versus incomplete
SW-GRTs defined according to
whether each group is measured
at every time point.90 Regardless
of the specifics of the SW-GRT
design, it is important to consider
the possible confounding and
moderating effects of time in
the analysis.85,90,97–99 Failure to
account for both, if they exist,
will threaten the internal
validity of the study.

Cross-sectional SW-GRT
sample size formulas are available
for complete and incomplete
designs.90,100–103 Hemming et al.
provide a unified approach for
the design of both parallel-arm
and SW-GRTs and allow mul-
tiple layers of clustering.90Cohort
SW-GRT sample size calculation
relies on simulation.97,104 Re-
cent work on optimal designs
shows that, for large studies, the
optimal design is a mixture of
a stepped-wedge trial embedded
in a parallel-arm trial.105,106

Moerbeek and Teerenstra de-
vote a chapter to sample size
methods for SW-GRTs.27

TABLE 2—Software for Sample Size Calculations in Parallel-Arm
GRTs

Software Functionality

PASSa Sample size calculations for GRTs comparing 2 means

(noninferiority, equivalence, or superiority), 2 proportions

(noninferiority, equivalence, or superiority), 2 Poisson rates, and

a log-rank test

nQueryb Comparison of 2 means, proportions, and rates

Statac User-provided command clustersampsi; can compute sample size

for continuous, binary, and rate outcomes for 2-sided tests in

equal-sized arms

Rd Package CRTSize for comparing 2 means or 2 binary proportions

SASe No built-in functionality at this time

Calculator For some simple designs, parameter values can be plugged into

formulas provided in textbooks

Note. GRT = group-randomized trial; PASS =Power and Analysis Software.
aVersion 15 (NCSS Statistical Software, Kaysville, UT).
bVersion 7 (Statsols, Boston, MA).
cVersion 14 (StataCorp LP, College Station, TX).
dVersion 3.3.2 (R Foundation for Statistical Computing, Vienna, Austria).
eVersion 9.4 (SAS Institute, Cary, NC).
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Network-Randomized
GRTs

GRTs have historically been
used to minimize the contami-
nation between study arms; such

contamination is also called “in-
terference.”107 This contamina-
tion may give rise to a network
of connections between individuals
both within and between study

arms. The latter is of particular
relevance toGRTdesign because it
leads to reduced power, although
sample size methods exist to pre-
serve power and efficiency.108

The network-randomized
GRT is a novel design that uses
network information to address
the challenge of potential con-
tamination in GRTs of infectious
diseases.109–111 In such a design,
groups are defined as the net-
work contacts of a disease (index)
case, and those groups are ran-
domized to study arms. Examples
include the snowball trial and
the ring trial, each with a distinct
way to deliver the intervention.
In the snowball trial, only the
index case directly receives the
intervention; the index is then
encouraged to share the in-
tervention with her or his con-
tacts (e.g., see Latkin et al.109 for
such a trial of HIV prevention in
injection drug users). In the ring
trial, “rings” of contacts of the
index case are randomized to
receive the intervention (Figure
1c). This design has been used to
study foot-and-mouth disease,112

smallpox,113 and Ebola.114 For
the same sample size, ring trials
are more powerful than are
classical GRTs when the in-
cidence of the infection is low.115

Pseudocluster
Randomized Trials

In GRTs where all members
of the selected groups are
recruited to the study, study
participants are expected to be
representative of the underlying
population and, as a result, se-
lection bias is expected to be
minimal. By contrast, GRTs
with unblinded recruitment after
randomization are at risk for se-
lection bias. For example, con-
sider a GRT used to evaluate
the effect of a behavioral inter-
vention delivered by providers
in the primary care setting. If
a provider is first randomized
to a study arm and then pro-
spectively recruits participants,
she or he may differentially select
participants depending on

Baseline Follow-up

Baseline Follow-up

Baseline Follow-up

Baseline Follow-up

Baseline Follow-up

Groups are defined as the network contacts of 

an index disease case and those groups of 

contacts are then randomized to intervention 

or control. The larger symbols represent the 

index case in each group. 

Individuals are randomized to intervention 

or control but treatments are delivered in 

small groups or through a common change 

agent.

Groups are randomized to intervention or control

at baseline, then either the same individuals are  

followed up over time (cohort GRT) or different

individuals in the same group are sampled at 

different time points (cross-sectional GRT). 

patients 

Assignment to intervention is based on a two-stage 

process. In the first stage, groups (e.g., providers) 

are randomized to a patient allocation-mix, here 

shown as predominantly (80%) intervention vs. 

predominantly (80%) control. In the second stage, 

recruited to the PCRT are individually 

randomized to intervention or control. 

a

b

c

d

e

Individual measured under intervention

Individual measured under no intervention

Group randomized to intervention

Group randomized to control

Note. GRT =group-randomized trial. Each pictorial representation is an example of the specific design in which baseline
measurements are taken. Other versions of each design exist. All examples show 5 individuals per group. The stepped-
wedge GRT is a 1-directional crossover GRT in which time is divided into intervals and all groups eventually receive the
intervention, indicated by the shading of the boxes. The design is an example of a “complete design,” that is, every group is
measured at every time point. Like parallel-arm GRTs, stepped-wedge GRTs can be either cross-sectional or cohort. In the
pseudocluster randomized trial, a group randomized to “intervention” is a group that contains a larger proportion of group
members receiving the intervention than does a group randomized to “control”.

FIGURE 1—Pictorial Representation of Designs for (a) Parallel-Arm GRT, (b) Stepped-Wedge GRT, (c)
Network-Randomized GRT, (d) Pseudocluster Randomized Trial (PCRT), and (e) Individually Randomized
Group-Treatment (IRGT) Trial
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whether she or he is randomized to
the intervention or control arm.116

To reduce the risk of such
selection bias, Borm et al. in-
troduced the pseudocluster ran-
domized trial (PCRT) to allocate
intervention to participants in
a 2-stage process.117 In the first
stage, providers are randomized
to a patient allocation mix (e.g.,
patients predominantly random-
ized to intervention vs patients
predominantly randomized to
control). In the second stage, pa-
tients recruited to the PCRT are
individually randomized to in-
tervention or control according to
the allocation probability of their
provider (e.g., 80% to intervention
vs 20% to intervention; Figure 1d).

An obvious threat to a PCRT
design is that the same providers
are asked to implement both
the intervention and the control
arms, depending onwhich patient
they are seeing. Concerns about
contamination are a common
reason to randomize providers
(i.e., group randomization) so
that they deliver either the in-
tervention or the control but not
both. The PCRT design would
not be appropriate if there are
concerns about contamination
and if they exceed concerns about
selection bias.

In 2 published cases, providers
were blinded to the 2-stage
form of randomization and in-
stead assumed that patients were
individually randomized to the
intervention arm with equal
probability.118,119 Later publica-
tions indicate that the PCRT
design did well at balancing
contamination and selection
bias in both studies.120–122

Borm et al. provide sample
size calculations for continuous
outcomes.117 The clustering
by provider (or unit of first-
stage randomization) must be
accounted for in both the design
and analysis. No explicit sample
size methods are known to be
available for noncontinuous
outcomes. Moerbeek and
Teerenstra devote a chapter to
sample size methods for PCRTs.27

Individually Randomized
Group-Treatment Trials

Pals et al.123 identified
studies that randomize in-
dividuals to study arms but de-
liver interventions in small
groups or through a common
change agent as individually
randomized group-treatment
(IRGT) trials, also called “par-
tially clustered or partially nested

designs” (Figure 1e).72,124 Ex-
amples include studies of psy-
chotherapy,125 weight loss,126

and reduction in sun exposure.127

Clustering associated with these
small groups or change agents
must be accounted for in the
analysis to avoid type I error rate
inflation.72,123,124,128,129 Even so,
this accounting appears to be rare
in practice.123,130–133

Recent articles have re-
ported sample size formulas for
IRGT trials with clustering in
only 1 study arm, both for bal-
anced72,123,128,134 and unbal-
anced designs.77,128 Moerbeek
and Teerenstra devote a chapter
to sample size methods for IRGT
trials focused on methods with
clustering in either 1 or both
arms.27 Roberts addresses sample
size methods for IRGT trials in
which members belong to more
than 1 small group at the same
time or change small groups
over the course of the study.135

Both features have been shown
to increase the type I error rate
if ignored in the analysis.135,136

CONCLUSIONS
Wehave summarizedmany of

the most important advances in
the design of GRTs during the

13 years since the publication
of the earlier review by Murray
et al.6 Many of these develop-
ments have focused on alterna-
tives to the standard parallel-arm
GRT design as well as those re-
lated to the nature of clustering
and its features in all the designs
presented. Space limitations have
prevented us from including re-
cent developments involving
pilot and feasibility GRTs; de-
signs to improve efficiency, such
as factorial and crossover GRTs;
and group designs, such as cutoff
designs and regression disconti-
nuity applied to groups. In-
terested readers are directed to
the recently launched peer-
reviewed journal Pilot and
Feasibility Studies and related
references 4,137; to a recent
methodological review of effi-
ciency improvements for GRTs
by Crespi,138 including factorial
and crossover GRTs; to addi-
tional developments in crossover
GRTs,139,140 including a recent
review by Arnup et al.141; to ad-
ditional reflections on the factorial
GRT by Mdege et al.142; and to
cutoff design references by Pennell
et al.143 and by Schochet.144

With this review, we have
sought to ensure that the reader
is reminded of the value of good
design and gains knowledge in
the fundamental principles of
a range of recent and potentially
beneficial design strategies. Pair-
ing this knowledge with our
companion review of develop-
ments in the analysis of GRTs,7

we hope that our work leads
to continued improvements in
the design and analysis of
GRTs.
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TABLE 3—Characteristics of the Parallel-Arm Group Randomized Trial and of Alternative Group Designs

One-Stage
Randomization

Type of Follow-Up
Possible

Design (Abbreviation) By Group By Individual
Two-Stage

Randomization Cross-Sectional Cohort

Parallel-arm group-randomized trial (GRT) U . . . . . . U U

Stepped-wedge group-randomized trial (SW-GRT) U . . . . . . U U

Network-randomized group-randomized trial (NR-GRT) U . . . . . . . . . Ua

Pseudocluster randomized trial (PCRT) . . . . . . U . . . Ub

Individually randomized group-treatment trial (IRGT trial) . . . U . . . . . . Uc

aIn the NR-GRT, the index case and its network are usually defined at baseline, and therefore the design is expected to
use a cohort design and not allow a cross-sectional design.
bIn the PCRT, because randomization is undertaken in 2 stageswith individuals randomized to interventionor control in
the second stage, the design requires that a cohort of individuals be enrolled at study baseline to be followed over
time.
cIn the IRGT trial, individual randomization is performed, and therefore, like the pseudocluster randomized trial,
a cohort of individuals is enrolled and followed over time.
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