Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(13):5051–5055. doi: 10.1073/pnas.87.13.5051

Diphtheria toxin mutant selectively kills cerebellar Purkinje neurons.

C J Riedel 1, K M Muraszko 1, R J Youle 1
PMCID: PMC54259  PMID: 2367523

Abstract

CRM107 (crossreacting material 107), a double point mutant of diphtheria toxin that lacks receptor-binding activity, specifically kills cerebellar Purkinje cells in vivo. After injection into guinea pig cerebrospinal fluid, CRM107 (0.9 micrograms) and CRM107-monoclonal antibody conjugates (10 micrograms) kill up to 90% of the total Purkinje cell population with no detectable toxicity to other neurons. Animals exhibit ataxia, tremor, and abnormalities of posture and tone. Native diphtheria toxin, ricin, and ricin A chain do not cause ataxia and do not reduce the Purkinje cell population after intrathecal injection into guinea pigs at toxic or maximally tolerated doses. However, in rats, which will tolerate higher doses of diphtheria toxin than guinea pigs, Purkinje cells can be killed by both CRM107 and diphtheria toxin. A truncated mutant of diphtheria toxin, called CRM45, can also cause Purkinje cell killing but has additional toxicity not seen with CRM107. Animals treated with intrathecal CRM107 or CRM107 linked to antibodies may serve as models for Purkinje cell loss in a broad spectrum of human diseases and may be used to further study cerebellar physiology. Understanding the basis for the Purkinje cell sensitivity to CRM107 may illuminate other causes of Purkinje cell loss.

Full text

PDF
5051

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson N. E., Cunningham J. M., Posner J. B. Autoimmune pathogenesis of paraneoplastic neurological syndromes. Crit Rev Neurobiol. 1987;3(3):245–299. [PubMed] [Google Scholar]
  2. Boquet P., Silverman M. S., Pappenheimer A. M., Jr, Vernon W. B. Binding of triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4449–4453. doi: 10.1073/pnas.73.12.4449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borges L. F., Busis N. A. Intraneuronal accumulation of myeloma proteins. Arch Neurol. 1985 Jul;42(7):690–694. doi: 10.1001/archneur.1985.04060070084021. [DOI] [PubMed] [Google Scholar]
  4. Borges L. F., Elliott P. J., Gill R., Iversen S. D., Iversen L. L. Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons. Science. 1985 Apr 19;228(4697):346–348. doi: 10.1126/science.2580350. [DOI] [PubMed] [Google Scholar]
  5. Davis T. L., Wiley R. G. Anti-Thy-1 immunotoxin, OX7-saporin, destroys cerebellar Purkinje cells after intraventricular injection in rats. Brain Res. 1989 Dec 18;504(2):216–222. doi: 10.1016/0006-8993(89)91360-7. [DOI] [PubMed] [Google Scholar]
  6. Durack D. T., Sumi S. M., Klebanoff S. J. Neurotoxicity of human eosinophils. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1443–1447. doi: 10.1073/pnas.76.3.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FISHER C. M., ADAMS R. D. Diphtheritic polyneuritis; a pathological study. J Neuropathol Exp Neurol. 1956 Jul;15(3):243–268. doi: 10.1097/00005072-195607000-00002. [DOI] [PubMed] [Google Scholar]
  8. Garson J. A., Beverley P. C., Coakham H. B., Harper E. I. Monoclonal antibodies against human T lymphocytes label Purkinje neurones of many species. Nature. 1982 Jul 22;298(5872):375–377. doi: 10.1038/298375a0. [DOI] [PubMed] [Google Scholar]
  9. Ghatak N. R., Santoso R. A., McKinney W. M. Cerebellar degeneration following long-term phenytoin therapy. Neurology. 1976 Sep;26(9):818–820. doi: 10.1212/wnl.26.9.818. [DOI] [PubMed] [Google Scholar]
  10. Gleich G. J., Loegering D. A., Bell M. P., Checkel J. L., Ackerman S. J., McKean D. J. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A. 1986 May;83(10):3146–3150. doi: 10.1073/pnas.83.10.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenfield L., Johnson V. G., Youle R. J. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science. 1987 Oct 23;238(4826):536–539. doi: 10.1126/science.3498987. [DOI] [PubMed] [Google Scholar]
  12. Herrup K. Cell lineage relationships in the development of the mammalian CNS: role of cell lineage in control of cerebellar Purkinje cell number. Dev Biol. 1986 May;115(1):148–154. doi: 10.1016/0012-1606(86)90236-8. [DOI] [PubMed] [Google Scholar]
  13. Jacobs J. M., Cavanagh J. B., Mellick R. S. Intraneural injection of diphtheria toxin. Br J Exp Pathol. 1966 Oct;47(5):507–517. [PMC free article] [PubMed] [Google Scholar]
  14. Johnson V. G., Wilson D., Greenfield L., Youle R. J. The role of the diphtheria toxin receptor in cytosol translocation. J Biol Chem. 1988 Jan 25;263(3):1295–1300. [PubMed] [Google Scholar]
  15. KOKENGE R., KUTT H., MCDOWELL F. NEUROLOGICAL SEQUELAE FOLLOWING DILANTIN OVERDOSE IN A PATIENT AND IN EXPERIMENTAL ANIMALS. Neurology. 1965 Sep;15:823–829. doi: 10.1212/wnl.15.9.823. [DOI] [PubMed] [Google Scholar]
  16. Karpiak S. E., Mahadik S. P. Selective uptake by Purkinje neurons of antibodies to S-100 protein. Exp Neurol. 1987 Nov;98(2):453–457. doi: 10.1016/0014-4886(87)90254-8. [DOI] [PubMed] [Google Scholar]
  17. Murray K., Noble M. In vitro studies on the comparative sensitivities of cells of the central nervous system to diphtheria toxin. J Neurol Sci. 1985 Oct;70(3):283–293. doi: 10.1016/0022-510x(85)90170-4. [DOI] [PubMed] [Google Scholar]
  18. Pappenheimer A. M., Jr Diphtheria toxin. Annu Rev Biochem. 1977;46:69–94. doi: 10.1146/annurev.bi.46.070177.000441. [DOI] [PubMed] [Google Scholar]
  19. Pappenheimer A. M., Jr, Harper A. A., Moynihan M., Brockes J. P. Diphtheria toxin and related proteins: effect of route of injection on toxicity and the determination of cytotoxicity for various cultured cells. J Infect Dis. 1982 Jan;145(1):94–102. doi: 10.1093/infdis/145.1.94. [DOI] [PubMed] [Google Scholar]
  20. Pastan I., Willingham M. C., FitzGerald D. J. Immunotoxins. Cell. 1986 Dec 5;47(5):641–648. doi: 10.1016/0092-8674(86)90506-4. [DOI] [PubMed] [Google Scholar]
  21. Pentney R. J. Quantitative analysis of ethanol effects on Purkinje cell dendritic tree. Brain Res. 1982 Oct 14;249(2):397–401. doi: 10.1016/0006-8993(82)90077-4. [DOI] [PubMed] [Google Scholar]
  22. Piatak M., Lane J. A., Laird W., Bjorn M. J., Wang A., Williams M. Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. J Biol Chem. 1988 Apr 5;263(10):4837–4843. [PubMed] [Google Scholar]
  23. Rybak S. M., Vallee B. L. Base cleavage specificity of angiogenin with Saccharomyces cerevisiae and Escherichia coli 5S RNAs. Biochemistry. 1988 Apr 5;27(7):2288–2294. doi: 10.1021/bi00407a007. [DOI] [PubMed] [Google Scholar]
  24. Slifman N. R., Loegering D. A., McKean D. J., Gleich G. J. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol. 1986 Nov 1;137(9):2913–2917. [PubMed] [Google Scholar]
  25. St Clair D. K., Rybak S. M., Riordan J. F., Vallee B. L. Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8330–8334. doi: 10.1073/pnas.84.23.8330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Uchida T., Pappenheimer A. M., Jr, Greany R. Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem. 1973 Jun 10;248(11):3838–3844. [PubMed] [Google Scholar]
  27. Vitetta E. S., Fulton R. J., May R. D., Till M., Uhr J. W. Redesigning nature's poisons to create anti-tumor reagents. Science. 1987 Nov 20;238(4830):1098–1104. doi: 10.1126/science.3317828. [DOI] [PubMed] [Google Scholar]
  28. WAKSMAN B. H. Experimental study of diphtheritic polyneuritis in the rabbit and guinea pig. III. The bloodnerve barrier in the rabbit. J Neuropathol Exp Neurol. 1961 Jan;20:35–77. doi: 10.1097/00005072-196101000-00003. [DOI] [PubMed] [Google Scholar]
  29. WEBSTER H. D., SPIRO D., WAKSMAN B., ADAMS R. D. Phase and electron microscopic studies of experimental demyelination. II. Schwann cell changes in guinea pig sciatic nerves during experimental diphtheritic neuritis. J Neuropathol Exp Neurol. 1961 Jan;20:5–34. doi: 10.1097/00005072-196101000-00002. [DOI] [PubMed] [Google Scholar]
  30. Wiley R. G., Blessing W. W., Reis D. J. Suicide transport: destruction of neurons by retrograde transport of ricin, abrin, and modeccin. Science. 1982 May 21;216(4548):889–890. doi: 10.1126/science.6177039. [DOI] [PubMed] [Google Scholar]
  31. Youle R. J., Neville D. M., Jr Kinetics of protein synthesis inactivation by ricin-anti-Thy 1.1 monoclonal antibody hybrids. Role of the ricin B subunit demonstrated by reconstitution. J Biol Chem. 1982 Feb 25;257(4):1598–1601. [PubMed] [Google Scholar]
  32. Young J. D., Peterson C. G., Venge P., Cohn Z. A. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature. 1986 Jun 5;321(6070):613–616. doi: 10.1038/321613a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES