Table 2.
threshold | Geuvadis data | GenoExp data | ||||||
---|---|---|---|---|---|---|---|---|
Lasso | ENET | LMM | BSLMM | Lasso | ENET | LMM | BSLMM | |
0.05 | 2252 | 2262 | 2447 | 2567 | 1785 | 1414 | 1560 | 1758 |
0.10 | 1144 | 1145 | 1145 | 1266 | 831 | 788 | 734 | 826 |
0.20 | 420 | 422 | 383 | 466 | 315 | 309 | 276 | 323 |
0.30 | 161 | 162 | 152 | 178 | 156 | 148 | 124 | 160 |
0.40 | 75 | 75 | 65 | 76 | 70 | 70 | 56 | 70 |
0.50 | 33 | 33 | 25 | 32 | 36 | 32 | 27 | 37 |
0.60 | 14 | 14 | 12 | 14 | 25 | 21 | 20 | 24 |
There are 15,810 and 15,427 genes in the Geuvadis data and GenoExp data, respectively. It can be seen that in both data sets when the given R 2 threshold is large (e.g. ≥0.30) the number of predictive genes passing that value in LMM is less than that of LASSO, ENET or BSLMM, implying that these highly predictive genes may have a sparse genetic architecture