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Abstract

Linear mixed models (LMMs) are widely used for regression analysis of data that are assumed to 

be clustered or correlated. Assessing model fit is important for valid inference but to date no 

confirmatory tests are available to assess the adequacy of the fixed effects part of LMMs against 

general alternatives. We therefore propose a class of goodness-of-fit tests for the mean structure of 

LMMs. Our test statistic is a quadratic form of the difference between observed values and the 

values expected under the estimated model in cells defined by a partition of the covariate space. 

We show that this test statistic has an asymptotic chi-squared distribution when model parameters 

are estimated by maximum likelihood or by least squares and method of moments, and study its 

power under local alternatives both analytically and in simulations. Data on repeated 

measurements of thyroglobulin from individuals exposed to the accident at the Chernobyl power 

plant in 1986 are used to illustrate the proposed test.
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1. Introduction

The linear mixed model (LMM) (McCulloch and Searle, 2001) extends the linear model by 

including random effects in addition to the usual fixed effects in the linear predictors. By 

incorporating random effects LMMs can accommodate clustered or correlated data. 

Developments in model fitting algorithms and their implementations in statistical packages 

(e.g. lme in R; PROC Mixed in SAS 9.2; SAS Institute, Cary, NC) have greatly facilitated 

the applications of LMMs.

Two important steps in modeling are selecting a model and checking its fit. Often model 

selection is done by comparing nested models, via likelihood ratio or score tests, as part of 
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model building, and approaches are also available for comparing non-nested models (Cox, 

1961; Godfrey, 1988). Variables are often selected for inclusion into a model if their p-value 

obtained from a Wald test meets some significance criterion. AIC, BIC and other model 

selection principles (Rao and Wu, 1989; Shao, 1997) also focus on selection of covariates. 

Once a model is selected, its fit should be assessed. For fixed effects models this is done by 

checking residuals and formal goodness of fit tests, such as score or Wald tests or likelihood 

ratio tests based on nested models. Khuri, Mathew and Sinha (1998) discussed likelihood 

ratio testing for fixed effects within LMMs. The literature for assessing the fit of LMMs 

against general alternatives is limited, and is mostly concerned with specification of the 

random effect distributions. Likelihood ratio testing for the presence of random effects in 

LMMs has been discussed by Self and Liang (1987) and Crainiceanu and Ruppert (2004). 

Jiang (2001) and Ritz (2004) assessed the distributional assumptions for the random effects 

in LMMs. Claeskens and Hart (2009) proposed tests for normality of the random effects 

and/or error terms. Lombardía and Sperlich (2008) introduced a test for the hypothesis of a 

linear fixed effect part in a generalized linear mixed model against the alternative of a 

semiparametric fixed effect part. Pan and Lin (2005) propose checking the adequacy of 2-

level generalized linear mixed models based on the maximum absolute partial sums of 

residuals over a scalar projection of covariates. Their approach allows for assessing overall 

model fit as well as the functional form of individual components of the fixed effects part. 

However, to date there is no general easily computable test for checking the fit of the fixed-

effect part of a model against unspecified alternatives, including omitted covariates or 

interaction terms or misspecifications of the functional form of covariates. Such a test is 

needed as a model-building tool.

Examination of the residuals of a model is a standard way to judge the quality of model fit. 

This can be done in many different ways. One useful way is to classify the response into 

mutually exclusive events defined in terms of the covariates and then assess for each 

category the deviation of the observed values and the expected values under the model. For 

survival data, Schoenfeld (1980) presented a class of omnibus chi-squared goodness of fit 

tests for the proportional hazards regression model, based on the observed minus the 

expected values of the covariates at each failure time. In this article, we adopt the idea of 

Schoenfeld (1980) and develop a goodness of fit test for the mean structure of LMMs by 

comparing the observed and expected values computed from the model within cells of a 

partition of the covariate space.

The rest of the paper is organized as follows. In Section 2 we present the linear mixed 

model, introduce the goodness of fit test statistic, and derive its asymptotic properties, 

including its theoretical power under local alternatives. We first assume that the random 

effects components and the error term are normally distributed and parameters are estimated 

by maximum likelihood (Section 2.2). We then relax the assumption of normality and only 

require finite higher order moments for the random effect and the error term and estimate 

parameters using least squares and method of moments (Section 2.3). We study the power of 

the test in simulations in Section 3, present a data example in Section 4 and close with a 

discussion in Section 5.
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2. Goodness of fit test statistic for linear mixed models

2.1. The linear mixed model

We consider the linear mixed model (LMM) with additive random effects,

(1)

where YN×1 is the vector of observations;  is the design matrix for the 

fixed effects part of the model, where xi denotes the p × 1 covariate vector for individual i; β 
is a p × 1 vector of unknown fixed effects parameters; Zr is the known N × mr design matrix 

for the random effect αr, an mr × 1 random vector, for r = 1, …, R. The random effects α1, 

…, αR are i.i.d. and independent of the error term ε. In the next section we assume that the 

components αkr of αr and ε are normally distributed. Within the LMM with a single random 

effect, we later require no distributional assumptions on the random effect and the error 

terms, but only the finiteness of their 4 + δ moments for some δ > 0. We let θ = (β, ψ) be the 

parameters of model (1), where  is the vector of all variance 

components.

An important special case of model (1) is the 2-level LMM, that includes only a single 

random effect,

(2)

where, using a slightly different notation, the 1 × p vector 

denotes covariates for the jth observation within the ith cluster. The first entry in xij is set to 

be 1 to accommodate an intercept term in the model. We let yi = (yi1, …, yini) denote the 

vector of observations for the ith cluster. The normally distributed cluster specific random 

effects  are assumed to be independent of the error terms . Then 

under model (2), Y is also normal, Y ~ N(Xβ, V) with a block diagonal covariance matrix V, 

where each of the m ni × ni blocks Vi, i = 1, …, m, has entries  on the diagonal and 

entries  elsewhere. Throughout this paper, we regard models (1) and (2) as conditional 

specifications of the distribution of Y given X.

2.2. Test statistic and its asymptotic behavior when parameters are estimated by maximum 
likelihood

2.2.1. LMM with a single random effect—We first discuss the 2-level LMM in (2) 

when both the random effect and the error term are normally distributed and derive our test 

statistic for the setting where the model parameters  are estimated by 

maximum likelihood (MLE). Here X is considered to be fixed.
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Under Assumptions 1.1-1.6 stated below in Theorem 1, consistency and asymptotic 

normality of the MLE  follow from Miller (1977), i.e. 

, where J denotes the limiting Fisher information matrix. Wand 

(2007) showed that under model (2),  and  are asymptotically uncorrelated and thus

(3)

where

(4)

We assume that Jββ is positive definite (Assumption 1.5, Theorem 1).

To test the goodness of fit of the mean structure of the LMM (2), we first divide the 

covariate space into L disjoint regions E1, …, EL. These regions are based on categorizations 

of single covariates or of composites of multiple covariates that may or may not be included 

in the current model. For example, for a single continuous covariate with support on the 

interval (a, b), the cells E could be defined by El = (cl, cl+1], l = 1, …, L − 1 where a = c1 < 

c2 < … < cL−1 < cL = b. For a categorical (discrete) variable X that takes the values cl for l = 

1, …, L, the partition can be defined by El = {X = cl}. We compute the observed and 

expected sums in each region El as

(5)

(6)

where I denotes the indicator function. When the cell partition is based on covariates not 

included in the model (2), then we let xij denote the vector of all available covariates and 

the covariates used in the model, and use , where 

β* corresponds to the coefficients of . However, for notational simplicity we employ the 

expressions (5) and (6) throughout.

Letting f = (f1, …, fL) and e(β) = (e1(β), …, eL(β)), the observed minus the expected vector 

is
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(7)

Since the true parameter vector β0 is unknown, to create a test statistic we must replace it by 

a consistent asymptotically normal estimator, the MLE  as in (7) within Section 2.2 and the 

generalized least squares estimator (15) in Section 2.3. We further make Assumption 1.7 

which, together with Assumptions 1.4 and 1.5, ensures the existence of components of the 

limiting variance covariance matrix for the test statistic.

Theorem 1. We make the following assumptions:

Assumption 1.1. The true parameter point θ0 = (β0, ψ0) is an interior point of 

.

Assumption 1.2.  and .

Assumption 1.3. X is fixed and has full rank.

Assumption 1.4. .

Assumption 1.5. Jββ = limN→∞ XTV−1 X/N exists and is positive definite.

Assumption 1.6. The 2 × 2 matrix M with elements defined below exists and is positive 

definite;

where G0 = I is the N × N identity matrix and G1 is the block-diagonal matrix with m blocks 

and each block is an ni × ni matrix of all 1s. After some algebra,

It is easy to see that matrix M is the average of nonnegative definite matrices. Under 

Assumption 1.4, M is positive definite if and only if . Thus the 

main restriction in Assumption 1.6 is the requirement that M exists.
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Assumption 1.7. For any cell partition E1, … EL of the covariate space, 

 exists for l = 1, …, L.

For model (2), under Assumptions 1.1-1.7, as N → ∞,

where

and

The off-diagonal and diagonal elements of H, Hlk and Hll, are

(8)

(9)

and

(10)

The proof of Theorem 1 is given in Appendix A.
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Corollary 1. Consistent estimators for the quantities given in (8), (9), (10) and (4) are

Corollary 2. For model (2), under Assumptions 1.1-1.7 in Theorem 1, as N → ∞, 

, where  is an L × L matrix that is 

consistently estimated by  based on Corollary 1.

The proof of Corollary 2 is given in Appendix B.

Our goodness of fit test statistic is then given by the quadratic form

(11)

where  denotes the Moore-Penrose generalized-inverse (also called ‘pseudo-inverse’) of a 

slight modification of the consistent variance estimator . We define  in the following 

paragraph. Under the null hypothesis that model (2) is the true model, T has an asymptotic 

central  distribution, where with probability converging to 1 as N → ∞, 

. This result applies to the modification  of any consistent 

estimator  of the Σ matrix, such as restricted maximum likelihood (REML) estimators.

The modification  of variance estimates we describe next applies in several places in this 

paper. The issue is always to avoid numerical instabilities and asymptotic distributional 

anomalies due to rank differences between consistent nonnegative-definite variance 

estimators  and the true asymptotic variance Σ. Assume in what follows that there exists a 

known threshold ξ (say, 10−4) smaller than all non-zero singular values of Σ. Since Σ is 

nonnegative definite, all singular values are nonnegative. Denoting the spectral 

decomposition of  as , where  is an orthonormal basis of 

eigenvectors of  and ckN are the corresponding eigenvalues, the modification  of  is 

defined as , and its Moore-Penrose pseudo-inverse is then 

. We prove in Proposition 1, Appendix D, that  is 

coordinate-free and unique, that rank  with probability converging to 1, and 

that the asymptotic distribution of T in (11) is  and would persist if the Moore-Penrose 
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choice of pseudo-inverse were replaced by any other generalized-inverse of  as defined in 

Rao (1973, Sec. 1.b). In addition, the assumption of a fixed known threshold ξ can be 

replaced by allowing ξ = ξN to depend non-randomly on N and converge to 0 sufficiently 

slowly. (The rate would depend on the specific consistent estimator .)

2.2.2. LMM with multilevel additive random effects—We now consider the general 

LMM with multilevel additive random effects given in equation (1) with a fixed covariate 

matrix X.

Again, the covariate space, comprised of covariates not all of which need be included in the 

model, is divided into L disjoint regions E1, …, EL, and for l = 1, 2, …, L, we define the 

observed and expected vectors f = (f1, …, fL) and e(β) = (e1(β), …, eL(β)) as 

, and . The impact of 

the choice of L is discussed further in the simulation section (Section 3).

Conditions in Miller (1977) that ensure the consistency and asymptotic normality of the 

MLE of θ = (β, ψ) are given in the Supplementary Material S1 (assumptions A.1-A.7). We 

additionally make assumptions A.8-A.9 (Supplementary Material S1) to ensure the existence 

of large-sample averages involving xk and I[xk∈Ej].

Theorem 2. For model (1), under Assumptions A.1-A.9 given in the Supplementary 

Material S1,

(12)

as N → ∞, where  is the MLE of β,  is a consistent estimator of , 

is the modification of  as defined in the last paragraph of Section 2.2.1,  denotes the 

Moore-Penrose pseudoinverse of , and for r ≡ rank(Σ), , as N → 
∞. Here H = limN→∞ FVFT, with

(13)

and the l-th row of Λ given by

(14)
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The proof of Theorem 2 is similar to that of Theorem 1 and is given in Supplementary 

Material S2.

2.3. Test statistic and its asymptotic properties for two-level LMM with parameters 
estimated by least squares and method of moments

We consider the LMM (2), but now only require that E(αi) = E(∊ij) = 0, , 

, and that there is a δ > 0, such that  and , instead 

of assuming normality of αi and ∊ij. To compensate for the weaker distributional 

assumptions, we assume for simplicity in probability limit theorems that the covariate 

vectors xij are random, that {(xi1, …, xini), ni} are i.i.d. and that  and 

, where xi denotes the ni × p matrix of covariates for the ith cluster.

We estimate β by the generalized least squares estimator

(15)

where V depends on the variance components . They are estimated by the 

method of moments by equating the right-hand sides of

(16)

(17)

respectively with their estimates based on the sum of squares within groups (SSW) and the 

sum of squares between groups (SSB) in the analysis of variance, given by

The notation  stands for  and , and similar averages apply 

to the covariates x. Because different clusters are independent, and 

, and  have finite second moments, SSW/m and SSB/m 

satisfy the law of large numbers. The estimating equations (15), (16) and (17) can be solved 
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iteratively for  and yield consistent estimates  (Richardson and Welsh, 1994; 

Jiang, 1996).

To obtain the test statistic, we again compute the observed and expected values in each of 

the L cells of the covariate space as in (5) and (6).

Theorem 3. For the LMM (2), under Assumptions 3.1-3.3 in Appendix D, as N → ∞, 

, where . Thus 

, where  is a consistent estimator of Σ,  is 

the modification of  as defined in the last paragraph of the section 2.2.1,  denotes the 

Moore-Penrose pseudoinverse of , and  N → ∞.

As X is a matrix of random variables in this section, Assumption 3.3 ensures that 

Assumptions 1.4-1.7 hold, which are needed when X are assumed to be fixed in Section 2.1. 

The matrices H, Λ and Jββ are the same as for the two-level LMM (2) when parameters are 

estimated by maximum likelihood under the assumption of normality of αi and ∊ij and are 

specified in (8), (9), (10) and (4). The proof of the theorem is given in Appendix E.

Remark 1. Theorem 1 and Theorem 3 are still valid when empirical quantiles instead of 

fixed cut-o s are used to define cell partition, is we assume that the empirical quantiles of 

coordinates of xi converge to unique limits or under Assumption 3.3.

2.4. Power of the test

For the multi-level LMM (1), we derive the theoretical power under local, and more 

specifically under contiguous alternatives for the test in (12) for the situation where some 

covariates that influence the outcome y are omitted from model (1). This case also covers 

omitted interactions of covariates or omitted higher order terms and is thus practically 

relevant.

Let X be the true N × p covariate matrix and X* be a submatrix of X of dimension N × p* 

used to fit model (1), with p* < p. The null hypothesis is H0: θN = θ0. We assess the power 

of T under the alternative

(18)

with θ0 = (β0, ψ0), where several components of β0 are 0. The vector  corresponding to 

X*. Here  is the vector difference between the parameter values under the alternative 

hypothesis and the parameter values under the null hypothesis.

Based on the derivation for Theorem 2, we have that under H0, 

. By applying Le Cam’s third lemma (see Appendix F for 

details), we find that under the alternative hypothesis H1 in (18),
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(19)

where

(20)

with Λ given by expression (14). Λ* is computed using X* in place of X in (14).

Thus under H1, T* has a limiting noncentral χ2 distribution

(21)

where  and the non centrality parameter is . For a given type I 

error level α, the power is thus , where  is the 1 − α quantile of the central 

 distribution and P denotes the non central  distribution. In the computation of the 

power we use the Moore-Penrose inverse of a modification  as in (11) of a consistent 

estimator  in (20).

As an illustration, we show the asymptotic power to detect lack of fit for an omitted 

covariate for the two-level LMM (2). We assume Y ~ N(XT, V), where X = (1, x1, x2, x3) 

and V is the block diagonal covariance matrix. The xij = (xij1, xij2, xij3), i = 1, …, m; j = 1, 

…, ni are i.i.d. and drawn from a multivariate normal distribution

(22)

and xij and ni are independent. In fitting the model, we omit x3 leading to X* = (1, x1, x2) 

and a = (0, 0, 0, β3) in (20). For this setting, τ in (20) and Σ* in (19) can be computed 

explicitly as a functions of the moments of X and ni (section 2.2.3., Tang, 2010). We study 

the impact of the magnitude of the variance components  and  and the correlations ρ13 

and ρ23 in (22) between the omitted covariate x3 and the covariates in the model (x1 and x2) 

on the theoretical power when the cell partition is based on theoretical quantiles of the 

omitted covariate x3 with L = 8 cells. For ρ13 = 0.5 and ρ23 = 0.6, Figure 1 (left panel) plots 

the theoretical power against  for three choices of  all corresponding 

to the same overall variance  and varying β3 on the x-axis. For any fixed pair of 
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, the power of the test, not surprisingly, increases as a function of β3, the coefficient 

of the omitted covariate x3. This can also be seen by taking a first order Taylor expansion of 

the theoretical power formula around λ = 0, as the power for λ close to zero depends 

linearly on λ = τT(Σ*)−1τ, which is a function of . Figure 1 (left panel) shows that for any 

fixed β3 the power increases when the random effect  decreases compared to the error 

term . Figure 1 (right panel) plots the power for ,  for different choices of 

(ρ13, ρ23). The power increases as  decreases. For ρ13 = 0 and ρ23 = 0, that is, when 

x3 is uncorrelated with x1 and x2, the power is not affected by the individual values of 

and , but only depends on the sum . The theoretical formulas for power under 

contiguous-alternatives given here will generally be close to the actual power only for very 

large sample sizes. However, numerical studies presented in the next section show that these 

formulas often also agree with empirical power in samples of moderate size (m = 50, N = 

150 to N = 200).

3. Simulations to assess power and robustness of the test statistic

For a given number of clusters m, we first generated the cluster sizes ni from a uniform 

distribution on {2, 3, 4, 5} for i = 1, …, m and then drew  independent 

covariates xij for all simulations presented below. We present scenarios for which we believe 

out test would be practically most relevant: models with omitted main effects (Scenario I), 

omitted interaction terms and main effects (Scenarios II and III) and misspecified functional 

forms of a covariate (Scenario IV). We covered a range of effect sizes to provide a fair 

assessment of the performance of our test.

3.1. Main effects only (Scenario I)

Here xij = (x1ij, x2ij, x3ij) were drawn from the multivariate normal distribution given in (22). 

Given X = (1, x1, x2, x3), β, σα = 1 and σ∊ = 0.5, we generated Y from a multivariate normal 

distribution, Y ~ N(XT β, V).

3.1.1. Size and power of T—To check the size of the test for various choices of cell 

partition based on X, we let ρ13 = ρ23 = 0 in (22), β = (β0, β1, β2, β3) = (1, 1, 1, 1), m = 500 

and fit model (2) with all covariates X in the model. Table 1 gives the number of cells and 

the covariates that are the basis of the cell partition in the first column. Cell partitions in the 

computation of the test statistic T were based on empirical quantiles of the respective 

components of X. For all cell partitions in Table 1 the empirical sizes were close to the 

nominal α levels of 0.05 and 0.1.

To assess the power of the test, we generated data from model (2) that includes all three 

covariates but then omitted x3 in fitting the model to the data. We set (ρ13, ρ23) = (0.5, 0.6), 

β = (β0, β1, β2, β3) = (1, 1, 1, 0.25). We then generated K = 2000 datasets for a given X. We 

repeated this data generation process for D = 1000 independently drawn design matrices X. 

For a given X, we computed the theoretical power of T* in (21) based on the asymptotic χ2 

distribution with the true values of  and . The empirical moments for X were used in the 
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calculation of the non-centrality parameter λ. For a given X and each generated Y, we 

calculated the estimated theoretical power based on the asymptotic χ2 distribution with the 

variance components estimated based on the given Y and empirical moments of X in (20). 

We then repeated the calculation of the estimated theoretical power for each of the K = 2000 

generated Y and by taking the average, we obtained a mean estimated theoretical power for 

that given X. For each given design matrix X, we also calculated the empirical power based 

on K = 1000 iterations on Y. For m = 20 clusters the cell partition was based on the 

empirical quantiles of the omitted x3 with L = 8 cells to avoid empty cells, but for m = 50 or 

500, we used theoretical quantiles of x3 as cell boundaries for computational ease.

The mean theoretical power (“Theo.Pow.”), the mean estimated theoretical power 

(“Theo.Pow.hat”) and the empirical power (“Empi.Pow.n”) agreed very well, even when m 
is small (Table 2). However, only for m = 500 was there adequate power to detect lack of fit 

when β3 = 0.25, which is substantially smaller than the coefficients β1 = β2 = 1 of x1, and 

x2, the covariates included in the model. When the effect of the omitted covariate was larger, 

β3 = 0.8, the test statistic had approximately 80% power even for m = 50 clusters.

3.1.2. Robustness of T with respect to error and random effects distributions
—In Table 2 we also assessed the impact of misspecification of the error distribution on the 

power of the test statistic. Using the same setting as in the power calculations given above, 

we generated ∊ from a t distribution with k = 3 or 5 degrees of freedom (d.f.) instead of from 

a . We rescaled the variance of ∊ so that the noise had the same variance as in the 

normal case. The power of the test under a t-distribution was virtually the same as with a 

normal error distribution indicating that our test is robust to symmetric violations of 

normality. For example, for m = 50 with β3 = 0.8, the power was 0.83 for the normal error 

distribution and for t-distributions with 3 and 5 d.f. (Table 2). We also used the same 

misspecification for the random effects distribution, and observed very similar results (Table 

2). We chose the t distribution because it is symmetric but has heavier tails than the normal 

distribution and it satisfies the conditions given in Section 2.3 on the existence of moments 

of the random effects and errors.

3.1.3. Impact of choice of the cell partition on power—As is true for Pearson’s chi-

squared test, the choice of cell partition strongly impacts the performance of our goodness of 

fit test. To illustrate the impact of the cell partition on the power of our test we generated y 
from a model with E(y) = 1 + x1 + x2 + 0.15x3, with σα = 1 and σ∊ = 0.5, but then omitted 

x3 in the subsequent model fitting. We studied cell partitions based on only x1, only x2, only 

x3, both x1 and x2, both x1 and x3, or both x2 and x3, all based on empirical quartiles of the 

covariates. Table 3 shows that a lack of fit is detectable by our test statistic only when the 

cell partition involves the omitted covariate x3, and power decreases as correlations (ρ13, 

ρ23) between the covariates increase.

3.2. Normally distributed covariates with an omitted interaction term (Scenario II)

We generated y from a linear model with E(y) = 1 + x1 + x2 + β3x1x2, where x1 and x2 are 

independent and , i = 1, 2. We first let β3 = 0.2 and set σα = 1, σ∊ = 0.5. We 
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then fit model (2) without x3 = x1x2. The test had adequate power only when the cell 

partition is based on empirical quantiles of x1 and x2, or on the omitted interaction term x3 = 

x1x2, but not if the cell partition was based on either x1 or x2 alone, for ρ12 = 0 and ρ12 = .3 

(Table 1, Web Supplementary Material). Figure 2 shows the power of the test as a function 

of the number of cells computed based on quantiles of the omitted covariate x3 for various 

values of μi = E(Xi), i = 1, 2. The power was higher for smaller absolute values of μ1 and μ2 

and was largest for L = 11 cells for μ1 = 2 and μ2 = 1 and L = 7 cells for μ1 = 1 and μ2 = 0.5.

Figure 3 plots the theoretical power against  for three choices of 

corresponding to the same overall variance  and varying β3 on the x-axis when the 

cell partition was based on x3 with L = 8 cells using fixed cell boundaries. Our conclusions 

are consistent with those in Section 3.1. For any fixed pair of , the power of the test 

increased as a function of β3, the coefficient of the omitted covariate x3. For any fixed β3, 

the power increased when the random effect  decreases compared to the error term .

3.3. Omitted main effect and interaction term (Scenario III)

Here we generated y from a LMM that includes three covariates x1, x2 and x3 through E(y) 

= 1 + x1 + x2 + 0.05x3 + 0.1x1x3, with σα = 1 and σ∊ = 0.5. We then omitted x3 and any 

interactions with x3 from the model fitting and investigate the power of our test in working 

model M1 with covariates x1, x2, and working model M2 with x1, x2 and . The cell 

partition for M1 and M2 was based on empirical quantiles of x1 with L = 8 cells. We 

simulated x3 ~ N(0, σ2) with σ = 1.5, and let x1 = ex3. The covariate  was generated 

independently of x1 and x3.

Under this setting, with m = 500 clusters, our test had power 1 to detect lack of fit of the 

working model M1. The Wald test for inclusion of the quadratic term  in model M2 had 

power 1. As x3 is not available, a Wald test cannot be applied for any term related to x3. We 

thus would select model M2 (with covariates x1, x2, ) and a Wald-type test is not able to 

further assist in testing model inadequacy. However, our proposed test had power of 0.938 to 

detect lack of fit of M2, under the cell partition based on x1, a covariate in M2.

This example, in which the omitted covariate is not available in the dataset but a correlated 

variable is, shows the usefulness of our test in addition to Wald type tests. However, our test 

has reasonable power against omitted-covariate alternatives only when the partitions of the 

covariate space are based on variables that are correlated with the omitted covariates.

3.4. Misspecified functional form of a covariate (Scenario IV)

We generated y from a LMM with  with σα = 1 and σ∊ = .5, and 

studied the power of our test when instead of  only x3 is used in the working model. x = 

(x1, x2, x3) was generated from the multivariate normal distribution given in (22) with (ρ13, 

ρ23) = (.5, .6). We used empirical quantiles of x3 to define L = 8 cells for m = 500 or 50 

clusters.
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When m = 500, our test had approximately 87% power in detecting model inadequacy 

(Table 4). The Wald test to assess the significance of x3 however had of only approximately 

6% power. Thus based on Wald test, x3 would not be included in the model and therefore it 

is unlikely that the higher order term  would be considered.

We also investigated the impact of symmetric misspecification of the error and random 

effect distribution in this scenario. When the t-distribution was used for the error term (or for 

the random effect term) results are similar to those for the normally distributed error term (or 

random effect term) (Table 4). Thus in this scenario, our test was robust to symmetric 

misspecification of the error or random effect distribution, similar to Scenario I.

3.5. Remarks

The primary purpose of the goodness of fit tests studied in this paper is to assess the quality 

of the fixed-effect part of the mean response in the presence of a mixed-effect variance 

structure. Yet it is well known that there is ambiguity in Gaussian linear models as to which 

terms contribute to the fixed-effect predictors and which terms to the variance. To be 

specific, we consider the model

(23)

where X* = (X1, X2), (X*, X3) are jointly normally distributed with means 0, and 

, and the random error . By grouping the γX3 term together with the 

error ∊, we see that model (23) is equivalent to the model

(24)

where  and ∊* are defined in terms of E(X3|X*) = MT X* and  by ∊* = ∊ + 

γ(X3−MTX*), , and . This argument shows that the portion of 

a normal linear model describing  is not uniquely determined, where D denotes the 

data-vector of covariates, that is  in (23), and  in (24). However, since 

our goodness of fit tests for adequacy of the mean structure are considered conditional on D, 

and are specified in terms of covariate-defined cells, these two models (23) and (24) are in 

fact distinguishable if cells under (23) are taken to depend non-trivially on the omitted 

covariate X3.

This argument also highlights the lack of power for the test in the setting of main effects 

(Scenarios I and III) with an omitted covariate when the cell partition was not based on the 

omitted covariate or a transformation of it, or for an omitted interaction term, when the cell 

partition is based on only one of the variables that define the interaction (Scenario II). When 

cell partitions are based on only on X* no lack of fit in the mean structure can be detected, 

as it is correctly specified with respect to X*.
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4. Data example

On April 26, 1986, an accident at the Chernobyl power plant in Ukraine, close to the border 

with Belarus, released large amounts of radioactive materials including iodine-131 (I-131) 

into the atmosphere from the destroyed reactor. Deposition of these materials contaminated 

the territory. Radioisotopes of iodine, e.g. I-131, are concentrated in the thyroid gland. 

Belarusians exposed to the accident were enrolled in a cohort study to evaluate the 

relationship between I-131 doses and thyroid cancer risk (Stezhko et al, 2004). Investigators 

were also interested in studying iodine deficiency in this population, as it impacts I-131 

absorption.

We therefore evaluated the relationship between levels of serum thyroglobulin (TG), a 

marker of iodine deficiency, and variables that might reflect or impact dietary iodine intake, 

including age at the time of exam, age at the time of the accident, rural or urban residence, 

smoking status, urinary iodine levels, serum thyroid-stimulating hormone (TSH) levels, 

serum anti-thyroglobulin antibody (ATG) levels, thyroid volume, presence of thyroid 

nodules (yes/no), presence of goiter (yes/no) and presence of any thyroid abnormality (yes/

no).

We used data on m = 933 men from four of the five study regions, who had complete 

covariate information, whose ATG and TSH levels were measured by a luminescence assay, 

and who had TG ≤ 80 (to exclude those with thyroid disease). Among these men, 404 had a 

single TG measurement, 484 had two, 42 three and 3 four TG measurements during follow-

up, resulting in N = 1510 observations. log(TG) was normally distributed (Anderson-Darling 

test p-value p=0.09).

We fit various models using Proc GLIMMIX, SAS 9.2. Model 1 included all the variables 

mentioned above, with the exception of presence of nodules, and an interaction term of ATG 
levels with presence of any thyroid abnormality that was marginally significant (Wald test p-

value p = 0.054) and had a log-likelihood value of −1625.2. The random effect variance 

estimate was  and the error variance estimate was . Model 2 had no 

interaction term, but included presence of nodules and resulted in a log-likelihood of 

−1621.3. The variance component estimates were similar to model 1,  and . 

However, as models 1 and 2 are not nested, we could not compare them using a likelihood 

ratio test.

To assess the fit of both models, each person in the dataset was assigned to one of the L = 8 

cells defined by the quartiles of ATG and the response “yes” or “no” to the question 

“presence of any thyroid abnormality”. There was no indication of lack of fit for either 

model, with p = 0.32 and p = 0.40 for models 1 and 2 respectively. We also calculated the 

test statistic for a second cell partition with L = 4 cells defined by “presence of nodules” 

(yes/no) and “presence of goiter” (yes/no), with p = 0.19 and p = 0.70 for models 1 and 2 

respectively. These results suggested that both models fit the data adequately. Thus omitting 

the interaction term of the variable “presence of any thyroid abnormality” with ATG levels 

does not affect the fit to the data.
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5. Discussion

Schoenfeld (1980) presented a class of omnibus chi-squared goodness of fit tests for the 

proportional hazards regression model. We adapted this idea and proposed a class of 

goodness of fit tests for testing the statistical adequacy of the mean structure of a linear 

mixed model, with cell partitions based on covariates. We described the asymptotic 

properties of the test when parameters are estimated and developed its theoretical power 

under local alternatives. We assessed factors that affect the power, the impact of choice of 

cell partitions on the test as well as the robustness of the test with respect to error 

distribution and distribution of random e orts in simulations. When a specific covariate 

associated with outcome is omitted, such as an interaction term or a covariate correlated 

with terms already in the model, cell partitions based on the omitted covariate result in 

adequate power of the test. In our simulations we studied models involving only a few 

covariates. In such cases, Wald testing and likelihood-based model building tools could 

undoubtedly be used instead. In practical settings our test would be recommended when 

there are many potential predictors that should in fact not appear in the model. In such 

circumstances, many nonlinear terms involving omitted variables would not be Wald-tested. 

We also found that the estimated theoretical power calculated using Le Cam’s third lemma 

was reliable at least when the number of clusters m was above 50. However, when m is very 

small, it may be advisable to rely on the empirical power computed through simulations. Our 

test was also robust to symmetric violations of the normality assumption of the error 

distribution as well as the violation of normality of the random effects distribution.

This goodness of fit test can be used to test the statistical adequacy of the fixed effects part 

of a finally selected LMM. It should not be used if one wants to test if a specific covariate 

should be included in the model, as standard tests such as the Wald test have better power for 

that purpose (e.g. Scenario I, Table 2). However, when a covariate is missing from the 

dataset, our test can detect model inadequacy when the cell partition is based on an existing 

covariate in the working model, which is correlated with the omitted covariate, while no 

Wald-type test can be applied (Scenario III). Also, the Wald test did not have power to select 

a variable that entered the mean model only through a quadratic term (Scenario IV), while 

our test clearly showed lack of fit of the finally selected model with respect to cells defined 

by that variable. This is particularly important in the situation when many predictors are 

available, and testing all possible higher order terms or interactions is not practical. In 

addition, investigators might not consider the inclusion of a higher order term for a variable 

that has no main effect. We have shown using simple examples that our proposed test has 

good power to detect many sorts of model inadequacies, not all of which would be tested 

exhaustively by other methods.

To implement the test one only needs the final model parameter estimates and their variance 

covariance matrix, which are standard outputs from any statistical software. As a note of 

caution, in applying the test one must modify the estimated variance matrix , projecting its 

eigenspace corresponding to extremely small eigenvalues to 0, to ensure the correct degrees 

of freedom for the test statistic.

Tang et al. Page 17

J Multivar Anal. Author manuscript; available in PMC 2017 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pan and Lin (2005) developed methods for checking the adequacy of generalized linear 

mixed models by comparing the cumulative sums of residuals over covariates or predicted 

values. Our proposed test has additional flexibility in defining cells based on multiple 

covariates, the test statistic follows a known distribution and is thus easily computed, and we 

present a broader class of LMMs.

Our goodness of fit test examines multiple features of the data, corresponding to residuals 

within each covariate cell and bears some relation to the multiaspect framework by Pesarin 

and Salmaso (2010), Salmaso and Solari (2005) and Marozzi (2007). Future work could 

attempt to adapt their permutational approaches for several populations to the goodness of fit 

test in a single population.

Notably, the cell partition used for our test is based on covariates, not on the response 

variable as for standard Pearson χ2 statistic. In future research we plan to further investigate 

the choice of covariate-based cells partition on the performance of our proposed test. A 

related issue is sparse cells. Our asymptotic results were derived letting the sample size go to 

infinity for a fixed cell partition and thus asymptotically cells are not sparse. However, in a 

real dataset the issue of sparse cells could arise. Maydeu-Olivares and Joe (2005, 2006) and 

Cagnone (2012) studied the impact of sparse cells when assessing the goodness of fit of 

latent variable models. For use with heavily cross-classified and sparse covariate-space cell 

decompositions the limited-information approach of Maydeu-Olivares and Joe (2005, 2006) 

could be used in our setting and will be part of future investigations. Other possible 

extensions include derivation of the distribution of the test statistic for random components 

with heavy tails, for example, under symmetric α-stable distributional assumption for the 

errors and random effects. However, these extensions of the mixed model theory presented 

in our paper are technically difficult and we are not aware of any related results in the 

literature.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A: Proof of Theorem 1

Let J be the limit of the sample information matrix per observation given in (3). The 

consistency of the MLE  in model (2) follows from Miller (1977). By Taylor series 

expansion of the score function S(θ) = ▽ log L(θ), where L(θ) denotes the likelihood 

function,
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(25)

As the Fisher information (3) is block diagonal, . Under Assumption 

1.2 Y − Xβ ~ N(0, V), and the score functions for β, i.e. the first p components of S(θ), are 

Sβ(θ) = XTV−1(Y − Xβ). By extracting the first p components of (25), with A ≈ B denoting 

, we have

Thus,

which is a linear combination of Gaussian random variables.

Under Assumptions 1.4, 1.5, 1.7, which ensure the existence of components of the 

covariance matrix of the test statistic, we get as N → ∞,

(26)

Appendix B: Proof of Corollary 2

Under asymptotic normality of ,

Since  is a linear combination of components of the left hand side of 

(26), , with .
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Appendix C: Proposition 1

Proposition 1. Suppose that a sequence ZN of random q-vectors is asymptotically 

distributed as , where rank(Σ0) = r ≥ 1 and there exists a known ξ > 0 smaller than 

the minimum positive eigenvalue of Σ0, and that  is a consistent covariance-matrix-valued 

estimator of Σ0.

Let the spectral decomposition of  be given by

where ckN are the eigen values and  form an orthonormal eigenbasis determined 

from . Define

and let  be any other generalized inverse of , i.e. any matrix such that . 

Then

i.
 and .

ii.
 and  as N → ∞.

Proof of Proposition. Note first that while the eigenvectors vkN are not necessarily uniquely 

determined if any eigenvalues have multiplicity greater than 1, the eigenspaces spanned by 

{vkN: 1 ≤ k ≤ q, ckN ≤ s} are uniquely and measurably determined from  for each real s > 

0. Therefore  and all of the random variance matrices ,  are well-defined, 

coordinate-free and measurably defined from .

Without loss of generality, let the eigenvalues ck,N of  be indexed in nondecreasing order. 

Since the k’th smallest eigenvalue is a continuous function on the set of q × q symmetric 

nonnegative definite matrices (Golub and van Loan 1983, pp. 18-19), it follows from the 

convergence , that for arbitrarily small ∊ ∈ (0, ξ), the event

has probability converging to 1 as N → ∞. This implies that on AN(∊), the range space of 

 is exactly the span of the eigenvectors vkN with k ≥ q − r + 1, and therefore that rank

 on the event AN(∊). Moreover, on the event AN(∊), for all x ∈ Rq with ||x|| = 1,
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since max{|ckN|: k ≤ q − r} ≤ ∊ and . This shows the matrix sup-

norm of  converges in probability to 0 as N → ∞, completing the proof of (i).

By (i), the asymptotic distribution of ZN is the same as , where  is 

independent of ZN and the matrix square-root is the symmetric square-root equal to 

. Therefore, by the continuous mapping theorem, the asymptotic 

distribution of  is the same as the distribution of , which 

is  since  is symmetric and idempotent with trace r. The only feature 

of  that has been used in this proof is the generalized-inverse property 

shared by . This fact about generalized inverses, which completes the proof of assertion 

(ii), was previously proved in detail by Rao (1973, 1b.5.(viii), 3b.4.(vii) or 3b.5.(iv)).

Appendix D: Assumptions for Theorem 3

For the rest of the Appendices we employ the notation v⊗2 = vvT for any vector v.

Assumption 3.1. The true parameter point θ0 = (β0, ψ0) is an interior point of 

.

Assumption 3.2. E(αi) = E(∊ij) = 0, ,  and there is a δ > 0, such 

that  and .

Assumption 3.3. X is a matrix of random variables, (xi, ni) are i.i.d. with , 

 being positive definite, and .

Appendix E: Proof of Theorem 3

The following Lemma is used in proving Theorem 3.

Lemma 1. Let {uin: n ≥ 1, 1 ≤ i ≤ n} be a triangular array of i.i.d. random variables within 

each row (i.e., across i) with mean 0 and finite variance , and that these variables are 

independent of the random array {cin: n ≥ 1, 1 ≤ i ≤ n which satisfies, as n → ∞, (a) 

max1≤i≤n |cin| → 0 and (b)  in probability, where κ ∈ (0, ∞). Then 

 as n → ∞.
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Proof of Lemma 1:  is a martingale with respect to the filtration 

 and the Lemma follows directly from the Martingale Central 

Limit Theorem (Hall and Heyde, 1980).

Proof of Theorem 3: Let the ni×p covariate matrix for the i-th cluster be 

. Then

Then

with , i = 1, …, m, l = 1, 

…, L. Let , . We next show that 

 has a limiting Gaussian distribution by using the multivariate Central 

Limit Theorem. For any constant vector C = (C1, …, CL)T, since the inverse of Vi is 

, we have

where the double index (i, j) is placed in one-to-one correspondence with the single index s. 

Because  and  are i.i.d and satisfy conditions (a) and (b) of Lemma 1, the 

above sums have limiting normal distributions as m → ∞. Because αi and ∊ij are 

independent  and  are conditionally independent given (xi, ni). As the 

two sums are jointly normal and asymptotically uncorrelated they are asymptotically 
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independent and the limiting distribution of  is normal. Moreover, for 

any constant vector C, its limiting variance is of the form CTΣC with the same fixed Σ,

Therefore, , and 

, where r = rank(Σ). We replace Σ with , the 

reconstructed estimated variance matrix defined as immediately following equation (11) by 

means of the singular value decomposition applied to any consistent estimator  of Σ. One 

such consistent estimator of Σ is to replace all parameters in Σ with least squares and method 

of moments estimators. Based on Proposition 1 in Appendix C,  for 

large N. Thus

Appendix F: Derivation of the power of the test

We derive the power of the test for LMM (1) under contiguous alternatives, based on Le 

Cam’s third lemma (Van der Vaart, 2000).

Lemma 2. (Le Cam’s third lemma) Let PN and QN be two measures on a measurable space, 

corresponding to a null distribution under investigation, and an alternative hypothesis 

respectively. Suppose WN is a real valued statistic for every N. If

(27)

then .

Let H0 : θN = θ0, and , where a is a constant vector and θN → θ0, as n 
→ ∞. By Taylor expansion, under Theorem 5.21 in van der Vaart (2000),
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where

(28)

and the limit of the sample Fisher information per observation is

Thus

For the special case when we fit a reduced model to the data, using  instead of XN×p 

with p* < p, we estimate the coefficient β* corresponding to X*. The sum over the expected 

values under the model, e(·), in (6) has Rp as its domain. Let e* (·) denote the sum over the 

expected values under the reduced model, computed using  instead of XN×p with 

domain Rp*. Let  be the first vector component of (27). Under 

the null hypothesis PN, WN → N(0, Σ*), based on Corollary 2.

Next, we compute the variance-covariance matrix Σ in (27), which is equivalent to the 

variance-covariance matrix of  and .

where  denotes the information matrix corresponding to β*, and

Thus,
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(29)

Under equation (28), since both  and tr(V−1) are scalars, we have

Similarly, we get . Therefore (29) becomes

Since both  and  can be written as a matrix multiplied by the same normal 

vector , we obtain asymptotic joint normality of  and 

. Because  is asymptotically uncorrelated with both  and  as shown 

in the above,  and aTSN(θ0) are also asymptotically jointly normal.
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Figure 1. 

Left: Theoretical power as a function of ; Right: Power as a function of (ρ13, ρ23).
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Figure 2. 
The impact of number of cells for cell partition on theoretical power
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Figure 3. 

The impact of  on theoretical power, ρ12 = 0 (Scenario II)
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Table 1

Empirical size of the test under different cell partitions (Scenario I). m = 500, E(N) = 1750, β3 = 1, ρ13 = ρ23 = 

0, σα = 1, σε = .5, K = 2000. L denotes the number of cells for the test statistic.

L α Emp. Size α Emp. Size

8 (x1) 0.05 0.052 0.1 0.103

3×4 (x1, x2) 0.05 0.053 0.1 0.108

5×4 (x1, x3) 0.05 0.045 0.1 0.094

6×7 (x2, x3) 0.05 0.047 0.1 0.096
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Table 2

Power and robustness study (Scenario I) with L = 8,K = 2000, D = 1000, (ρ13 ,ρ23) = (.5,.6),σα = 1, σε = .5. 

Standard deviation (std.dev.) relates to variation across the randomly generated 500 covariate matrices X

Power m = 500, EN = 1750 m = 50, EN = 175 m = 20, EN = 70

β3 = .25 mean std.dev. mean std.dev. mean std.dev.

Theo.Pow. 0.800 0.040 0.120 0.023 0.086 0.018

Theo.Pow.hat 0.799 0.039 0.125 0.023 0.090 0.019

Empi.Pow.n 0.799 0.037 0.111 0.022 0.063 0.017

Misspecification of the error term distribution

Empi.Pow.t3 0.798 0.036 0.112 0.023 0.062 0.019

Empi.Pow.t5 0.799 0.036 0.111 0.022 0.063 0.018

Misspecification of the random intercept distribution

Empi.Pow.t3 0.817 0.033 0.132 0.027 0.076 0.021

Empi.Pow.t5 0.799 0.036 0.116 0.023 0.067 0.018

Power m = 500, EN = 1750 m = 50, EN = 175 m = 20, EN = 70

β3 = .8 mean std.dev. mean std.dev. mean std.dev.

Theo.Pow. 1 0 0.847 0.104 0.541 0.189

Theo.Pow.hat 1 0 0.821 0.096 0.512 0.151

Empi.Pow.n 1 0 0.820 0.102 0.444 0.161

Misspecification of the error term distribution

Empi.Pow.t3 1 0 0.821 0.102 0.449 0.164

Empi.Pow.t5 1 0 0.821 0.102 0.444 0.162

Misspecification of the random intercept distribution

Empi.Pow.t3 1 0 0.852 0.074 0.545 0.155

Empi.Pow.t5 1 0 0.824 0.094 0.472 0.159

J Multivar Anal. Author manuscript; available in PMC 2017 May 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tang et al. Page 32

Table 3

Impact of cell partition on empirical power when covariate x3 with β3 = .15 is omitted from model fitting 

(Scenario I) with m = 500, σα = 1, σε = 0.5, K = 2000.

Cell
Variables

ρ13 = 0, ρ23 = 0 ρ13 = 0.2, ρ23 = 0.3 ρ13 = 0.4, ρ23 = 0.5

L=12 L=42 L=12 L=42 L=12 L=42

x 1 0.056 0.060 0.046 0.044 0.045 0.044

x 2 0.055 0.046 0.048 0.048 0.051 0.050

x 3 0.985 0.871 0.936 0.748 0.630 0.367

x1, x2 0.054 0.050 0.052 0.046 0.051 0.048

x1, x3 0.968 0.821 0.896 0.732 0.578 0.382

x2, x3 0.962 0.843 0.913 0.752 0.642 0.435
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Table 4

Power and robustness study (Scenario IV). L = 8, K = 2000, D = 1000, (ρ13, ρ23) = (.5, .6), β3 = 0.1, σα = 1, 

σε = .5. Note: The standard deviation (std.dev.) relates to variation across the randomly generated 1000 

covariate matrices X. Each number was obtained as the mean over 1000 simulated covariate matrices X and 

for each generated X, K = 2000 iterations were used to simulate the response vector Y.

m= 500, EN = 1750 m = 50, EN = 175

Mean Power std.dev. Mean Power std.dev.

Cell Variable x3 0.873 0.035 0.122 0.028

Wald Test on x3 0.059 0.024 0.065 0.026

Misspecification of the error term distribution

εij simulated from t3

Cell Variable x3 0.873 0.035 0.123 0.030

Wald Test on x3 0.059 0.024 0.065 0.026

εij simulated from t5

Cell Variable x3 0.873 0.035 0.122 0.029

Wald Test on x3 0.060 0.025 0.066 0.030

Misspecification of the random effect distribution

αi simulated from t3

Cell Variable x3 0.878 0.032 0.139 0.033

Wald Test on x3 0.061 0.027 0.067 0.031

αi simulated from t5

Cell Variable x3 0.872 0.035 0.126 0.030

Wald Test on x3 0.061 0.026 0.067 0.031
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