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Abstract

Myeloid cells evolutionary developed as a major mechanism to protect the host. They evolved as a 

critical barrier against infections and are important contributors to tissue remodeling. However, in 

cancer, myeloid cells are largely converted to serve a new master – tumor cells. This process is 

epitomized by myeloid-derived suppressor cells (MDSC). These cells are closely related to 

neutrophils and monocytes. MDSC are not present at steady state in healthy individuals and appear 

in cancer and pathological conditions associated with chronic inflammation or stress. These cells 

have emerged as an important contributor to tumor progression. In recent years, ample evidence 

supports a key role of MDSC in immune suppression in cancer, as well as their prominent role in 

tumor angiogenesis, drug resistance, and promotion of tumor metastases. MDSC have a 

fascinating biology and are implicated in limiting the effects of cancer immunotherapy. Therefore, 

targeting these cells may represent an attractive therapeutic opportunity.

Introduction

Myeloid cells are a highly diverse population. Mononuclear myeloid cells include terminally 

differentiated macrophages and dendritic cells (DC), as well as monocytes, which under 

inflammatory conditions differentiate in tissues to macrophages and DCs. Granulocytic 

myeloid cells include populations of terminally differentiated polymorphonuclear 

neutrophils, eosinophils, basophils, and mast cells. Myelopoiesis in response to pathogenic 

stimuli is a fundamental mechanism protecting the host. It largely manifests in expansion of 

activated neutrophils and monocytes. Classical activation of these cells takes place in a 

response to strong signals that usually come in form of pathogen-associated molecular 

patterns (PAMPs) or danger-associated molecular patterns (DAMPs) molecules. This 

activation is relatively short-lived and manifests in robust phagocytosis, respiratory burst, 

and release of pro-inflammatory cytokines. It terminates upon cessation of the stimuli. In 

contrast, persistent stimulation associated with chronic infection, inflammation, or cancer 

involves relatively low-strength signals. This induces modest but persistent myelopoiesis. 

Myeloid cells generated under these conditions, although similar to neutrophils and 

monocytes in morphology and phenotype, have different genomic and biochemical profiles 

and functional activity. The main functional characteristic of these cells is their potent ability 

to suppress various types of immune responses. It is possible that this mechanism evolved as 
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a form of protection from extensive tissue damage caused by an uncontrolled immune 

response associated with unresolved inflammation.

Reports on the accumulation of immune suppressive myeloid cells associated with tumor 

progression were published sporadically beginning in the early 1970s (1). During the 1980s 

and early 1990s, work from the laboratories of Diana Lopez, Jim Talmadge, M. Rita Young, 

and Hans Schreiber, demonstrated that various types of myeloid cells could inhibit immune 

function in cancer. However, the specific nature and biological significance of these cells 

remained largely unclear. The field started changing in the late 1990s when the Gr1+CD11b+ 

cellular phenotype was suggested as defining the immune suppressive myeloid cells in 

spleens of mice and when these cells were shown to be phenotypically similar but 

functionally distinct from monocytes and neutrophils (2, 3). The observations of 

accumulation of large numbers of these cells in spleens and tumors with potent immune 

suppressive activity were readily reproducible in most murine tumor models. However, it 

quickly became apparent that CD11b+Gr-1+ cells were heterogeneous. Different phenotypic 

criteria and multiple mechanisms of action were used to define these cells. In 2007, in an 

attempt to unify different descriptions of these cells, the name myeloid-derived suppressor 

cells (MDSC) was proposed (4). This name was based on the myeloid origin of the cells and 

their main functional trait – potent immune suppressive activity. In the following years, 

interest in these cells skyrocketed with almost 2,500 papers published in less than 10 years. 

MDSC were implicated in various aspects of immune regulation, not only cancer, but also in 

diseases that involve chronic inflammation, infection, autoimmune diseases, trauma, graft 

versus host disease, etc. Evidence of the clinical significance of MDSC in cancer has 

emerged, and MDSC have become an important part of the tumor immunology field. 

However, as often happens with most teenagers, MDSC periodically have an identity crisis 

and a difficult relationship with the more established cells in the field. Only recently have 

MDSC entered a more mature age where their identity and place among other myeloid cells 

has become clear.

Main phenotypic and functional characteristics of MDSC

MDSC consist of two large groups of cells termed granulocytic or polymorphonuclear 

(PMN-MDSC), which are phenotypically and morphologically similar to neutrophils; and 

monocytic (M-MDSC) – phenotypically and morphologically similar to monocytes. 

Therefore phenotypic criteria alone are not sufficient to identify cells as MDSC. In most 

types of cancer, PMN-MDSC represent more than 80% of all MDSC. In addition to these 

two main populations, MDSC include a small group (less than 3%) of cells with myeloid 

colony forming activity representing a mixture of myeloid progenitors and precursors. In 

mice, MDSC were mostly described in bone marrow, peripheral blood, spleen, liver, lung, or 

tumors of various organs. PMN-MDSC can be defined as CD11b+Ly6G+Ly6Clo and M-

MDSC as CD11b+Ly6G−Ly6Chi, with other markers under investigation. In humans, MDSC 

were mostly described in blood and tumors of various organs with number of studies 

describing these cells in bone marrow. Criteria for the phenotypic characterization of these 

cells by flow cytometry are now relatively well defined (5, 6). Among peripheral blood 

mononuclear cells (PBMC), PMN-MDSC are defined as CD11b+CD14−CD15+ or 

CD11b+CD14−CD66b+, and M-MDSC as CD11b+CD14+HLA-DR−/loCD15−. Lin− 
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(including CD3, CD14, CD15, CD19, CD56) HLA-DR−CD33+ cells contain mixed groups 

of MDSC comprising more immature progenitors. The term “early-stage MDSC” (e-MDSC) 

was recently proposed for this latter population (7).

In humans, M-MDSC could be separated from monocytes based on the expression of MHC 

class II molecule - HLA-DR. Until recently, the only method allowing for separation of 

neutrophils from PMN-MDSC in humans was gradient centrifugation using a standard Ficoll 

gradient. PMN-MDSC are enriched in the low-density fraction (PBMC), whereas 

neutrophils are high density cells (8). Recently, we identified lectin-type oxidized LDL 

receptor 1 (LOX-1) as a marker of PMN-MDSC in humans (9). If confirmed in further 

studies, LOX-1 expression on neutrophils can be used for direct identification of PMN-

MDSC in blood and tissues. In mice, the phenotypic distinction between neutrophils and 

PMN-MDSC in the same mouse is difficult. Several different markers were suggested but 

thus far, none of them allow for definitive identification of PMN-MDSC.

Immune suppression is a main feature of MDSC. Although MDSC were implicated in 

suppression of different cells of the immune system, the main targets of MDSC are T cells. 

The main factors implicated in MDSC-mediated immune suppression include arginase 

(ARG1), iNOS, TGFβ, IL-10, COX2, indoleamine 2,3-dioxygenase (IDO) sequestration of 

cysteine, decrease of L-selectin expression by T-cells and many others. In recent years, it 

became clear that M-MDSC and PMN-MDSC utilize different mechanisms of immune 

suppression. M-MDSC suppress T-cell responses both in antigen-specific and non-specific 

manners utilizing mechanisms associated with production of NO and cytokines (reviewed in 

(10)). PMN-MDSC, on the other hand, are capable of suppressing immune responses 

primarily in an antigen-specific manner. Induction of antigen-specific T-cell tolerance is one 

of the major characteristics of these cells (11, 12). Reactive oxygen species (ROS) 

production is essential for this ability. Reaction of NO with superoxide generates 

peroxynitrite (PNT), which directly inhibits T-cells by nitrating T-cell receptors and reducing 

their responsiveness to cognate antigen-MHC complexes (13). PNT also reduces the binding 

of antigenic peptides to MHC molecules on tumor cells (14) and blocks T-cell migration by 

nitrating T-cell specific chemokines (15). (Fig. 1)

The large number of different immune suppressive mechanisms described for MDSC does 

not mean that these mechanisms are simultaneously operational. The prevalence of a 

particular immune suppressive mechanism depends on the type of MDSC expanded, as well 

as on the stage of the disease and the site where the suppression is occurring. It is likely that 

at any given time there is a dominant suppressive mechanism used by MDSC and that this 

mechanism could change throughout the progression of the disease.

Besides immune suppressive mechanisms, MDSC promote tumor progression by affecting 

the remodeling of the tumor microenvironment and tumor angiogenesis via production of 

VEGF, bFGF, Bv8, and MMP9 (16–18). MDSC were implicated in the formation of pre-

metastatic niches (19–22), and the promotion of metastases by infiltrating primary tumors 

(23, 24). CD11b+Gr1+ cells were shown to oppose cellular senescence in a model of 

spontaneous prostate cancer by antagonizing IL-1α mediated senescence (25). In contrast, a 
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recent report indicated that CCR2+ myeloid cells, represented largely by monocytic cells, 

supported senescence in a model of liver cancer (26).

Major mechanisms regulating MDSC accumulation and differentiation

Accumulation of MDSC is a complex phenomenon. We have previously proposed a two-

signal model describing this process (27). This model asserts that accumulation of MDSC 

requires two distinct although partially overlapping types of signals: the first is responsible 

for the expansion of immature myeloid cells associated with inhibition of their terminal 

differentiation, and the second is responsible for the pathological activation of these cells, 

converting immature myeloid cells to MDSC.

The first group of signals is mostly driven by tumor-derived growth factors and involves 

such factors as STAT3, IRF8, C/EBPβ, Notch, adenosine receptors A2b signaling, NLRP3 

(reviewed in (27)). Recently, the retinoblastoma protein 1 (Rb1) was implicated in the ability 

of some M-MDSC to differentiate to PMN-MDSC. While Rb1hi M-MDSC mainly gave rise 

to macrophages and DC, the vast majority of Rb1lo M-MDSC differentiated towards PMN-

MDSC (28). Recently, the accumulation of Rb1lo Ly6G+ PMN-MDSC was confirmed in the 

PyMT transgenic model of breast cancer (29).

The second group of signals are mediated by factors produced mostly by the tumor stroma 

(pro-inflammatory cytokines, HMGB1) and include the NF-κB pathway, STAT1, STAT6, 

prostaglandin E2 (PGE2) and cyclooxygenase 2 (COX2) (reviewed in (27)). Recently, the 

endoplasmic reticulum (ER) stress response pathway was implicated in the suppressive 

activity of MDSC. The ER stress response is an evolutionary conserved mechanism 

developed to protect cells from various stress conditions including hypoxia, nutrient 

deprivation, low pH, etc. MDSC isolated from tumor-bearing mice and cancer patients 

overexpressed several markers of ER stress including sXBP1 and CHOP, and displayed an 

enlarged endoplasmic reticulum, one of the hallmarks of ER stress (30). Administration of 

an ER stress inducer to tumor-bearing mice was shown to increase the accumulation of 

MDSC and their suppressive activity (31). Induction of ER stress with thapsigargin 

converted human neutrophils to immune suppressive PMN-MDSC (9). The transcription 

factor CHOP was implicated in the suppressive activity of MDSC in the tumor site. CHOP-

deficient MDSC lost the ability to suppress T-cells stimulated in an antigen non-specific 

manner and were even able to stimulate T-cells (32). However, CHOP-deficient MDSC 

retained the ability to suppress the T-cell response in an antigen-specific stimulation (33). 

More studies will be necessary to clarify the role of the specific mechanisms of ER stress 

responses in MDSC function.

In tumor tissues, M-MDSC rapidly differentiate to TAM (34, 35). A recent study implicates 

down-regulation of STAT3 activity in tumor associated M-MDSC in this phenomenon. This 

effect was controlled by hypoxia-inducible activation of CD45 phosphatase in these cells.

MDSC place among other myeloid cells

MDSC are pathologically activated myeloid cells. This raises the question of whether 

MDSC are really different from neutrophils and monocytes. In many studies, cells with 
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typical MDSC features were called monocytes and neutrophils, and cells were called MDSC 

even in the absence of those features. Accumulated data in recent years allow us to make a 

conclusion about the specific nature of MDSC. This conclusion is based on several lines of 

evidence.

• Immune suppressive activity is intrinsic feature of MDSC. Mature neutrophils or 

monocytes cannot be converted to potent immune suppressive cells in vitro (at a 

level similar to MDSC) by simply activating them with PAMPs and DAMPs or 

pro-inflammatory cytokines. Moreover, in some cases neutrophils can promote 

antitumor response (36).

• Human PMN-MDSC have a unique genomic profile distinguishing them from 

neutrophils in the same patient, whereas neutrophils from healthy donors and 

cancer patients have very similar gene expression (9). Mouse MDSC were also 

characterized by specific proteome (37–39) and transcriptome (40, 41) profiles.

• Phenotypically, M-MDSC can be distinguished from TAMs by increased relative 

expression of F4/80, low to intermediate expression of Ly6C and low or 

undetectable expression of S100A9 protein, low expression of IRF8, and 

increased M-CSF receptor, CD115 (42). Most of the published data indicate that 

cells with the phenotype of inflammatory monocytes (CD11b+Ly6ChiLy6G−) in 

tumors have potent immune suppressive activity and thus can be attributed to M-

MDSC (43).

• There are number of biochemical features that clearly differentiate MDSC from 

their control counterparts. These features include high arginase and iNOS 

expression and activity, high and persistent level of ROS including superoxide, 

myeloperoxidase, hydroxyl peroxide, and peroxynitrite. PMN-MDSC and M-

MDSC also can be distinguished from neutrophils and monocytes by their 

elevated ER stress response. More details are provided in a recent review (7).

Thus, MDSC represent a relatively stable, distinct state of functional activity of neutrophils 

and monocytes. Although PMN-MDSC concept is widely accepted, there are number of 

studies that use different approach to nomenclature of tumor associated neutrophils (TAN) 

based on concept of phenotypic plasticity of TAN, which is modulated through distinct 

micro-environmental signals, at different stages of tumor progression (36, 44). In these 

reports neutrophils with immunosuppressive and tumor promoting functions are called N2, 

as opposed to antitumor N1, neutrophils (8, 9). Although this point of view is definitely has 

some rationale, it is difficult to envision that short-lived, terminally differentiated PMN 

could be effectively polarized in tumor tissues. It is more likely that N1 cells represent 

activated bona fide PMN cells, whereas N2 cells are in fact PMN-MDSCs. Indeed, number 

of reports demonstrated potent immune suppressive activity by TAN, which defines these 

cells as PMN-MDSC (45–47).

Better characterization of MDSC in recent years shed new light on MDSC biology. Recent 

evidence has linked the accumulation of immature myeloid cells with an MDSC-like 

phenotype during chronic inflammation to the early stages of tumor development. Exposure 

of mice to cigarette smoke caused accumulation of these cells in lungs and spleens (48). 
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However, only after the development of lung cancer did these cells become immune 

suppressive MDSC. Nevertheless, their depletion increased survival (48). In a model of skin 

carcinogenesis, accumulation of immature myeloid cells without suppressive function in the 

skin of mice promoted tumor development (49). This suggests that cells with an MDSC-like 

phenotype may play a significant role in tumor development and progression via 

mechanisms not necessarily related to their ability to suppress tumor-specific immune 

responses. It is possible that accumulation of MDSC is a gradual process. Myeloid 

progenitors and precursors affected by low-strength pathological signals coming from the 

developing tumor gradually acquire changes leading to their pathological activation. Bona 

fide MDSC is the latest stage of this process. Cells at intermediate stages (MDSC-like cells), 

though they do not possess potent immune suppressive activity, may actively contribute to 

tumor progression and metastases. Future study will determine whether this concept is 

correct.

Basic strategies to therapeutically target MDSC

Ample evidence supports a close association between MDSC accumulation and clinical 

outcome in cancer patients (50, 51). Recent meta-analysis of the studies of 442 patients with 

various solid tumors demonstrated that MDSC were highly significantly associated with 

poor overall and progression-free survival (52). MDSC have been implicated in resistance to 

anti-cancer therapies including sunitinib (53), cisplatin and other chemotherapeutics in lung 

cancer (54–56), and doxorubicin and melphalan in multiple myeloma (57). Recent studies 

show an association of MDSC level with patient response to CTLA4/ipilimumab (58, 59) 

and PD-1 (60, 61).

The fact that MDSC play an important role in the regulation of tumor growth has stimulated 

the search for a way to therapeutically target these cells.

MDSC can be eliminated with relatively low doses of chemotherapy with gemcitabine and 

5-fluorouracil (62–64). It was recently shown that targeting the TRAIL receptor could be a 

potent and selective method of MDSC depletion (30). Peptibodies consisting of S100A9-

derived peptides conjugated to antibody Fc fragments have shown potential in eliminating 

MDSC in mouse models (65).

MDSC can be functionally inactivated by targeting their suppressive machinery. Recent 

clinical reports indicated that head and neck and multiple myeloma cancer patients treated 

with the PDE-5 inhibitor tadalafil had fewer circulating MDSC, lower iNOS and arginase 

expression in these cells, and a greater number of spontaneously generated tumor specific T-

cells (66–68). Nrf2 is a transcription factor that plays an important role in the cellular 

protection against free radical damage. Synthetic triterpenoid reduced the production of ROS 

by MDSC and their suppressive activity by upregulating Nrf2 (69). Inhibition of COX-2 

downregulated the production of immune suppressive prostaglandin E2, and nitroaspirin has 

been shown to downregulate NO production (70, 71). Class I HDAC inhibitor entinostat was 

shown to have an inhibitory effect on MDSC (72), although the mechanism behind effect 

remains unclear.
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MDSC expansion and differentiation can be targeted by all-trans-retinoic acid (ATRA) (73). 

In lung cancer patients, immune responses to a p53 vaccine were improved if the patients 

received a short course of ATRA (74). STAT3 inhibition can induce MDSC differentiation 

into immunogenic DC (75, 76). Phospholipid phosphatidylserine (PS) targeting antibody 

was shown to decrease frequency of MDSC in tumor-bearing mice although mechanism by 

which this occurs is unclear (77).

Conclusions

MDSC are a critical factor regulating immune responses under many pathological conditions 

and have recently became a prominent fixture of tumor immunology. However, their 

biological role can be established only if methods to selectively target these cells are 

developed. This requires specific markers of these cells to be identified, which would be 

possible if the molecular mechanisms governing the development of these cells were better 

characterized. Hopefully, the next couple of years will bring new and exciting data 

addressing those challenges.
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Figure. Development and function of MDSC
Tumor derived factors affect different stages of myeloid cell differentiation resulting in 

generation of pathologically activated M-MDSC and PMN-MDSC. HSC-hematopoietic 

stem cells; CMP – common myeloid progenitor; GMP-granulocyte-macrophage progenitor; 

MDP – macrophage/dendritic cell progenitors. PMN-MDSC and M-MDSC migrate to 

lymphoid organs and to tumor site. The function and fate of these cells is different in 

different sites. In peripheral lymphoid organs PMN-MDSC retain high level of various ROS 

and cause antigen-specific T-cell suppression/tolerance. M-MDSC produce large array of 

different factors that enable these cells suppress not only antigen-specific but also non-

specific T cell responses. M-MDSC maintain high activity of STAT3 that prevent their quick 

differentiation to DCs or macrophages. In tumor site, largely due to the effect of hypoxia 

STATA3 activity in MDSC is dramatically reduced. This result in rapid differentiation of M-

MDSC to tumor associated macrophages (TAM). ROS level in PMN-MDSC is substantially 

reduced, but up-regulation of arginase 1(ARG1) and other factors responsible for 

nonspecific T-cell suppression is increased. The same happens with M-MDSC. PMN-MDSC 

are dying rapidly. Factors released by dying cells can contribute to immune suppressive 

mechanisms.
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