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Summary

Model organisms and human studies have led to increasing empirical evidence that interactions 

among genes contribute broadly to genetic variation of complex traits. In the presence of gene-by-

gene interactions, the dimensionality of the feature space becomes extremely high relative to the 

sample size. This imposes a significant methodological challenge in identifying gene-by-gene 

interactions. In the present paper, through a Gaussian graphical model framework, we translate the 

problem of identifying gene-by-gene interactions associated with a binary trait D into an inference 

problem on the difference of two high-dimensional precision matrices, which summarize the 

conditional dependence network structures of the genes. We propose a procedure for testing the 

differential network globally that is particularly powerful against sparse alternatives. In addition, a 

multiple testing procedure with false discovery rate control is developed to infer the specific 

structure of the differential network. Theoretical justification is provided to ensure the validity of 

the proposed tests and optimality results are derived under sparsity assumptions. A simulation 

study demonstrates that the proposed tests maintain the desired error rates under the null and have 

good power under the alternative. The methods are applied to a breast cancer gene expression 

study.
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1. INTRODUCTION

High throughput technologies, enabling comprehensive monitoring of a biological system, 

have fundamentally transformed biomedical research. Studies using such technologies have 

led to successful molecular classifications of diseases into clinically relevant subtypes and 

genetic signatures predictive of disease progression and treatment response (van’t Veer et al., 

2002; Gregg et al., 2008; Hu et al., 2009, e.g.). Irrespective of the technology used, analysis 

of high-throughput data typically considers one marker at a time and yields a list of 

differentially expressed genes or proteins. On the other hand, epistasis, or interactions 

between genes, has long been recognized as crucial to understanding the genetic architecture 

of disease phenotypes (Phillips, 2008; Eichler et al., 2010). Increasing empirical evidence 

from model organisms and human studies suggests that gene-by-gene interactions may make 

an important contribution to total genetic variation of complex traits (Zerba et al., 2000; 

Marchini et al., 2005). In this paper, we are specifically interested in gene-by-gene 

interactions with respect to the interactive effects of two genes on a binary disease trait D.

In the presence of gene-by-gene interactions, the dimensionality of the feature space 

becomes extremely high relative to the sample size. This, together with the variability of the 

data, imposes a significant methodological challenge in identifying gene-by-gene 

interactions using currently available studies, which typically have limited sample sizes and 

power. Recent development in interaction modeling has led to several useful methods 

including multi-factor dimensionality reduction (Ritchie et al., 2001; Moore, 2004), 

polymorphism interaction analysis (Mechanic et al., 2008), random forests (Breiman, 2001), 

various variations of logistic regression with interactive effects (Chatterjee et al., 2006; 

Chapman & Clayton, 2007; Kooperberg & Ruczinski, 2005; Kooperberg & LeBlanc, 2008) 

and sure independence screening (Fan & Lv, 2008). However, to overcome the high 

dimensionality, a majority of these methods use multistage procedures and marginal 

assessments of the effects of a gene pair without simultaneously accounting for the effects of 

other genes. Multistage procedures may have limited power in detecting genes that affect the 

outcome through interactions with other genes without strong main effects. The interactive 

effects detected through models that only consider one pair of genes at a time without 

conditioning on other genes may also result in false identification of interactions due to the 

discrepancy between conditional and unconditional effects. Furthermore, none of the 

existing methods provide false discovery rate control in the presence of interactions. Due to 

the large number of tests, the power of multiple testing procedures using the standard 

Bonferroni or naive false discovery rate corrections can dissipate quickly.

In this paper, through a Gaussian graphical model framework, we translate the problem of 

identifying gene-by-gene interactions associated with a binary trait D into the comparison of 

two high-dimensional precision matrices. Let G denote a p × 1 vector of genomic markers 

and assume that, conditional on D = d, G ~ N(μd, Σd), for d = 1, 2. Then the posterior risk 

given G is
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where g(x) = ex/(1 + ex) and  is the precision matrix for G conditional on 

D = d. Hence, an interaction between the gene pair (i, j) affects the disease risk if and only if 

δi,j= ωi,j,1 − ωi,j,2 = 0. The difference between the two precision matrices, denoted by Δ = 

(δi,j) = Ω1 – Ω2, is called the differential network. This type of model for a differential 

network has been used in Li et al. (2007) and Danaher et al. (2014). We thus propose to test 

for gene-by-gene interactions both by testing the global hypotheses

(1)

and by simultaneously testing the hypotheses

while controlling for the overall false discovery rate at a pre-specified level.

Few authors have considered testing the equality of two precision matrices in the high-

dimensional setting. The global null hypothesis Δ = 0, or equivalently Ω1 = Ω2, corresponds 

to the hypothesis that none of the gene pairs have interactive effects on D. The equality of 

two precision matrices is equivalent to the equality of two covariance matrices, and the latter 

has been studied under various alternatives. Under the dense alternative, where Σ1 and Σ2 

differ in a large number of entries, various sum-of-square type testing procedures have been 

proposed (Schott, 2007; Srivastava & Yanagihara, 2010; Li & Chen, 2012). Under the sparse 

alternative with Σ1 and Σ2 differing only in a small number of entries, Cai et al. (2013) 

introduced a particularly powerful test. However, in the gene-by-gene interaction setting, the 

goal is to identify the structure of the differential network. In such cases, it is often 

reasonable to assume that Δ is sparse, while Σ1 – Σ2 is not. Hence, testing procedures that 

can leverage information on the sparsity of Δ may improve power. Furthermore, due to the 

fundamental difference between conditional and unconditional dependences, the various 

procedures for testing the covariance matrices may not be well adapted to testing specific 

entries of the precision matrices.

The first goal of this paper is to develop a global test for H0 : Δ = 0 that is powerful against 

sparse alternatives. We then develop a multiple testing procedure for simultaneously testing 

the hypotheses {H0,i,j : 1 ≤ i < j ≤ p} with false discovery rate control to infer the structure of 

the differential network. In the high-dimensional setting, there is no sample precision matrix 

that one can use to approximate Ωd. We propose to infer Ωd by relating its elements to the 

coefficients of a set of regression models for G conditional on D = d. We then construct test 

statistics based on the covariances between the residuals from the fitted regression models. 

The testing procedures are easy to implement. A Matlab implementation is available in the 

Supplementary Material.
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2. Global Testing of Differential Networks

2.1. Notation and Definitions

In this section we consider testing the global hypothesis (1). We begin with notation and 

definitions that will be used in the rest of the paper. Let Xk ε ℝp and Yk ε ℝp denote G 
given D = 1 and D = 2, respectively, Xk ~ N(μ1,Σ1) for k = 1,…, n1, Yk ~ N(μ1,Σ2) for k = 1,

…, n2, where Σd = (σi,j,d) for d = 1, 2, and {Xk : k = 1,…, n1} and {Yk : k = 1,…, n2} are 

independent observations from the two populations. Let X = (X1,…, Xn1)T and Y = (Y1,…, 

Yn2)T denote the data matrices. Let , for d = 1,2.

For subscripts, we use the convention that i stands for the ith entry of a vector and (i,j) for the 

entry in the ith row and jth column of a matrix, k represents the kth sample and d indexes the 

binary trait. Let βi,1 = (β1,i,1,…,βp−1,i,1)T denote the regression coefficients of Xk,i 

regressed on the rest of the entries of Xk and let βi,2 = (β1,i,2,…,βp−1,i,2)T denote the 

regression coefficients of Yk,i regressed on the rest of the entries of Yk.

For any vector μd with dimension p × 1, let μ−i,d denote the (p – 1) × 1 vector by removing 

the ith entry from μd. For a symmetric matrix A, let λmax(A) and λmin(A) denote the largest 

and smallest eigenvalues of A. For any p × q matrix A, Ai,−j denotes the ith row of A with its 

jth entry removed and A−i,j denotes the jth column of A with its ith entry removed. The 

matrix A−i,−j denotes a (p – 1) × (q – 1) matrix obtained by removing the ith row and jth 

column of A. For an n × p data matrix U = (U1,…, Un)T, let  with 

dimension  with dimension 1 × (p − 1), U(i) = (U1,i,…, 

Un,i)T with dimension  with dimension n × 1, where 

, and  with dimension n × (p − 1). For tuning 

parameters λ, let  represent the ith tuning parameter for binary trait d, which depends 

on the sample size nd.

For a vector β = (β1,…,βp)T ε ℝp, define the ℓq norm by  for 1 ≤ q ≤ ∞. 
A vector β is called k-sparse if it has at most k nonzero entries. For a matrix Ω = (ωi,j)p×p, 

the matrix 1-norm is the maximum absolute column sum, , 

the matrix elementwise infinity norm is defined to be ||Ω||∞ = max1≤i,j≤p |ωi,j| and the 

elementwise ℓ1 norm is . For a matrix Ω, we say Ω is k-sparse if 

each row/column has at most k nonzero entries. For a set ℋ, denote by |ℋ| the cardinality of 

ℋ. For two sequences of real numbers {an} and {bn}, write an = O(bn) if there exists a 

constant C such that |an| ≤ C|bn| holds for all n, write an = o(bn) if limn→∞ an/bn = 0, and 

write an ≍ bn if there are positive constants c and C such that c ≤ an/bn ≤ C for all n.

2 2. Testing Procedure

It is well known (e.g., Anderson, 2003, Section 2.5), that in the Gaussian setting the 

precision matrix can be described in terms of regression models. Specifically, we may write
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(2)

(3)

where , are independent of Xk,−i 

and Yk,−i respectively, and . The regression coefficient 

vectors βi,d and the error terms εk,i,d satisfy

where cov(·,·) denotes the population covariance. Since the null hypothesis H0 : Δ = 0 is 

equivalent to the hypothesis

a natural approach to test H0 is to first construct estimators of ωi,j,d, and then base the test on 

the maximum standardized differences. We first construct estimators of ri,j,d

Let  be estimators of βi,d satisfying

(4)

(5)

Estimators  that satisfy (4) and (5) can be obtained easily via methods such as the lasso 

and Dantzig selector. See Section 2.3 for details. Define the residuals by

A natural estimator of ri,j,d is the sample covariance between the residuals,

(6)
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However, when  tends to be biased due to the correlation induced by the 

estimated parameters and it is desirable to construct a bias-corrected estimator. Lemma 2 

shows that

where  is the empirical covariance between {εk,i,d: k = 1,… ,nd} and {εk,j,d : k = 1,

…,nd}. For 1 ≤ i ≤ j ≤ p, βi,j,d = − ωi,j,d/ωj,j,d and βj−1,i,d = −ωi,j,d/ωi,i,d Thus, we propose a 

bias-corrected estimator of ri,j,d as

(7)

The bias of  is of order max{ri,j,d(log p/nd)1/2,(ndlog p)−1/2}.

For i = j, note that ri,i,d = 1/ui,i,d. We show in Lemma 2 that

which implies that  is a nearly unbiased estimator of ri,i,d. A natural estimator of 

ωi,j,d can then be defined by

(8)

We test H0 : Δ = 0 based on the estimators 

The estimators Ti,j,1 − Ti,j,2 in  are heteroscedastic and possibly have a wide range of 

variability. We first standardize Ti,j,1 − Ti,j,2 before combining information from all entries in 

. Let  and 

. It will be shown in Lemma 2 that, uniformly in 1 ≤ i ≤ j 
≤ p,

Let . Note that

where . We then estimate θi,j,d by
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Define the standardized statistics

(9)

Finally, we propose the following test statistic for testing the global null hypothesis H0,

(10)

The asymptotic properties of Mn will be studied in detail in Section 3. Intuitively, {Wi,j} are 

approximately standard normal variables under the null H0 and they are only weakly 

dependent under suitable conditions. Thus Mn is the maximum of the squares of p(p + 1)/2 

such random variables, so its value should be close to 2 log{p(p + 1)/2} ≈ 4 log p under H0. 

We show in Section 3 that, under certain regularity conditions, Mn − 4 log p − log log p 
converges to a type I extreme value distribution under H0 : Δ = 0.

Based on the limiting null distribution of Mn, which will be developed in Section 3.1, we 

define the test ψα by

(11)

where qα is the 1 − α quantile of the type I extreme value distribution with the cumulative 

distribution function exp{(8π)−1/2e−t/2}, i.e.,

(12)

The hypothesis H0 is rejected whenever ψα = 1.

2.3. Data-driven estimation of regression coefficients

The testing procedure requires the estimation of regression coefficients βi,d, for i = 1,…,p 
and d = 1, 2. Various estimators have been studied in the literature, including the lasso and 

Dantizg selector. Here, we use the lasso by solving the optimization problem,

(13)
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(14)

where  and  , d = 1,2. Then by Proposition 

4.2 of Liu (2013), under Condition (C1) given in Section 3 and a mild condition on the 

sparsity of βi,d (i = 1,…, p, d = 1,2), the convergence rates in (4) and (5) can be guaranteed 

by using any κd > 2. The result is formally stated in Corollary 1. In practice, κd = 2 works 

well for global testing of H0 : Δ = 0, and for the multiple testing procedure with false 

discovery rate control, a data-driven algorithm is proposed in Section 5 to select κd 

adaptively.

2.4. Discussion

The global test ψα given in (11) is based on estimators of ωi,j,1 − ωi,j,2 Here we estimate 

ωi,j,d by first constructing estimators for ri,j,d = ωi,j,d/(ωi,i,dωj,j,d), and then estimating ri,j,d 

through bias correction of the residuals  defined in (7).

Liu (2013) considered multiple testing of entries of a single precision matrix Ω = (ωi,j). In 

the one-sample case, ωi,j = 0 is equivalent to ri,j= ωi,j/(ωi,iωj,j) = 0 under the null and ri,j is 

easier to estimate. The procedure in Liu (2013) is based on the estimation of ri,j instead of 

ωi,j. However, in Section 4 we will also consider multiple testing between two groups, and 

ωi,j,1= ωi,j,2 is not equivalent to ri,j,1= ri,j,2. Thus, it is necessary to construct testing 

procedures based directly on estimators of ωi,j,1 − ωi,j,2.

Testing the global hypothesis H0 : Ω1 = Ω2 is equivalent to testing H0 : Σ1 = Σ2, which has 

been well studied (Schott, 2007; Srivastava & Yanagihara, 2010; Li & Chen, 2012; Cai et al., 

2013). In particular, Cai et al. (2013) constructed a global test for H0 : Σ1 = Σ2 that is 

powerful against the alternative where Σ1 − Σ2 is sparse. However, in many applications, the 

goal is to learn the structure of the differential network, and we are interested in both testing 

the global hypothesis H0 : Ω1 = Ω2 and multiple testing of the entrywise hypotheses H0,i,j : 

ωi,j,1 = ωi,j,2. In such cases, it is often reasonable to assume that Δ = Ω1 − Ω2 is sparse, but 

Σ1 − Σ2 is not. Hence, testing procedures for H0 : Σ1 = Σ2 cannot leverage information on the 

sparsity of Δ and more importantly do not naturally lead to a multiple testing procedure for 

simultaneously testing the entrywise hypotheses H0,i,j : ωi,j,1 = ωi,j,2.

3. Theoretical Results for the Global Test

3 1. Asymptotic Null Distribution of Mn

In this section, we analyze the properties of the new test for testing the global null 

hypothesis H0 : Δ = 0, including the null distribution of the test statistic Mn, the asymptotic 

size and power. We are particularly interested in the power of the new test under the 

alternative with Δ sparse. We further show that the power is minimax rate optimal.
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Under assumptions (C1) and (C2), Theorem 1 indicates that under H0, Mn − 4 log p + log 

log p converges weakly to a Gumbel random variable with distribution function 

exp{−(8π)−1/2e−t/2}.

(C1) Assume that log p = o(n1/5), n1 ≍ n2, and for some constant 

, for d = 1,2. There exists some τ > 0 

such that | Aτ| = o(p1/16) where Aτ = {(i,j) : |ωi,j,d| ≥ (log p)−2−τ, 1 ≤ i<j ≤ p, for 

d = 1 or 2}.

(C2) Let Dd be the diagonal of Ωd and let , for d = 1,2. 

Assume that max1≤i≤j≤p |ηi,j,d| ≤ ηd ≤ 1 for some constant 0 < ηd < 1.

Condition (C1) on the eigenvalues is a common assumption in the high-dimensional setting 

and implies that most of the variables are not highly correlated with each other. Condition 

(C2) is also mild. For example, if max1≤i≤j≤p |ηi,j,d| = 1, then Ωd is singular. The following 

theorem states the asymptotic null distribution for Mn.

Theorem 1—Suppose that (C1), (C2), (4) and (5) hold. Then under H0, for any t ε ℝ,

(15)

where Mn is defined in equation (10). Under H0, the convergence in (15) is uniform for all 

{Xk : k = 1,…, n1} and {Yk : k = 1,…, n2} satisfying (C1), (C2), (4) and (5).

Equations (4) and (5) are mild conditions on the estimator of βi,d in order to obtain the 

limiting distribution in Theorem 1. As discussed in Section 2 3, these conditions can be 

guaranteed by the lasso estimator for example.

Corollary 1—Suppose that (C1) and (C2) hold and max1≤i≤p |βi,d|0 = o{n1/2 / (log p)3/2}. 

Then under H0, for any κd > 2 in (13) and (14), and for any t ε ℝ,

(16)

where Mn is defined in (10).

3 2. Power Analysis

We now turn to an analysis of the power of the test ψα given in (11). We shall define the 

following class of precision matrices:

(17)
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The next theorem shows that the null parameter set in which Ω1 = Ω2 is asymptotically 

distinguishable from (4) by the test ψα. That is, H0 is rejected by the test ψα with 

overwhelming probability if .

Theorem 2—Let the test ψα be given as in (11). Suppose that (C1), (4) and (5) hold. Then

The following result shows that this lower bound is rate-optimal. Let  be the set of all α-

level tests, i.e., pr(Tα = 1) ≤ α under H0 for all .

Theorem 3—Suppose that log p = o(n). Let α, β > 0 and α + β < 1. Then there exists a 

constant c0 > 0 such that for all sufficiently large n and p,

Theorem 3 shows that, if c0 is sufficiently small, then any α level test is unable to reject the 

null hypothesis correctly uniformly over  with probability tending to one. 

So the order (logp)1/2 in the lower bound of max1≤i≤j≤p{|ωi,j,1 − ωi,j,2/(θi,j,1 + θi,j,2)1/2} in 

(17) cannot be improved.

4. Multiple Testing with False Discovery Rate Control

If the global null hypothesis is rejected, it is often of interest to investigate the structure of 

the differential network Δ. A natural approach is to carry out simultaneous testing on the 

elements of Δ. In this section, we introduce a multiple testing procedure with false discovery 

rate control for testing (p2 − p) /2 hypotheses

(18)

The standardized differences of Ti,j,1 and Ti,j,2 are defined by the test statistics 

 as in (9). Let t be the threshold level such that H0,i,j 

is rejected if |Wi,j |≥ t. Let ℋ0 = {(i, j) : δi,j = 0,1 ≤ i < j ≤ p} be the set of true nulls. Denote 

by  the total number of false positives, and by R(t) = Σ1≤i<j≤p 

I(|Wi,j|≥ t) the total number of rejections. The false discovery proportion and false discovery 

rate are defined as
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An ideal choice of t would reject as many true positives as possible while controlling the 

false discovery rate and false discovery proportion at the pre-specified level α. That is, we 

select

Since ℋ0 is unknown, we can estimate  by  as in 

Liu (2013), where ϕ(t) is the standard normal cumulative distribution function. Note that 

 can be estimated by (p2 − p)/2 due to the sparsity of Δ. This leads to the following 

multiple testing procedure.

1. Calculate the test statistics Wi,j.

2. For given 0 ≥ α ≥ 1, calculate

If  does not exists, set .

3. For 1 ≤ i < j ≤ p, reject H0,i,i,. if and only if .

The following theorem shows that, under regularity conditions, the above procedure controls 

the false discovery proportion and false discovery rate at the pre-specified level α 
asymptotically.

Theorem 4

Let

Suppose for some ρ > 0 and some δ > 0, . Suppose 

that  for any ν > 0, where  is given in Condition (C1). Assume that 

 for some c > 0, and (4) and (5) hold. Let q = (p2 − p)/2. Then under (C1) 

with p ≤ cnr for some c > 0 and r > 0, we have

in probability, as (n, p) → ∞.
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The condition  in Theorem 4 is mild, since there are 

(p2 − p)/2 hypotheses in total and this condition only requires a few entries with the 

standardized difference having magnitude exceeding {(log p)1/2+ρ/n}1/2 for some constant ρ 
> 0. The technical condition  for any ν > 0 is to ensure that most of the 

regression residuals are not highly correlated with each other under the null hypotheses 

H0,i,j : δi,j = 0.

The basic idea for the proof of Theorem 4 is similar to that in Liu (2013). However, the 

setting here is more complicated as ωi,j,1 and ωi,j,2 are not necessarily zero under H0,i,j : δi,j 

= 0. So the coordinates of the regression residuals in (2) and (3) can be correlated with each 

other. Thus slightly stronger conditions are needed and the proof is more involved.

5. Simulation Study

The proposed testing procedures are easy to implement, and the Matlab code is available in 

the Supplementary Material. We carry out a simulation study to investigate the numerical 

performance, including the size and power, of the global test Ψα and the false discovery rate 

controlled multiple testing procedure.

We first introduce the matrix models used in the simulations. Let D = (Di,j) be a diagonal 

matrix with Di,i = Unif(0.5, 2.5) for i = 1,…,p. The following four models under the null, 

, are used to study the size of the tests.

Model 1:  where , ,  and 

 otherwise. Ω(1) = D1/2Ω*(1)D1/2.

Model 2:  where  for i = 10(k − 1) + 1 and 10(k − 1) 

+ 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10.  otherwise. Ω(2) = D1/2(Ω *(2) + δI)/(1 

+ δ)D1/2 with δ = |λmin(Ω*(2))| + 0.05.

Model 3:  where ,  for i < j and 

. Ω(3) = D1/2(Ω*(3)+ δI)/(1 + δ)D1/2 with δ = |λmin(Ω*(3))| + 0.05.

Model 4:  where ,  for 2(k − 1) + 1 ≤ i ≠ j ≤ 2k, 

where k = 1,…, [p/2] and  otherwise. Ω(4) = d1/2{(Σ*(4) + δI)/(1 + δ)}−1 D1/2 

with δ = |λmin(Σ*(4))| + 0.05.

For global testing of H0 : Δ = 0, the sample sizes are taken to be n1 = n2 = 100, while the 

dimension p varies over the values 50, 100, 200 and 400. For each model, data are generated 

from multivariate normal distributions with mean zero and covariance matrices 

and  The nominal significance level for all the tests is set at α1 − 0.05.

To evaluate the power of the proposed tests, let U = (ui,j) be a matrix with eight random 

nonzero entries. The locations of four nonzero entries are selected randomly from the upper 
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triangle of U, each with a magnitude generated randomly and uniformly from the set 

[−2ω(log p/n)1/2, −ω(log p/n)1/2] ∪ [ω(log p/n)1/2,2 ω(log p/n)1/2], where 

. The other four nonzero entries in the lower triangle are determined by 

symmetry. We use the following four pairs of precision matrices , 

to show the power of the test, where  and , with δ = |

min{λmin(Ω(m) + U), λmin(Ω(m))}| + 0.05. The actual sizes and powers in percentage for the 

four models, reported in Table 1, are estimated from 1000 replications.

Table 1 shows that the sizes of the global test  are close to the nominal level in all cases. 

This reflects the fact that the null distribution of the test statistic Mn is well approximated by 

its asymptotic distribution. The empirical sizes are slightly below the nominal level in some 

models, due to the correlation among the variables. Similar phenomena have also been 

observed in Cai et al. (2013) and are theoretically justified by their Proposition 1. Table 1 

shows that the proposed test is powerful in all settings, although the two precision matrices 

differ only in eight entries with the magnitude of the difference of the order (log p/n)1/2.

In addition, we consider nearer alternatives by generating the nonzero entries randomly and 

uniformly from the set [−ω(2 log p/n)1/2, ω(2 log p/n)1/2]. The power results are summarized 

in Table 2. Under the nearer alternatives, the magnitude of the standardized difference of Ω1 

− Ω2 is smaller and as a result the power is lower.

More extensive simulation results are presented in the Supplementary Material. The 

proposed test significantly outperforms both that of Cai et al. (2013), which is powerful 

when Σ1 − Σ2 is sparse under the alternative, and that of Li & Chen (2012), which is 

powerful when Σ1 − Σ2 is dense under the alternative.

For simultaneous testing of the individual entries of the differential network Δ with false 

discovery rate control, we select  in (13) and (14) adaptively with the principle of 

making  and  as close as possible. The algorithm is 

as follows.

1.
For any given i ∈{1,…,p}, let  and 

 for s = 1,…, 40. For each s, calculate 

 and d = 1,2. Based on the estimated regression coefficients, 

construct the corresponding standardized difference  for each s.

2. Choose
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The tuning parameters are chosen to be  and 

.

Pairwise comparisons among these four models are considered. The sample sizes are n1 = n2 

= 100, while the dimension p = 50, 100, and 200. The false discovery rate level is set at α2 = 

0.1, and the empirical false discovery rate and the power of false discovery rate control in 

percentage, summarized in Table 3, are estimated from 100 replications. We examine the 

power based on the average powers for 100 replications as follows

where Wi,j,l denotes standardized difference for the lth replication and  denotes the 

nonzero locations. For all six cases, the false discovery rates are close to α across all 

dimensions. For empirical power, the procedure is powerful when the dimension p is low, 

and retains high power for the comparisons between Model 1 and Models 2 and 4. However, 

for the comparison between Model 2 and Model 3, the power is low when dimension is high 

and this is because all of | ωi,j,1 − ωi,j,2|/(θi,j,1n1 + θi,j,2n2)1/2 is smaller than 0.25 when p = 

200 and D = I. Similarly, most nonzero entries of the standardized difference for Model 2 

and 4 are smaller than 0.24. Thus it is difficult to detect nonzero locations. Furthermore, 

under the same scenario, ωi,j/(θi,j
n)1/2 is always smaller than 0.16 for Model 3, and thus the 

detection becomes harder when we compare Model 3 with other models. Thus, the power 

results are not good when Model 3 is included in the comparison.

6. Real Data Analysis

The high throughput technology and massively parallel measurement of mRNA expression 

catalyzed a new area of genomic biomarkers. A number of prominent genomic markers have 

been identified to assist in predicting breast cancer patient survival in clinical practice, and 

increasingly, pharmacogenomic endpoints are being incorporated into the design of clinical 

trials (Olopade et al., 2008). Molecular pathways of pathogenesis for breast cancer have also 

been increasingly discovered and curated (Nathanson et al., 2001). However, the role of 

gene-by-gene interactions, within and across pathways, in breast cancer survival remain 

unclear. Here, we apply our procedures to identify gene-by-gene interactions important for 

breast cancer survival.

For illustration, we consider 32 pathways from the molecular signature database that are 

related to breast cancer survival. Examples include the MAPK/ERK, WNT, TGF-β, P13k-

AKT-mTOR and ATRBRCA pathways. Existing literature has indicated that a defect in the 

MAPK pathway may lead to uncontrolled growth, which is a step necessary for the 

development of all cancers (Santen et al., 2002; Downward, 2003). Mutations or deregulated 

expression of genes in the Wnt pathway can induce cancer (Klaus & Birchmeier, 2008). The 

TGF-β signaling pathway is critical to a plethora of cellular processes including cell 

proliferation, apoptosis and differentiation (Shi & Massagué, 2003). An increase in the TGF-
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β2 expression is associated with response to tamoxifen for breast cancer patients (Buck & 

Knabbe, 2006). The ATRBRCA pathway describes the role of BRCA1, BRCA2 and ATR in 

cancer susceptibility (Venkitaraman, 2002). BRCA1 and BRCA2 are the best-known genes 

linked to breast cancer risk. Hence, these pathways may play critical roles in breast cancer 

progression. To examine the interactions between genes in these pathways, we applied our 

procedure to a recent breast cancer gene expression study of 295 patients with primary 

breast carcinomas from the Netherlands Cancer Institute (van de Vijver et al., 2002). Out of 

the 32 pathways, there are a total of p = 754 genes with available data in this study. The two 

populations we consider are the short term survivors, defined as those 78 patients who died 

within 5 years; and the long term survivors, defined as those 69 patients who survived more 

than 10 years. We are particularly interested in identifying gene pairs with interactive effects 

on the binary cancer survival trait using the proposed procedures. In this setting, the sparsity 

assumption about βi,k’s is reasonable as it is generally believed that transcriptional 

regulation of a single gene is generally defined by a small set of regulatory elements (Segal 

et al., 2003; Dobra et al., 2004).

Based on our proposed procedures, we identified nine pairs of gene-by-gene interactions as 

significant at a false discovery rate level of 0.1. An interaction here does not simply indicate 

a co-expression between a pair of genes, but instead represents a difference between the co-

expression patterns among the long terms survivors and among the short term survivors. As 

shown in Figure 1, the majority of the genes involved in these interactions belong to five 

major pathways, the MAPK, WNT, TGF-β, Apoptosis, and ATRBRCA pathways, although 

many of these genes belong to multiple pathways. One pair of the identified interactions 

represent gene-by-gene interactions within pathways and the remaining eight pairs represent 

cross-talk between these pathways, some of which are previously documented. A total of 

five interactions are between the MAPK signaling pathway and the WNT and TGF-β, 

Apoptosis, ATRBRCA and MTA3 pathways. These cross-talks are not surprising since 

MAPK modulates a wide range of processes including gene expression, mitosis, 

proliferation, metabolism and apoptosis (Wada & Penninger, 2004). Several recent studies 

suggest extensive crosstalk between WNT and MAPK signaling pathways in cancer. For 

example, hyper-activation of MAPK signaling results in down-regulation of the WNT signal 

transduction pathway in melanoma, suggesting a negative crosstalk between the two 

pathways; while in colorectal cancer, stimulating the WNT pathway leads to activation of 

the MAPK pathway through Ras stabilization, representing a positive crosstalk 

(Guardavaccaro & Clevers, 2012). The observed interactive effect between the WNT and 

MAPK pathways suggests that the cross-talk between these two pathways may play an 

important role in breast cancer survival. The interaction between the tumor suppressor gene 

BRCA2 and the MAPK pathway has been documented in experiments with prostate cancer 

cells with upregulation of BRCA2 linked to an increase in MAPK activity (Moro et al., 

2007). In the WNT pathway, the WNT1 gene promotes cell survival in various cell types and 

it has been experimentally shown that blocking WNT1 signaling can induce apoptotic cell 

death (You et al., 2004). Thus the interaction between WNT1 gene and the PRKACB gene in 

the Apoptosis pathway may also be crucial for breast cancer.
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A. Appendix: Proofs

A·1. Technical Lemmas

We prove the main results in this section. We begin by collecting technical lemmas proved in 

the supplementary material. The first lemma is the classical Bonferroni inequality.

Lemma A1 (Bonferroni inequality)

Let . For any k < [p/2], we have

where .

For d = 1, 2, let , and define 

 for 1 ≤ i < j ≤ p and .

Lemma A2

Suppose that Conditions (C1), (4) and (5) hold. Then

and

for 1 ≤ i < j ≤ p, where  is the empirical covariance between {εk,i,d : k = 1, …, nd} and 

{εk,j,d : k = 1, …, nd}. Consequently, uniformly in 1 ≤ i < j ≤ p,

and uniformly in 1 ≤ i ≤ p,

where  is defined in (7), 

 and 

.
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Lemma A3

Let Xk ~ N(μ1, Σ1) for k = 1, …, n1 and Yk ~ N(μ2, Σ2) for k = 1, …, n2. Define

Then, for some constant C > 0,  satisfies the large deviation bound

uniformly for 0 ≤ x ≤ (8 log p)1/2 and any subset .

The following lemma is needed for false discovery rate control in Theorem 4.

Lemma A4

Let Vi,j = (Ui,j,2−Ui,j,1){var(εk,i,1εk,j,1)/n1 + var(εk,i,2εk,j,2)/n2}−1/2. Under the same 

conditions as in Theorem 4, we have for any ε > 0 that,

where tp = (4 log p − log2 p – log3 p)1/2 and vp = 1/{log p(log4 p)2}1/2.

A·2. Proof of Theorem 1

Without loss of generality, throughout this section, we assume that ωi,i,d = 1 for d = 1, 2 and 

i = 1,…, p. Let A = {(i, j) : 1 ≤ i ≤ j ≤ p}. (C1) implies |Aτ|=o(p1/16). To prove Theorem 1, 

we first show that the terms in Aτ are negligible. Then we use Lemma 1, together with the 

Gaussian approximation technique, to show that 

, where Wi,j is 

defined in equation (9).

For d = 1, 2, let Vi,j = (Ui,j,2 − Ui,j,1)/{var(εk,i,1εk,j,1)/n1 + var(εk,i,d εk,j,d)/n2}1/2, where 

 with . The proof of Lemma 2 

yields

(A1)
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and , where n = max{n1, n2}. Note that

(A2)

and  Also note that for (i, j) 

∈ A\Aτ, we have |ωi,j,d| = o{(log p)−1}. Then by Lemma 2, it is easy to see that, under 

conditions (C1), (4) and (5), we have, for (i, j) ∈ A\Aτ, 

. For (i,j) ∈ Aτ as a result of Lemma 2, we 

have Wi,j = Vi,j + bi,j + op 1og p–1/2), where 

, 

,  and . 

Note that

where . Thus, we have

where the last equality is a direct result of Lemma 3. Thus it suffices to prove that

We arrange the indices {(i, j) : (i, j) ∈ A\Aτ} in any ordering and set them as {(im, jm) : m = 

1, …, q} with q =Card(A\Aτ). Let n1/n2 ≤ K with K ≥ 1, , for d = 1, 2 

and define  for 1 ≤ k ≤ n2, 

 for n2 + 1 ≤ k ≤ n1 + n2, 

 and 

, where 

, and τn = 32K1 log(p + n). Note that 

, and that
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Hence, 

. By the fact that 

, it suffices to prove that for any t ∈ ℝ, as n, p → ∞,

(A3)

By Lemma 1, for any integer l with 0 < l < q/2,

(A4)

where yp = 4 log p − log log p + t and . Let 

 for m = 1, …, q and , for 1 ≤ k ≤ 

n1 + n2. Define  for any vector a ∈ Rd. Then we have

Then it follows from Theorem 1 in Zaïtsev (1987) that

(A5)

where c1 > 0 and c2 > 0 are constants, εn → 0 which will be specified later and 

 is a normal random vector with E(Nd) = 0 and 
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. Recall that d is a fixed integer which does not 

depend on n, p. Because , we can let εn → 0 sufficiently slowly that, for any 

large M > 0

(A6)

Combining (A4), (A5) and (A6) we have

(A7)

Similarly, using Theorem 1 in Zaïtsev (1987) again, we can get

(A8)

We recall the following lemma, which is shown in the supplementary material of Cai et al. 

(2013).

Lemma A5

For any fixed integer d ≥ 1 and real number t ∈ ℝ,

(A9)

It then follows from Lemma 5, (A7) and (A8) that
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for any positive integer l. By letting l → ∞, we obtain (A3) and Theorem 1 is proved.

A·3. Proof of Theorem 2

Let . It follows from the 

proof of Theorem 1 that , as n, p → ∞. By (A1), (A2) 

and the inequalities , and 

, we have pr(Mn ≥ qα + 4 log p − 

log log p) → 1 as n, p → ∞.

A·4. Proof of Theorem 3

To prove the lower bound result, we first construct the worst case scenario to test between Ω1 

and Ω2, and then apply the arguments as shown in Baraud (2002).

Let ℳ denote the set of all subsets of {1,…, p} with cardinality pr, for r < 1/2. Let  be a 

random subset of {1,…, p}, which is uniformly distributed on ℳ. We construct a class of Ω1, 

, such that ωi,j = 0 for i ≠ j and , for i, j = 1,…, p and ρ 
= c(log p/n)1/2, where c > 0 will be specified later. Let Ω2 = I and Ω1 be uniformly 

distributed on . Let μρ be the distribution of Ω1 − I. Note that μρ is a probability measure 

on , where  is the class of matrices with pr nonzero entries. 

Let dpr1({Xn, Yn}) and dpr2({Xn, Yn}) be the functions with precision matrices Ω1 and Ω2 

respectively, likelihood then we have

where  is the expectation on Ω1. By the arguments in Baraud (2002), it suffices to 

show that . It is easy to check that

where  and . Thus, we have
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Set Ωm + Ωm′ − 2I = (ai,j). It is easy to show that ai,j = 0 for i ≠ j, aj,j = 0 if j ε (m ∪ m′)c, aj,j 

= 2(1/(1 + ρ)−1) if j ε m ∩ m′ and aj,j = 1/(1 + ρ) −1 if j ε m \ m′ \ m. Let t = | m ∩ m′|. 

Then

for r < 1/2. Thus, by letting c be sufficiently small, we have

A·5. Proof of Theorem 4

We first show that , as defined in Section 4, is obtained in the range (0, 2(log p)1/2). Then 

we illustrate that R0(t), defined in Section 4, is close to 2 {1 − Φ(t)}|ℋ0| by first showing the 

terms in Aτ are negligible. We then focus on the set ℋ0 \ Aτ and prove the result based on 

Lemma 4.

Under the condition of Theorem 4, we have Σ1≤i<j≤p I{|Wi,j| ≥ 2(log p)1/2} ≥ [1/{(8π)1/2 α} 

+ δ](log2 p)1/2, with probability going to one. Hence we have with probability going to one,

Let tp = (4 log p − log2 p − log3 p)1/2. Because , we 

have  according to the definition of  in the false discovery rate control 

algorithm in Section 4. Note that, for , we have
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Thus to prove Theorem 4, it suffices to prove that 

 in probability, for 0 ≤ t ≤ {4 log p + 

o(log p)}1/2, where G(t) = 2{1 − Φ(t)}. Now we consider two cases.

1. If t = {4 log p + o(log p)}1/2, the proof of Theorem 1 yields that 

. Thus, it suffices to prove that 

 probability. For (i, j) ∊ ℋ0 \ 

Aτ, we have from the proof of Theorem 1 that max1≤i<j≤p | Wi,j − Vi,j | = op {(log 

p)−1/2}. Thus, it suffices to show that

(A10)

in probability, where εi,j(t) = I(|Vi,j |≥ t) − G(t).

2. If t ≤ (C log p)1/2 with C < 4, we have

in probability. Thus, it is again enough to show that

(A11)

in probability. Define . Let 0 ≤ t0 < ⋯ < tm = tp such that tl − tl−1 = 

vp for l = 1,…, m − 1 and tm − tm−1 ≤ vp. Thus we have m·~ tp/vp. For any t such 

that tl−1 ≤ t ≤ tl, we have

Thus it suffices to prove  in 

probability. Note that

Thus by (A5) with d = 1 and Lemma 4, Theorem 4 is proved.
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Fig. 1. 
Identified gene-by-gene interactions for the breast cancer example. The dashed lines 

between gene-paris represent detected interactions. Genes inside each circle belong to the 

same pathway whose name is also shown.
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Table 1

Empirical sizes and powers (%) for global testing with α1 = 0.05, n1 = n2 = 100, and 1000 replications.

p Model 1 Model 2 Model 3 Model 4

Size

50 3.8 3.9 5.4 4.4

100 3.6 4.4 4.1 3.8

200 3.4 3.6 3.7 3.9

400 3.5 3.7 3.6 3.5

Power

50 100 98.7 95.6 81.6

100 99.7 96.6 95.1 77.8

200 93.1 88.2 93.6 72.1

400 86.3 73.1 77.7 70.7
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Table 2

Empirical power (%) for global testing under nearer alternatives.

p Model 1 Model 2 Model 3 Model 4

Power under nearer alternative

50 90.3 71.6 58.9 20.6

100 89.4 70.3 60.8 22.8

200 81.9 55.2 54.2 21.7

400 73.5 54.7 57.7 17.5
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