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Abstract

Background

Myocardial infarction (MI) is one of the leading causes of morbidity and mortality worldwide.

Dietary intervention on adverse cardiac remodeling after MI has significant clinical rele-

vance. Rosemary leaves are a natural product with antioxidant/anti-inflammatory properties,

but its effect on morphology and ventricular function after MI is unknown.

Methods and results

To determine the effect of the dietary supplementation of rosemary leaves on cardiac

remodeling after MI, male Wistar rats were divided into 6 groups after sham procedure or

experimental induced MI: 1) Sham group fed standard chow (SR0, n = 23); 2) Sham group

fed standard chow supplemented with 0.02% rosemary (R002) (SR002, n = 23); 3) Sham

group fed standard chow supplemented with 0.2% rosemary (R02) (SR02, n = 22); 4) group

submitted to MI and fed standard chow (IR0, n = 13); 5) group submitted to MI and fed stan-

dard chow supplemented with R002 (IR002, n = 8); and 6) group submitted to MI and fed

standard chow supplemented with R02 (IR02, n = 9). After 3 months of the treatment, sys-

tolic pressure evaluation, echocardiography and euthanasia were performed. Left ventricu-

lar samples were evaluated for: fibrosis, cytokine levels, apoptosis, energy metabolism

enzymes, and oxidative stress. Rosemary dietary supplementation attenuated cardiac

remodeling by improving energy metabolism and decreasing oxidative stress. Rosemary

supplementation of 0.02% improved diastolic function and reduced hypertrophy after MI.

Regarding rosemary dose, 0.02% and 0.2% for rats are equivalent to 11 mg and 110 mg for

humans, respectively.
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Conclusion

Our findings support further investigations of the rosemary use as adjuvant therapy in

adverse cardiac remodeling.

Introduction

Myocardial infarction (MI) is one of the leading causes of morbidity and mortality worldwide.

According to the 2015 update of A Report From the American Heart Association, approxi-

mately 635,000 Americans have a new coronary attack each year[1]. MI can be defined as a

focus of necrosis resulting from poor tissue perfusion, with signs and symptoms resulting

from cardiac cell death. The death of myocytes initiates a cascade of intracellular signaling,

such as inflammation, oxidative stress, reabsorption of necrotic tissue, excessive deposition of

collagen, and hypertrophy, that can result in adverse cardiac remodeling. These molecular, cel-

lular and interstitial changes can clinically be manifested as changes in size, mass, geometry

and heart function. Cardiac remodeling is an adaptation of the heart to aggression stimuli that

may gradually lead to the development of heart failure (HF), responsible for the increased

mortality after MI[2, 3].

Many factors can participate on MI pathophysiology. MI is started by myocardial ischemia

and it is associated with increased generation of reactive oxygen species (ROS)[4]. In experi-

mental studies, oxidative stress is identified as a major factor for the development of cardiac

hypertrophy[5]. Oxidative stress can also activate the production of inflammatory cytokines

such as tumor necrosis factor-α (TNF-α), IL-1β and IL-6[6], triggering inflammatory path-

ways, fibrosis and cell death[5]. ROS and cytokines also contribute to the activation of matrix

metalloproteinases (MMPs) and collagen deposition that might lead to structural changes in

the heart [6, 7].

Because oxidative stress can play a central pathophysiological role in cardiac remodeling

after MI[4, 7], antioxidant supplements are beneficial after injury to the myocardium[8, 9]. In

this context, the antioxidant properties of natural products have been examined[10]. Rosemary

(Rosmarinus oficinallis Linn) is a popular culinary spice, but it is also known as a medicinal

herb and a natural conservative in the food industry, with one of the highest levels of antioxi-

dant compounds[11, 12]. Many compounds have been isolated from rosemary, including fla-

vones and diterpenes. The phenolic diterpenes carnosic acid and carnosol are the major

bioactive compounds in rosemary leaves related to the antioxidant activity [12, 13]. Rosmari-

nic acid is a caffeic acid ester with antioxidant and anti-inflammatory activity[14, 15]. In vitro
studies described that rosemary compounds suppressed IL-β and TNF-α, and increased gluta-

thione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity in different models[16–

18]. In vivo, rosemary extract supplementation improved the oxidative stress status in the

heart of aged rats[19, 20]. Furthermore, rosmarinic acid reduced myocardial damage blood

pressure in hypertensive rats fed a high fructose diet[15] and protected the heart against car-

diac dysfunction and fibrosis after MI in rats[21]. However, little is known about the effect of

rosemary leaves intake in morphology and ventricular function after myocardial injury. To

our knowledge, the protective potential of rosemary has predominantly been studied in rose-

mary extract and/or its constituents, and information about rosemary intake as a whole food is

limited. Evidence shows that focusing on an approach based on foods and dietary patterns

instead of individual nutrients improves cardiometabolic health[22, 23]. Thus, the aim of the

present study was to evaluate the effect of rosemary leaves dietary supplementation on cardiac

remodeling after myocardial infarction.
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Methods

Study design

All experiments and procedures were performed in accordance with the National Institute of

Health’s Guide for the Care and Use of Laboratory Animals and with the Ethical Principles in

Animal Experimentation adopted by the Brazilian College of Animal Experimentation[24].

The study protocol (838/10) was submitted and approved by the Botucatu Medical School Ani-

mal Research Ethics Committee.

Male Wistar rats weighing 200 to 250 g were used in this study. MI was conducted by coro-

nary artery ligation, as previously described[2, 25]. In brief, rats were anesthetized with keta-

mine (70 mg/kg) and xylazine (1 mg/kg), and after left thoracotomy, the heart was exteriorized

by lateral compression of the thorax. The left atrium was retracted to facilitate ligation of the

left coronary artery with wired polyvinyl (5–0 Ethicon). The left coronary artery was ligated

approximately 2 mm between the border of the left atrium and the pulmonary outflow tract.

The heart was then replaced in the thorax, the lungs were inflated by positive pressure, and

thoracotomy closed. A sham group, in which animals were submitted to surgery but without

coronary occlusion, was also created. After surgery rats were housed in a temperature-con-

trolled room (24˚C) with a 12-h light/12-h dark cycle. Water and food was supplied ad libitum
after the procedure.

Two days after surgery, survivors were assigned to one of the six groups: 1) group SR0,

sham animals fed standard chow only (n = 23); 2) group SR002, sham animals fed standard

chow with 0.02% of rosemary leaves (n = 23); 3) group SR02, sham animals fed standard chow

with 0.2% of rosemary leaves (n = 22); 4) IR0, infarcted animals fed standard chow only

(n = 13); 5) IR002, infarcted animals fed standard chow with 0.02% of rosemary leaves (n = 8);

and 6) IR02, infarcted animals fed standard chow with 0.2% of rosemary leaves (n = 9) (Fig 1).

Treatment began 48 h after surgery because during this period mortality may be related to

bleeding, pneumothorax, and anesthesia rather than to the infarction or treatment. Rosemary

supplementation was provided for 90 days.

Rosemary supplementation

Nuvilab chow (Nuvital1) was used for all experiments. Chow was initially chopped for the

later addition of rosemary leaves. Fresh rosemary leaves were purchased in 2011 from Com-

panhia de Entrepostos e Armazéns Gerais de São Paulo (CEAGESP), state of São Paulo, Brazil

and were identified by a trained dietitian. The leaves were oven dried for 48 hours at a temper-

ature of 50˚C, ground in a domestic mixer (Walita, São Paulo, Brazil) for 30 seconds, and

sieved using sieves of the Standard Tyler 32 (Bertel Industries, São Paulo, Brazil). Ground par-

ticles were stored under vacuum and maintained in a domestic freezer (Brastemp, São Paulo,

Brazil) below –10˚C. Rosemary powder was added to the crushed chow, and the mixture was

pelletized. Food intake of all animals was measured every 24 hours. The mean daily intake for

each rat was calculated. Rosemary supplementation doses of 0.02% and 0.2% were chosen

based on the study of Posadas et al. (2009)[19].

Measurement of systolic arterial pressure

Systolic arterial pressure measurement was performed 2 weeks (corresponding to 2.5 months

of rosemary supplementation) before euthanasia by tail plethysmograph, as described previ-

ously[26].

Rosemary supplementation attenuates cardiac remodeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0177521 May 11, 2017 3 / 17

https://doi.org/10.1371/journal.pone.0177521


Echocardiographic study

After three months of supplementation, rats were weighed and evaluated by a transthoracic

echocardiographic exam, as previously described[27, 28]. All measurements were made by the

same observer blinded to individual animal treatments and according to the American Society

of Echocardiography/European Association of Echocardiography[29].

After the echocardiographic study, the animals were euthanized with large dose of pento-

barbital, and their hearts were removed. Left ventricle (LV) was isolated and LV samples were

immediately frozen and stored at -80˚C. One transverse section of the LV was separated and

fixed in 10% buffered formalin and then was embedded in paraffin for histological study.

Morphometric analysis

Five-micrometer-thick sections were stained with hematoxylin and eosin (HE) for cardiomyo-

cyte cross-sectional area (CSA) determination and with Pircrosirius red for Interstitial collagen

fraction (ICF) and infarction size calculations. All animals were included in the morphometric

analysis. First infarction size was calculated. To calculate infarction size, lengths of the

infarcted and the viable muscle for both endocardial and epicardial circumferences were deter-

mined by planimetry, and then calculated by dividing endocardial and epicardial circumfer-

ences of the infarcted area by total epicardial and endocardial ventricular circumferences[28].

Measurements were performed on midventricular slices (5–6 mm from the apex), under the

assumption that the left midventricular slice showed a close linear relation with the sum of the

area measurements from all heart slices[30]. After infarction size calculation, infarcted animals

Fig 1. Study design.

https://doi.org/10.1371/journal.pone.0177521.g001
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with less than 36% of LV infarcted area were excluded of further analysis[31, 32]. Minicucci

et al. (2011) showed that the infarct size cut-off value to induce cardiac remodeling in rats

should be 36% of LV area[31].

The CSA measurements were obtained from at least 40 digital images(400 × magnification)

with a digital pad, and the selected cells were transversely cut so that the nucleus was in the

center of the myocyte[33, 34]. The CSA was considered to evaluate heart hypertrophy. ICF was

determined in remote cardiac areas free from MI from at least 20 digital images

(400 × magnification).

All images were collected with a video camera attached to a Leica microscope; the images

were analyzed with the Image-Pro Plus 3.0 software program (Media Cybernetics; Silver

Spring, MD).

Cytokine production

Tumor necrosis factor-α (TNF-α), IFN-γ and IL-10 concentrations in LV samples were deter-

mined by ELISA according to the manufacturer’s instructions (R&D Systems, Minneapolis,

MN).

MMP-2 and TIMP-1 evaluation

Matrix metalloproteinase (MMP)-2 activity was determined in LV samples by zimography, as

previously reported[34, 35]. TIMP-1 levels were evaluated by ELISA according to the manufac-

turer’s instructions (R&D Systems, Minneapolis, MN

Lipid hydroperoxide, antioxidant and energy metabolism enzymes

Eight LV samples of each experimental group were used for measurements of total protein and

lipid hydroperoxide (LH) concentration and for enzyme activity determinations. Glutathione

peroxidase (GSH-Px, E.C.1.11.1.9), superoxide dismutase (SOD, E.C.1.15.1.1) and catalase

(CAT, E.C.1.11.1.6) activity was assessed as previously specified[36, 37]. Cardiac energy me-

tabolism was assessed by β-hydroxyacyl coenzyme-A dehydrogenase (OHADH, E.C.1.1.1.35.),

lactate dehydrogenase (LDH, E.C.1.1.1.27), citrate synthase (CS; E.C.4.1.3.7.), Complex I

(NADH:ubiquinone oxidoreductase), Complex II (succinate dehydrogenase), and ATP syn-

thase (EC 3.6.3.14) activities, as previously described[37, 38]. Spectrophotometric determina-

tions were performed with a Pharmacia Biotech spectrophotometer UV/visible Ultrospec 5000

with Swift II Application software (Cambridge, England, UK) at 560 nm. All reagents were

purchased from Sigma (St. Louis, Missouri, USA).

Western blot analysis

Briefly, left ventricular samples were extracted using RIPA Buffer to detect heme-oxygenase-1

(HO-1), caspase-3, Bcl2 and peroxisome proliferator-activated receptor-α coactivator (PGC)-

1α expression. To determine nuclear erithroid factor 2 (Nrf-2), LV samples were extracted

with Nuclear Extraction Buffer[39]. The following primary antibodies were used: HO-1-1 to

heme oxygenase-1; ab13248 (Abcam Inc, Cambridge); Nrf2: C-20, rabbit Immunoglobulin G

(Santa Cruz Biotechnology Inc, Europe); Cleaved Caspase-3 (Asp175) (5A002E) Rabbit mAb

(Cell Signalling Technology Inc., USA); Bcl2 sc 492 IgG rabbit monoclonal (Santa Cruz Bio-

technology, Inc, Europe); and PGC-1α Antibody H-300: sc-13067 (Santa Cruz Biotechnology,

Inc, Europe). GAPDH (GAPDH (6C5), mouse monoclonal IgG1, (Santa Cruz Biotechnology,

Inc., Europe, sc 32233) was used for normalization.
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Statistical analysis

Data are presented as the mean±SEM. The results were tested for both normality (Kolmogo-

rov–Smirnov test) and equal variance before statistical analyses, and all data passed these tests.

Data were analyzed by 2-factor ANOVA, therefore this analysis gives three p values: 1) factor

one: presence of myocardial infarction (I); 2) factor two: rosemary content (R); and 3) interac-

tion between factors I and R. When an interaction was found to be significant, the mean values

were compared using Holm-Sidak post hoc analysis. If an interaction was not found, the sepa-

rated factors were analysed (marginal data). A χ2 test was used to evaluate mortality between

infarcted animals. One-factor ANOVA was used to analyze infarction size in infarcted groups.

Differences were to be considered statistically significant if P<0.05. Graphs and statistical anal-

yses were performed using SigmaPlot for Windows version 12.0 (Systat Software Inc. San Jose,

CA).

Results

Survival, food intake, body weight and systolic arterial pressure

The mortality rate within 48 hours after infarction was 43%. No death in the Sham animals

was observed. In the infarcted groups, two animals in both the IR0 and IR02 groups died, and

one animal in the IR002 group died (p = 0.765). No difference was observed in infarction size

between infarcted groups (Table 1).

No difference was observed for food intake, weight gain (Table 1) and systolic arterial pres-

sure (Fig 2D) among all groups.

Effect of MI in rat hearts

MI led to adverse cardiac remodeling. Regarding morphological data, MI led to higher left

ventricular end-diastolic diameter adjusted for body weight, higher diastolic area (Table 1)

and higher left atrium (Fig 2A and 2B), CSA (Fig 3A and 3B) and percentage of collagen (Fig

3C and 3D). MI impaired diastolic heart function, as shown by increased shorter E wave decel-

eration time (EDT) (Fig 2C) and increased E/E’ ratio (Table 1), and systolic function showed

by lower fractional area change (Table 1).

Table 1. Food intake, body weight, infarction size, echocardiographic and morphometric studies in Sham and infarcted rats with and without rose-

mary supplementation.

SHAM groups Myocardial infarction groups p values

SR0 SR002 SR02 IR0 IR002 IR02 p (I) p (R) p (IxR)

Food intake (g) 25.8±0.2 24.6±0.2 25.7±0.2 25.4±0.2 25.0±0.2 25.5±0.2 0.187 0.101 0.143

Weight gain (g) 143±8.2 157±8.0 148±8.6 152±8.8 156±8.8 159±10 0.385 0.552 0.773

Infarction size (%) - - - 41.9±4.5 40.1±4.2 43.6±4,7 - 0.244 -

LVDD/BW (mm/kg) 17.9±0.41 17.1±0.39 17.9±0.29 24.6±0.74 24.2±0.68 24.1±0.93 <0.001 0.504 0.582

E wave (cm/s) 75.7±1.5 77.2±2.1 78.9±1.8 98.4±5.5 87.5±8.5 92.7±9.4 0.014 0.482 0.246

Diastolic area (mm2) 44.4±1.6 44.5±1.8 43.3±1.6 92.2±3.9 91.7±6.9 85.2±4.5 <0.001 0.359 0.557

FAC (%) 73.3±0.9 74.3±1.2 75.6±1.0 27.0±2.3 28.2±1.5 27.2±3.5 <0.001 0.697 0.757

Ejection fraction 0.91±0.01 0.92±0.01 0.93±0.01 0.47±0.02 0.49±0.02 0.46±0.02 <0.001 0.571 0.612

E/E’ ratio 19.1±0.6 19.6±0.9 18.8±0.6 24.4±1.7 25.6±2.8 23.6±2.6 <0.001 0.898 0.523

I: infarction; S: Sham; R: Rosemary; R0: no supplementation; R002: 0.02% of rosemary supplementation; R02: 0.2% of rosemary supplementation; Weight

gain: Final body weight–initial body weight (g); BW: body weight; LVDD/BW: left ventricular diastolic diameter indexed for body weight; E wave: peak

velocity of early ventricular filling; FAC: fractional area change; E/E’ ratio: early diastolic mitral inflow velocity to early mitral annular velocity ratio. Data are

expressed as the mean ± SEM. Bold numbers represent the significant effects that were considered.

https://doi.org/10.1371/journal.pone.0177521.t001
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A greater oxidation of carbohydrates and impaired energy metabolism was observed as

shown by higher activity of LDH (Fig 4A and S2 Table) and ATP synthase (Fig 4C and S2

Table), and lower activity of CS (Fig 4D and S2 Table) and Complex I (Fig 4E and S2 Table).

MI also increased oxidative stress, as presented with higher LH concentration (Fig 5A and S2

Table) and SOD activity (Fig 5B and S2 Table), lower GSH-Px activity (Fig 5C and S3 Table),

and lower expression of Nrf-2 (Fig 6A and 6B). No difference was observed for HO-1 (S3

Table and S1 Fig) and PGC-1α expression (S3 Table and S2 Fig).

Higher intermediate and total MMP-2 activity (S4 Table and S3 Fig), lower IL-10, TNF-α
and INF-γ concentration (S4 Table), and lower Bcl2 expression (S4 Table and S4 Fig) was

observed after MI. No difference was observed for caspase-3 expression (S4 Table).

Effect of rosemary supplementation after MI

Rosemary supplementation improved diastolic function (lower left atrial diameter [Fig 2A and

2B and S1 Table] and higher EDT [Fig 2C and S1 Table]) and reduced hypertrophy (Fig 3A

and S1 Table) after MI.

Fig 2. Echocardiographic study and blood systolic pressure in Sham and infarcted rats with and without

rosemary supplementation. A. LA/BW: left atrial diameter indexed for body weight (p = 0.001); B. LA/AO: left atrial

diameter indexed for aortic diameter (p = 0.024); C. EDT: E wave deceleration time (p = 0.004); D. BP: blood systolic

pressure (p = 0.343). Data are expressed as the mean ± SEM. Asterisks (*) represent significant difference between

groups (p<0.05). Sample size: SR0 = 23; SR002 = 23; SR02 = 22; IR0 = 13; IR002 = 8; and IR02 = 9.

https://doi.org/10.1371/journal.pone.0177521.g002
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Morphologic and functional changes were accompanied by increased β-oxidation of fatty

acids, reduced lactate oxidation and improved respiratory chain activity, as shown by lower

LDH activity (Fig 4A and S2 Table), and higher CS (Fig 4C and S2 Table), OHADH (Fig 4E

and S2 Table), ATP synthase (Fig 4B and S2 Table) and Complex I (Fig 4D and S2 Table) activ-

ities. Rosemary supplementation also decreased oxidative stress, with lower concentration of

LH (Fig 5A and S2 Table) and SOD activity (Fig 5B and S2 Table). No differences were

observed for GSH-Px (Fig 5C and S2 Table) and catalase (S1 Table) activities, and Nrf-2, HO-1

and PGC-1α expression (S3 Table and S3 Fig).

Differences among the doses were also observed in diastolic function and hypertrophy.

Group IR002 presented lower left atrium (Fig 2A and 2B and S1 Table) and CSA (Fig 3A and

S1 Table). Group IR02 presented higher Complex II activity (Fig 4F and S2 Table).

No difference was observed for percentage of collagen with rosemary supplementation (Fig

3B and S1 Table), cytokines concentration, MMP-2 activity (S4 Table and S3 Fig), caspase-3

and Bcl2 expression (S4 Table and S4 Fig).

Fig 3. Morphometric study in Sham and infarcted rats with and without rosemary supplementation. A. CSA: cardiomyocyte

cross-sectional area (p<0.001); B. Microscopic images of CSA H&E stained (evidenced with arrows) of groups SR0, IR0, IR002 and

IR02; C. % collagen: p = 0.035; D. Microscopic images of myocytes Picrosirius red stained for collagen (red marks in images) of SR0,

IR0, IR002 and IR02. Data are expressed as the mean ± SEM. Asterisks (*) represent significant difference between groups (p<0.05).

Sample size: SR0 = 23; SR002 = 23; SR02 = 22; IR0 = 13; IR002 = 8; and IR02 = 9.

https://doi.org/10.1371/journal.pone.0177521.g003
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Discussion

The aim of the present study was to analyze the influence of rosemary supplementation of rat

chow on adverse cardiac remodeling after myocardial infarction. Cardiac remodeling has sig-

nificant clinical relevance as it can lead to complex changes in ventricular architecture, poten-

tially evolving into chronic heart failure [7, 40]. For this reason, several strategies have been

used to mitigate this process, including compounds found in rosemary leaves[17, 41]. It is well

known that lifestyle factors, including nutrition, play a key role in the etiology of Cardiovascu-

lar Diseases (CVD), evidencing the importance to promote health diet including selected

foods rather than individual nutrients[23, 42]. In this context, the use of rosemary leaves

instead of one isolated compound might lead to a synergistic effect, since adjuvant substances

in the plant might enhance the activity of benefic components[43]. To our knowledge, this is

the first study that assessed the supplementation with whole rosemary leaves on the morphol-

ogy and function of the infarcted heart.

Myocardial infarction in the rat is an ideal model to study adverse cardiac remodeling post-

infarction[44]. Cardiac remodeling can be defined as molecular, cellular, and interstitial modi-

fications that are clinically manifested as changes in size, mass, geometry and heart function

after cardiac injury. Heart dysfunction is the final sign of cardiac remodeling and is an impor-

tant prognostic factor after MI, increasing the risk of death[45, 46]. Diastolic dysfunction after

MI refers to mechanical and functional abnormalities during relaxation and filling of the LV

and is associated with hypertrophy and increased LA[47]. In the present study, rosemary sup-

plementation after MI improved diastolic function, LV hypertrophy and LA diameters,

Fig 4. Energy metabolism enzymes in Sham and infarcted rats with and without rosemary supplementation. LDH activity: lactate dehydrogenase

activity (p = 0.014); CS activity: citrate synthase activity (p<0.001); OHADH activity: 3-hydroxyacyl coenzyme-A dehydrogenase activity (p<0.001); ATP

sinthase activity (p = 0.039); Complex I activity: p = 0.004; Complex II activity: p<0.001. Data are expressed as the mean ± SEM. Asterisks (*) represent

significant difference between groups (P<0.05). Sample size: SR0 = 8; SR002 = 8; SR02 = 8; IR0 = 10; IR002 = 7; and IR02 = 8.

https://doi.org/10.1371/journal.pone.0177521.g004
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Fig 5. Oxidative stress enzymes in Sham and infarcted rats with and without rosemary

supplementation. LH: lipid hydroperoxide concentration (p<0.001); SOD activity: superoxide dismutase
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evidencing the protective effect of rosemary leaves in the heart. Our results are in accordance

with previous studies describing improved cardiac function in cardiac injury models by doxo-

rubicin and ischemia/reperfusion after treatment with compounds found in rosemary[48, 49].

The improvement of hypertrophy and diastolic function observed after rosemary intake

was associated with changes in energy metabolism and decreased oxidative stress after MI in

the present study. As clinical manifestations can be the result of changes to the heart’s cellular

and molecular components[3], energy metabolism and antioxidant pathways could represent

the mechanisms of action of rosemary leaves supplementation. In injury situations such as MI,

the preferential use of fatty acids that are observed in the normal hearts may be shifted for glu-

cose use[50, 51]. In this case, the heart starts to form large amounts of lactate, increasing anaer-

obic metabolism of carbohydrates and LDH activity[52, 53]. Rosemary supplementation after

MI led to higher fatty acid oxidation and respiratory chain improvement, similar to the energy

metabolism of normal hearts.

In addition to metabolic changes, oxidative stress and redox signaling are important con-

tributors to cardiac remodeling[54]. Increased oxidative stress and cardiac oxidation has also

been associated with diastolic dysfunction[47]. The toxic effects of ROS can be prevented in part

by the antioxidant enzyme system including GSH-Px, SOD and catalase[55]. SOD is considered

the first line of defense in protecting the mitochondria against deleterious effects of increased

superoxide production, as described in cardiac remodeling and HF[56] and observed in the

present study. Our results showed that rosemary supplementation decreased oxidative stress,

which is in agreement with previous studies reporting antioxidant effect of rosemary and its

compounds[11, 19, 57]. Rosemary can mimic SOD by removing superoxide radicals[58], which

could also explain the lower enzyme activity in cardiac tissue of the supplemented groups.

No effect of rosemary was observed on Nrf-2 and HO-1 expression, different from what we

expected and from previous reports showing Nrf2 activation after treatment with rosemary

activity (p<0.001); GSH-Px activity: glutathione peroxidase activity (p = 0.031). Data are expressed as the

mean ± SEM. Asterisks (*) represent significant difference between groups (P<0.05). Sample size: SR0 = 8;

SR002 = 8; SR02 = 8; IR0 = 10; IR002 = 7; and IR02 = 8.

https://doi.org/10.1371/journal.pone.0177521.g005

Fig 6. Nrf2 expression in Sham and infarcted rats by Western blot. A. Nrf2 expression; B. representative western blot of Nrf2

expression. Nrf2: nuclear erithroid factor 2; GAPDH glyceraldehyde-3-phosphate dehydrogenase. Since no interaction between

factors was observed, the effect of myocardial infarction is represented. Data are expressed as the mean ± SEM. Asterisks (*)

represent significant difference between groups. Sample size: SR0 = 10; SR002 = 10; SR02 = 10; IR0 = 10; IR002 = 8; and

IR02 = 9.

https://doi.org/10.1371/journal.pone.0177521.g006
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compounds[59, 60]. One possible explanation is that in some pathological situations, as in hyp-

oxia, Nrf-2 does not increase. Regulatory mechanisms such as the E3 ubiquitin (Siah2) protein

ligase 2, which is activated in hypoxia, binds to Nrf-2 and increases its degradation, preventing it

from acting on AREs and increasing the expression of antioxidant proteins[61].

In the present study, rosemary doses led to different effect in heart diastolic function and

hypertrophy, similar to a J-shape response. The smallest dose of rosemary supplementation

caused greater improvement in post-MI heart function. [62]. Forman and collaborators (2014)

describes that antioxidants in fruits and vegetables maintain a cellular defense and adaptation

response. The authors exemplifies that supplementation of phytochemicals to levels that

exceed saturation of the antioxidant system will hardly exert any beneficial effect, by a mecha-

nism that can be called “para-hormesis”[62]. In the present study, 0.2% of rosemary supple-

mentation led to a greater antioxidant response (lower LH and higher antioxidant enzymes

activities) which could impair the cellular healthy response signaling by ROS[63]. Also our

finding of higher Complex II after 0.2% rosemary supplementation could indicate the para-

hormesis mechanism. In the mithocondria, Complex II is part of the antioxidant system by

controlling the ubiquinone pool and superoxide scavenging activity of the respiratory chain

(RC). Complex II might also be activated upon reduction of the RC[64]. So in the present

study, the supplementation with the highest dose of rosemary might have lost the protective

effect exhibited with 0.02% of rosemary.

The limitation of the present study lies in its experimental type, not allowing us to extrapo-

late the findings to humans. However, it is important to highlight the clinical relevance of the

results described. Our findings support further investigations of rosemary use as adjuvant ther-

apy in adverse cardiac remodeling. Regarding rosemary dose in the present study, 0.02% and

0.2% in the rat chow is equivalent to 11 mg/day and 110 mg/day in humans, respectively[65].

In conclusion, dietary rosemary supplementation attenuated adverse cardiac remodeling

caused by myocardial infarction in rats. The mechanism could involve improved energy

metabolism and reduced oxidative stress. Rosemary supplementation may serve as a promis-

ing approach to attenuate adverse cardiac remodeling after MI.

Supporting information

S1 Fig. Western blot for HO-1 adjusted by glyceraldehyde-3-phosphate dehydrogenase

(GAPDH). I: infarction; S: Sham; R: Rosemary; R0: no supplementation; R002: 0.02% of rose-

mary supplementation; R02: 0.2% of rosemary supplementation. Sample size: SR0 = 10;

SR002 = 10; SR02 = 10; IR0 = 10; IR002 = 8; and IR02 = 9.

(TIF)

S2 Fig. Western blot for PGC1-α adjusted by glyceraldehyde-3-phosphate dehydrogenase

(GAPDH). I: infarction; S: Sham; R: Rosemary; R0: no supplementation; R002: 0.02% of rose-

mary supplementation; R02: 0.2% of rosemary supplementation. Sample size: SR0 = 10;

SR002 = 10; SR02 = 10; IR0 = 10; IR002 = 8; and IR02 = 9.

(TIF)

S3 Fig. Zimography picture of metalloproteinase-2 (72 kDa). I: infarction; S: Sham; R: Rose-

mary; R0: no supplementation; R002: 0.02% of rosemary supplementation; R02: 0.2% of rose-

mary supplementation. Sample size: SR0 = 10; SR002 = 10; SR02 = 10; IR0 = 5; IR002 = 5; and

IR02 = 4.

(TIF)

S4 Fig. Western blot for Bcl-2 and Caspase-3 adjusted by glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). I: infarction; S: Sham; R: Rosemary; R0: no supplementation;
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R002: 0.02% of rosemary supplementation; R02: 0.2% of rosemary supplementation. Sample

size: SR0 = 10; SR002 = 10; SR02 = 10; IR0 = 10; IR002 = 8; and IR02 = 9.

(TIF)

S1 Table. Food intake, body weight, infarction size, echocardiographic and morphometric

studies in Sham and infarcted rats with and without rosemary supplementation. I: infarc-

tion; S: Sham; R: Rosemary; R0: no supplementation; R002: 0.02% of rosemary supplementa-

tion; R02: 0.2% of rosemary supplementation; BW: body weight; LVDD/BW: left ventricular

diastolic diameter indexed for body weight; AO: aortic diameter; LA: left atrial diameter;

LA/BW: left atrial diameter indexed for body weight; LA/AO: left atrial diameter indexed for

aortic diameter; E wave: peak velocity of early ventricular filling; FAC: fractional area change;

EDT: E wave deceleration time; E/E’ ratio: early diastolic mitral inflow velocity to early mitral

annular velocity ratio; CSA: cardiomyocyte cross-sectional area. Data are expressed as the

mean ± SEM. Bold numbers represent the significant effects that were considered. �IxR: when

interactions are observed, same superscript letters represent differences (p<0.05) in a row

(a = IR06¼SR0; b = IR0026¼SR002; c = IR026¼SR02; A = IR06¼IR002; B = IR0026¼IR02; C =

IR06¼IR02). Sample size: SR0 = 10; SR002 = 10; SR02 = 10; IR0 = 10; IR002 = 8; and IR02 = 9.

(PDF)

S2 Table. Energy metabolism and oxidative stress enzymes in Sham and infarcted rats with

and without rosemary supplementation. I: infarction; S: Sham; R: Rosemary; R0: no supple-

mentation; R002: 0.02% of rosemary supplementation; R02: 0.2% of rosemary supplementa-

tion; LDH activity: lactate dehydrogenase activity (nmol/mg protein); PIDH activity: pyruvate

dehydrogenase activity; CS activity: citrate synthase activity; OHADH activity: 3-hydroxyacyl

coenzyme-A dehydrogenase activity; ATP sinthase activity; Complex I activity; Complex II

activity; LH: lipid hydroperoxide concentration; SOD activity: superoxide dismutase activity;

GSH-Px activity: glutathione peroxidase activity. Data are expressed as the mean ± SEM. Bold

numbers represent the significant effects that were considered. �IxR: when interactions are

observed, same superscript letters represent differences (p<0.05) in a row (a = SR06¼IR0;

b = SR0026¼IR002; c = IR026¼SR02; A = IR06¼IR002; B = IR0026¼IR02; C = IR06¼IR02). Sample

size: SR0 = 8; SR002 = 8; SR02 = 8; IR0 = 10; IR002 = 7; and IR02 = 8.

(PDF)

S3 Table. Nrf2, HO-1 and PGC1-a expression in Sham and infarcted rats with and without

rosemary supplementation by Western blot. I: infarction; S: Sham; R: Rosemary; R0: no

supplementation; R002: 0.02% of rosemary supplementation; R02: 0.2% of rosemary supple-

mentation; Nrf-2: nuclear erithroid factor 2; HO-1: heme-oxygenase-1; PGC1α: peroxisome

proliferator-activated receptor-α coactivator. Data are expressed as the mean ± SEM. Bold

numbers represent the significant effects that were considered. Sample size: SR0 = 10;

SR002 = 10; SR02 = 10; IR0 = 10; IR002 = 8; and IR02 = 9.

(PDF)

S4 Table. TIMP-1, MMP-2 activity, cytokines and apoptosis markers in Sham and

infarcted rats with and without rosemary supplementation. I: infarction; S: Sham; R: Rose-

mary; R0: no supplementation; R002: 0.02% of rosemary supplementation; R02: 0.2% of rose-

mary supplementation; PFK activity: Phosphofructokinase activity; TIMP-1: Metaloprotease

inhibitor-1; MMP-2: metaloprotease-2; IL-10: interleukin-10; ICAM-1: intercellular adhesion

mollecule-1; TNF-α: tumor necrosis factor-α; INF-γ: interferon-γ. Data are expressed as

mean ± SEM. Bold numbers represents significant effects considered. Sample size: SR0 = 10;

SR002 = 10; SR02 = 10; IR0 = 10; IR002 = 8; and IR02 = 9.

(PDF)
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