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Abstract: Diffusion imaging is critical for detecting acute brain injury. However, normal apparent dif-
fusion coefficient (ADC) maps change rapidly in early childhood, making abnormality detection diffi-
cult. In this article, we explored clinical PACS and electronic healthcare records (EHR) to create age-
specific ADC atlases for clinical radiology reference. Using the EHR and three rounds of multiexpert
reviews, we found ADC maps from 201 children 0–6 years of age scanned between 2006 and 2013 who
had brain MRIs with no reported abnormalities and normal clinical evaluations 21 years later. These
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images were grouped in 10 age bins, densely sampling the first 1 year of life (5 bins, including neo-
nates and 4 quarters) and representing the 1–6 year age range (an age bin per year). Unbiased group-
wise registration was used to construct ADC atlases for 10 age bins. We used the atlases to quantify
(a) cross-sectional normative ADC variations; (b) spatiotemporal heterogeneous ADC changes; and (c)
spatiotemporal heterogeneous volumetric changes. The quantified age-specific whole-brain and region-
wise ADC values were compared to those from age-matched individual subjects in our study and in
multiple existing independent studies. The significance of this study is that we have shown that clini-
cally acquired images can be used to construct normative age-specific atlases. These first of their kind
age-specific normative ADC atlases quantitatively characterize changes of myelination-related water
diffusion in the first 6 years of life. The quantified voxel-wise spatiotemporal ADC variations provide
standard references to assist radiologists toward more objective interpretation of abnormalities in clini-
cal images. Our atlases are available at https://www.nitrc.org/projects/mgh_adcatlases. Hum Brain
Mapp 38:3052–3068, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Apparent diffusion coefficient (ADC) maps are parameter
maps derived from diffusion tensor magnetic resonance
images. ADC maps provide quantitative measures of water
diffusion within brain tissue [Beaulieu, 2002; Le Bihan et al.,
2001]. Many early childhood brain disorders cause regional
decreases in water diffusion coincident with or before they
cause changes on structural MRI [Liauw et al., 2008; Sener,
2001; Wolf et al., 2001]. Therefore, ADC maps are a key com-
ponent in the diagnosis and prognosis of many early child-
hood brain disorders (e.g., ischemic insults, metabolic
disorders, inflammatory and infectious processes [Counsell
et al., 2003; Engelbrecht et al., 2002; Gano et al., 2013; Neil
et al., 1998; Padhani et al., 2009]. However, interpreting
quantitative ADC maps in early childhood is challenging.
For example, in neonatal hypoxic ischemic encephalopathy
(HIE), there is 20–50% intra-/inter-reader variability even for
experienced pediatric neuroradiologists [Goergen et al.,
2014; Ozturk, et al., 2008]. Difficulties in interpreting early
childhood ADC maps arise because there is considerable
individual variation and because the appearance of normal
ADC maps changes significantly with age, particularly in the
first two years of life [Deoni et al., 2011; Kwan et al., 2015;
Neil et al., 1998; Sasaki et al., 2008; Schneider et al., 2009].
Thus, detection of abnormalities in ADC maps, which are
often subtle and complex, is confounded by individual vari-
ability and rapid regional variations due to normal brain
development [Liauw et al., 2008; Wolf et al., 2001]. To objec-
tively and consistently detect abnormalities in ADC maps,
ready access to quantitative normal ADC atlases at multiple
time points during early childhood brain development
would be advantageous [Almli et al., 2007; Mori et al., 2013].

An ideal ADC atlas would provide quantitative informa-
tion on ADC changes during early brain development.

However, existing studies only coarsely sample the ages
from birth to 6 years. Some studies report ADC values for
four years and up [Morris et al., 2009], or adolescence to
young adulthood [Helenius et al., 2002; Naganawa et al.,
2003; Sener 2001; Zhai et al., 2003], but did not report ADC
changes in early childhood. Other studies report ADC val-
ues at birth [Engelbrecht et al., 2002; Kwan et al., 2015; Mor-
riss et al., 1999; Neil et al., 1998; Sadeghi et al., 2013; Zhai
et al., 2003], but not months or years after birth. Additional
studies report ADC values in the first one [Provenzale et al.,
2010], first two [Sener, 2001] or two to four [Engelbrecht
et al., 2002] years of life, treating individuals within these
intervals as representing one developmental stage. There-
fore, prior studies have not captured the fine details of the
rapidly changing ADC trajectories within the first 6 years of
life. Quantitative ADC atlases providing changing ADC val-
ues during early childhood, with densely sampled atlases in
the first two years of life, when brain develops most rapidly
[Deoni et al., 2011; Kwan et al., 2015; Neil et al., 1998; Sasaki
et al., 2008], are lacking.

An ideal ADC atlas would also provide regional as well
as temporal ADC variations because different brain
regions have different ADC values [Deoni et al., 2011;
Watanabe et al., 2013]. However, little information on
regional variations exists because: (1) the regions reported
in the literature cover only part of the brain (e.g., corpus
callosum [Engelbrecht et al., 2002; Morriss et al., 1999; Pro-
venzale et al., 2010; Sadeghi et al., 2013; Zhai et al., 2003],
caudate [Neil et al., 1998; Sener, 2001], thalamus [Helenius
et al., 2002; Kwan et al., 2015; Naganawa et al., 2003; Neil
et al., 1998; Sener, 2001], anterior and/or posterior white
matter [Engelbrecht et al., 2002; Helenius et al., 2002;
Kwan et al., 2015; Naganawa et al., 2003; Neil et al., 1998;
Provenzale et al., 2010; Zhai et al., 2003]); (2) many studies
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manually annotated a small portion or only several voxels
within a region; (3) across-subject ADC variations were
not reported, making it challenging to know if an individ-
ual subject’s regional ADC value is within or outside nor-
mal variation; and (4) reported mean ADC values for large
brain regions limits the ability to detect small, subtle
changes that are restricted to only a subset of the region.
Atlases should ideally quantify normal ADC statistics
(means and standard deviations) at every voxel in the
brain. However, such atlases do not currently exist for
ADC maps in early life.

Existing childhood MRI atlases (Table I) are either
cross-sectional [Akiyama et al., 2013; Altaye et al., 2008;
Fonov et al., 2011; Geng et al., 2012; He and Parikh, 2013;
Kazemi et al., 2007; Luo et al., 2014; Nossin-Manor et al.,
2013; Oishi et al., 2011; Prastawa et al., 2005; Shi et al.,
2014; Weisenfeld and Warfield, 2009;Weisenfeld et al.,
2006a,b; Wilke et al., 2008; Xue et al., 2007; Zhang et al.,
2014], or, are often based on structural MRI [Kuklisova-
Murgasova et al., 2011; Sanchez et al., 2012a,b; Serag
et al., 2012; Shi et al., 2011; Xie et al., 2015]. The only
study that constructed age-specific diffusion MRI atlases

did so at only three time-points (newborn, 1 year and 2
years of age) [Sadeghi et al., 2013], did not densely sam-
ple the first two years of life, and did not provide public
access to the atlases. The unmet needs being addressed
in our work are: (i) the lack of age-specific 3D quantita-
tive ADC atlases; (ii) the lack of densely sampled ADC
atlases during the first year of life when ADC changes
are most rapid (although [Shi et al., 2011] and [Sadeghi
et al., 2013] are pioneering studies that constructed struc-
tural atlases from subjects 0 to 2 years of age, we extend
these studies to include ADC atlases for a larger number
of more narrowly defined age bins); and (iii) while exist-
ing studies in Table I were primarily constructed to
enable neuroimaging data analysis (providing atlases for
segmentation priors or a standard space for morphome-
try), there is an emerging demand from clinical radiolog-
ists for normative regional ADC values during early
childhood to enable more objective identification of
abnormalities in clinical ADC maps. To address these
unmet needs, we set out to construct a series of whole
brain age-specific ADC atlases to quantify normal ADC
variations in every voxel from birth to 6 years of life.

TABLE I. Comparison with existing cross-sectional and age-specific atlases

Studies MRI modality # Subjects Age at MRI
# Age
bins

Atlases
released

Scanner and magnetic
field of strength

Cross-sectional atlases

Prastawa et al., 2005 T1w 3 Neonate 1 Siemens 3T
Weisenfeld et al., 2006a T1w, T2w 13 42 weeks GA 1 GE 1.5T
Weisenfeld et al., 2006b T1w, T2w 20 42 weeks GA 1 GE 1.5T
Kazemi et al., 2007 T1w 33 39–42 weeks GA 1 Yes GE 1.5T/3T, Siemens 3T
Xue et al., 2007 T2w 20 27–44 weeks GA 1 Philips 3T
Wilke et al., 2008 T1w 404 4.8–18.6 years 1 GE 1.5T, Siemens 1.5T
Altaye et al., 2008 T1w 77 9–15 months 1 Siemens 3T
Weisenfeld et al., 2009 T1w, T2w 15 42 weeks GA 1 GE 1.5T
Oishi et al., 2011 T1w, T2w, DTI 25 38–41 weeks PC 1 Yes Philips 3T
Geng et al., 2012 FA, RD, AD 211 0–2 years 1 Siemens 3T
He et al., 2013 T2w 19 23–30 weeks GA 1 Philips 3T
Nossin-Manor et al., 2013 T1w, T2w, DTI 54 26–34 weeks GA 1 GE 1.5T
Akiyama et al., 2013 T1w 60 6 months 1 Yes GE 1.5T, Siemens 3T
Zhang et al., 2014 T1w, FA 9 2–13 days 1 Siemens 3T
Shi et al., 2014 T2w 73 9–55 days 1 Siemens 3T
Luo et al., 2014 T1w 53 5.93–8.01 years 1 Philips 1.5T

Age-specific atlases

Shi et al., 2011 T1w, T2w 95 0–2 years 3 Yes Siemens 3T
Fonov et al., 2011 T1w, T2w, PD 324 4.5–18.5 years 5 Yes GE 1.5T, Siemens 1.5T
Kuklisova-Murgasova

et al., 2011
T2w 142 29–44 weeks, GA 6 Philips 3T

Sanchez et al., 2012a T1w, T2w 154 2 weeks – 4 years 13 Yes GE 1.5T, Siemens 1.5T/3T
Sanchez et al., 2012b T1w, T2w 494 4.5–24 years 32 Yes GE 1.5T, Siemens 1.5T/3T
Serag et al., 2012 T1w, T2w 204 26–44 weeks, PC 9 Philips 3T
Sadeghi et al., 2013 FA, MD, RD, AD 26 0–2 years 3 Siemens 3T
Xie et al., 2015 T1w 138 7–16 years 5 Siemens 3T, GE 3T
Ours ADC 201 0–6 years 10 Yes Siemens 3T

MRI: magnetic resonance imaging; T1w and T2w: T1- and T2-weighted MRI; PD: proton density MRI; DTI: diffusion tensor imaging;
GA: gestational age; PC: postconception.
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METHODS

Querying, Downloading and Selecting Clinically

Acquired Images

This study is HIPAA-compliant and IRB approved. At
our institution, diffusion imaging and generation of ADC
maps are part of the pediatric brain MRI protocol for a
variety of clinical indications. Our motivation was that,
among the vast number of children who had undergone
clinical MR scans at the Massachusetts General Hospital
(MGH), there were likely to be a small number who were
suspected to have brain disorders, but who turned out to
be normal after MR evaluation and clinical follow-up.
Those images could provide a normative cohort to guide
clinical interpretation of new cases as the diffusion
sequence was acquired with our exact clinical protocol.
We were aware that clinical data might be highly inconsis-
tent and incomplete, and that children who underwent
clinical scans were at risk of minor and subtle abnormali-
ties that were not necessarily captured at the time of scan.
Considering these factors, we used three rounds of very
strict and conservative reviews to select the final norma-
tive cohort.

Query and data download

We used the Research Patient Data Registry (RPDR) to
query the EHR and identify the cohort of interest, then, the
Medical Imaging Informatics Bench to Bedside (mi2b2,
https://www.nmr.mgh.harvard.edu/lab/mi2b2) software
[Murphy et al., 2015] to access the identified cases from the
PACS at MGH. The criteria for subjects in our initial cohort
were: (a) scanned between 2006 and 2013, with scanner-
generated ADC maps; (b) 0 to 6 years of age at the time of
the scan; and (c) having radiological reports with short
impressions indicating no detected abnormalities [Coakley
et al., 2003]. We also excluded images from any neonate
with a history of preterm birth noted in the medical record.
We found 2,871 term subjects who satisfied all these condi-
tions. Some subjects’ images were missing, incomplete or
corrupted. So we were only able to obtain complete ADC
maps for 1,648 out of those 2,871 subjects.

Selection based on longitudinal clinical reports

Out of the 1,648 subjects whose ADC maps we down-
loaded, 705 had radiological reports showing no clear

abnormality at the time of the scan. To further exclude
those who may have abnormalities that were too subtle or
too early to tell at the time of the scan, we used RPDR
again and pulled the follow-up clinical and radiological
reports of those 705 children up to 2 years after the initial
scan. We removed 322 children who were reported with
brain abnormalities in later visits. We had 383 children
remaining in our dataset.

Selection based on additional expert reviews

These 383 children remaining may still have very minor
or subtle abnormalities, which, although not concerning
clinically, may contaminate our data. Therefore, we con-
ducted two additional rounds of expert review of the
ADC maps at their initial visit. Two experts—a pediatric
neuroradiologist (PEG) and a neonatologist (SVB)—
reviewed the radiology reports (PEG) and complete clini-
cal records (SVB) of the remaining 383 subjects one by
one. If either of the two experts found evidence or strong
suspicion of a neurological disorder, the subject was
excluded, even if the radiological report did not identify a
clear abnormality. With these exclusions, ADC maps of
201 children remained. These 201 subjects were free of
neurological disorders at the time of the MRI and at
follow-up visits up to 2 years after the MRI. Those 201
ADC maps became our normative cohort for atlas
construction.

Imaging information

All imaging studies were performed on Siemens Trio 3T
scanners and our clinical diffusion protocol was as follows:
TR 5 7,500–9,500 ms, TE 5 80–115 ms, b value 5 1,000 s/mm2,
matrix 5 128 3 128 3 60, voxel size 5 2 3 2 3 2 mm and num-
ber of diffusion directions 5 32. ADC maps were automatically
generated by the diffusion sequence.

Atlas Construction

Patient grouping

We divided the 201 subjects into 10 age groups. They
included: the first two weeks of life, the remaining first
quarter, the second, third and fourth quarter of the first
year, then, every year from the second to the sixth year of
the life. These age divisions were chosen specifically to

TABLE II. The numbers of male, female and all subjects in the 10 age bins

Age

Y1

Y2 Y3 Y4 Y5 Y6 TotalW1-2 Rest of Q1 Q2 Q3 Q4

# Subjects 13 13 8 8 13 34 33 25 21 33 201

# Females 4 5 4 5 5 17 14 14 10 15 93

“W1-2” refers to the first 2 weeks of life. “Q2” refers to the second quarter of the first year of life and “Y3” refers to the third year of
life. Other abbreviations are similarly defined.
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sample the first two years and, in particular, the first year
more densely.

Table II lists the numbers of male, female and all sub-
jects in each age group. Figure 1 shows the distributions of
the exact ages in each age group. The numbers of males
and females were roughly balanced (1.1:1 to be precise).

Brain extraction

ADC maps were skull stripped by an automated multi-
atlas brain extraction algorithm [Ou et al., 2015a]. This
algorithm achieved consistently high agreement (0.96 6
0.01 Dice Coefficient) with expert annotations in all age
groups [Ou et al., 2015a]. Step 1 in Figure 2 visualizes the
automatically computed brain extraction results (red con-
tours) for all subjects in the Q2 age group. We used the
skull stripped ADC maps for atlas construction.

Constructing age-specific atlases

We constructed 10 ADC atlases corresponding to the
age groups noted above. Atlas construction was formulat-
ed as an unbiased group-wise deformable registration
problem [Fonov et al., 2011], similar to [Fonov et al., 2011;
Guimond et al., 2000; Kuklisova-Murgasova et al., 2011].
Briefly, the atlas construction was unbiased, in the sense
that we did not randomly pick any one subject and regis-
ter every other subject into this subject space, which
would introduce bias toward the anatomy and the ADC
histogram distributions of this randomly chosen subject. In
the unbiased atlas construction, we iteratively computed a
virtual space, referred to as the atlas space, which

represented the mean geometry and mean anatomy of all
images in the group. Mathematically, the virtual atlas
space was a space such that the N deformations needed to
map the N images in the same age group into this virtual
atlas space sum up to zero everywhere within this atlas
space [Guimond et al., 2000]. After having computed the
atlas space, and after having computed the deformations
needed to register images in the same age group to this
atlas space, the mean atlas (latlas) was computed by direct-
ly averaging all mapped ADC values from all subjects at
every voxel in the atlas space. The standard deviation map
in the atlas space (ratlas) was similarly computed by com-
puting standard deviations of mapped ADC values from
all subjects at every voxel in the atlas space.

The atlas construction was initialized by affine registra-
tions to establish global spatial correspondence between
the input images. After that we computed deformable reg-
istration to account for regional differences. The resulting
atlas space, after affine and deformable processes, became
the final atlas space in each age group.

The central part of the atlas construction consisted of
pair-wise registrations. Of the many available registration
algorithms [Klein et al., 2009; Ou et al., 2014; Sotiras et al.,
2013], we chose the DRAMMS pair-wise registration soft-
ware [Ou et al., 2011] (https://www.nitrc.org/projects/
dramms) and its group-wise registration version specifi-
cally programmed for unbiased atlas construction
(https://www.nitrc.org/projects/popdramms). We chose
DRAMMS because of its strong performance compared to
more than 10 algorithms in image registration with across-
subject variation [Ou et al., 2014], good performance in

Figure 1.

Distribution of children’s ages within each atlas age group. [Color figure can be viewed at

wileyonlinelibrary.com]
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ADC modality [Erus et al., 2014; Ou et al., 2015a; Sat-
terthwaite et al., 2014] and good performance in develop-
ing brains as rapidly changing as in baboon [Love et al.,
2016], mouse [Anderson and Maga, 2015; Ingalhalikar
et al., 2015; Young and Maga, 2015] and children as young
as neonates [Erus et al., 2014; Ou et al., 2014; Satterthwaite
et al., 2014, 2016].

As a conceptual depiction, Step 2 in Figure 2 shows the
constructed (unbiased) atlas, with both the mean atlas and
the standard deviation map, in the exemplar Q2 age group.

Validation of and Data Extraction from Atlases

We validated the accuracy of our atlases as a representa-
tion of the cohort we selected in two ways, corresponding
to two hypotheses.

First, we tested the hypothesis that the ADC values in
the constructed atlases were representative of the mean
ADC values in the collected cohort, in each age group.
That was, one atlas could represent multiple individuals.
This hypothesis should hold if the unbiased atlas construc-
tion served its theory. This means that we can annotate
one atlas and arrive at the same exact ADC statistics as if
we repeatedly annotate ADC maps from multiple individ-
uals. To test this hypothesis, we compared the brain vol-
ume and ADC values in the constructed atlases with the
mean values of all individuals in the same age group, for
all age groups. A Student’s t-test was calculated to see if
the mean of population was statistically significantly dif-
ferent from the values in the atlases.

Second, we tested the hypothesis that once carefully
reviewed and processed, clinically acquired ADC maps
could generate similar global and regional ADC statistics
compared to those from data sets generated from normal
subjects recruited into research studies. We tested this
hypothesis by comparing the mean ADC values of our
atlases, which were based on clinical images, with mean
ADC values, both voxel wise and for several regions of
interest (ROIs), as reported in the literature for normal
subjects.

Quantifying global and regional ADC changes

We summarized whole-brain mean ADC values in each
age-specific ADC atlas. Additionally, a trained person
(KR) annotated representative white and gray matter
regions of interests (ROIs, in 3D) in all of our age-specific
ADC atlases. A second person (YO) verified the ROI anno-
tations. We chose ROIs that have been frequently studied
in the literature for age-dependent ADC changes (Table
IV). They include bilateral anterior and posterior whiter
matter (WM) ROIs, as well as the entire bilateral caudate
heads, bilateral thalami and corpus callosum. Anterior and
posterior WM ROIs were placed where we had high confi-
dence that only WM was included, and where each ROI
spanned at least 3 axial slices and contained at least 50
voxels (in atlases for age groups under 1 year) and 100
voxels (in atlases for 1 year or older ages). The boundaries
of caudate head, thalamus and corpus callosum were well
defined, so we were able to label them in their entirety
using all three planes. We plotted the ROI-specific mean

Figure 2.

Illustration of atlas construction in one age group (Q2). From all extracted brains (red contours

in step 1), we computed an atlas space quantifying mean and standard deviation (stdev) ADC val-

ues at every voxel (step 2). [Color figure can be viewed at wileyonlinelibrary.com]
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ADC values across ages to quantitatively summarize neu-
rodevelopmental ADC changes in these ROIs. We further
compared our findings with the literature (from individual
subjects).

Quantifying growth of mean geometries

We used the 4D-DRAMMS deformable registration
(https://www.nitrc.org/projects/dramms4d, validated in
[Ou et al., 2014, 2015b]) to align all constructed ADC
atlases. Then, we used tensor-based morphometry (TBM)
to capture how the mean brain geometry changed in space
and time. Specifically, we calculated the Jacobian Determi-
nant maps from the series of deformations obtained in the
4D registration for TBM. The non-negative Jacobian deter-
minant value at a voxel specified fractional volume (vol-
ume preservation if 5 1, expansion if >1, or shrinkage if
<1) needed to transform a voxel from the baseline atlas
into the ADC atlas of older ages.

RESULTS

Whole Brain Exploration of Age-Specific Atlases

from Clinically Acquired Images

Figure 3 shows the constructed age-specific ADC atlases.
Figure 4 shows the change of whole-brain volume and
ADC values derived from atlases. As expected, ADC val-
ues decline and brain volume expands from birth to 6
years of age. The changes are most rapid in the first 2
years of life and then slow down, reaching a plateau by
5–6 years of age, which is consistent with previous studies
[Deoni et al., 2011; Watanabe et al., 2013].

The mean brain volume at birth is around 500 ml and
reaches a plateau after 6 years of age, at around 1,300 ml,
consistent with existing reports (Table III). On average,
males have bigger brains than the females, but these dif-
ferences are not always statistically significant. Looking at
Tables II and III together, the differences of male-versus-
female brain volumes are insignificant (P> 0.05) in those

Figure 3.

Representative coronal, sagittal and axial views of the constructed age-specific ADC atlases.

[Color figure can be viewed at wileyonlinelibrary.com]
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age groups having less than 15 total subjects (the first 5
age groups), and are significant in 4 out of the remaining
5 age groups having more than 15 total subjects. This
underscores the need for a replication study with larger
cohorts if we want to draw more conclusive observations
on gender differences (see Discussion for future work).

As expected, the brain volumes observed in the atlases
are statistically equivalent to those observed in individuals
in corresponding age groups (P> 0.05 in all ages, Table III).
This visualizes the mathematical theory that the unbiased
construction of atlases do accurately represent the mean
whole brain volume in each age group [Fonov et al., 2011].

Males and females in all age groups of our cohort had
equivalent whole-brain mean ADC values (Fig. 4b and
Table III). Moreover, the mean ADC value measures in the
atlases are statistically equivalent to that measured from
individuals in matched age groups. This ADC result (Fig.
4b), and the results on brain volume (Fig. 4a), both sup-
port our hypothesis that the constructed atlas of an age
group does faithfully represent the mean of the individu-
als in the same age group.

Also, the quantitative metrics from our atlases are com-
parable (given expected variation due to differences in
scanners, fields of strength and image resolutions) to
reports from individual subjects in published studies [Gil-
more et al., 2007; Huang et al., 2006; Knickmeyer et al.,
2008; Watanabe et al., 2013].

ROI-Based Exploration of Age-Specific Atlases

from Clinically Acquired Images

We evaluated ADC values in representative white and
gray matter ROIs (Fig. 5). ADC values in white matter at
birth are high (1,100–1,500 mm2/s), decrease rapidly in the
first two years and reach a relative plateau after 3 years of
age (700–900 mm2/s). The mean ADC values in our atlases
after 3 years of age are in the same range as those for

healthy adults [Helenius et al., 2002; Naganawa et al.,
2003; Zhai et al., 2003]. Although we find no evidence of
left–right hemispheric differences, our atlases demonstrate
the previously reported developmental shift in anterior-
posterior asymmetry. Anterior regions tend to have 100
mm2/s higher ADC values than posterior regions in the
first year, but after one year these differences are no longer
detected. Finally, the corpus callosum has higher mean
ADC values than other ROIs at each stage (except anterior
white matter) but this difference diminishes over time,
being 200–400 mm2/s higher at birth and only 50–200
mm2/s higher by 3 years of age.

Table IV further summarizes our findings in the context
of existing literature. Prior reports have provided mean
ADCs from a sparse set of ROIs in one or in a coarsely
sampled set of ages. Each report was based on ROIs
drawn on individual subject ADC maps and then aver-
aged together [Engelbrecht et al., 2002; Engelter et al.,
2000; Helenius et al., 2002; Morriss et al., 1999; Naganawa
et al., 2003; Provenzale et al., 2007; Sasaki et al., 2008]. In
contrast, we show results from a sample of representative
ROIs placed in each of our 10 atlases from ages 0 to 6
years of age. Our results are similar to published values.
This suggests that: (a) regional analysis of one atlas can
generate results similar to regional analysis of images
from mulitple individuals; (b) with careful review, images
acquired clinically produce similar results compared to
prospectively gathered normal volunteer cohorts.

Spatiotemporal Patterns of Brain Development

Another application of our atlases is to quantify how the
average brain geometry evolves with age. Figure 6 shows
the relative volume of each atlas compared to the W1–2
atlas at each voxel. All brain regions underwent their fast-
est expansion in the first year. The expansion gradually
slowed between year 1 and 3, reaching a plateau after year

Figure 4.

The whole-brain volume and mean ADC values in individuals and in the constructed atlases.

[Color figure can be viewed at wileyonlinelibrary.com]
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4. Brain development was also spatially heterogeneous:
the frontal lobe and medial temporal areas expanded
faster than other regions in agreement with reported find-
ings derived from structural MR modalities [Fonov et al.,
2011; Sanchez et al., 2012a; Serag et al., 2012].

DISCUSSION

Summary and Contributions

In this study, we mined the EHR and PACS to extract a
large number of clinically generated ADC maps in nor-
mative subjects aged 0 to 6 years of life. We created the
largest set of age-specific normative ADC atlases in this
age range, for the first time densely sampling the first
two years of age (see Table I for comparison with existing
atlases). We showed that the resulting age specific ADC
atlases have ADC values and volumetric changes that are
globally and regionally comparable to those from previ-
ously reported studies in prospectively gathered images.
In addition, we reported ADC changes not only in a few
regions where previous reports exist, but for the first

time at every voxel in the brain. Finally, we made these
densely sampled quantitative ADC atlases publicly
available.

We chose to create quantitative ADC atlases, because of
their practical use in clinical diagnoses. In clinical practice,
a trainee often learns what is normal by viewing clinical
images that have been visually inspected and deemed nor-
mal by an experienced neuroradiologist. Experienced neu-
roradiologists learn what is normal by obtaining follow-up
on clinically acquired cases. Here, we leverage the EHR
and clinical PACS to perform these tasks systematically
and objectively across a large cohort in greater detail to
begin to define age-specific normative reference values. By
making our atlases publicly available we are providing
others with the opportunity to understand normal ADC
changes during early-life development. Our future studies
will explore the ability of our atlases to decrease variabili-
ty in clinical reads of ADC maps by providing neuroradi-
ologists a normal reference. In addition, we will explore
the ability of our atlases to guide clinical interpretation by
detecting statistically significant voxel-wise ADC changes
in a reference study.

Figure 5.

Manual annotations of ROIs in a representative atlas (the Y2 age group), and the change of mean

ADC values in these atlas-based ROIs plotted with respect to age. The ROI annotations were

done in 3D in all age-specific atlases, but only representative 2D planes in the Y2 atlas are dis-

played here. In all plots, the x axis is age in years and the y axis is the mean ADC value in the

ROI (unit: mm2/s). [Color figure can be viewed at wileyonlinelibrary.com]
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Strengths and Significance

This study was possible given recent technical innova-
tions in clinical informatics tools and in clinical pediatric
image analysis. First, the ability to use informatics tools to
easily access and mine the clinical PACS for clinically
acquired images for secondary research use is a recent
advance [Murphy et al., 2015]. It allows us to use EHR-
based informatics tools to limit the number of potential
cases needing individual vetting by an investigator. Here,
started by identifying 2,871 potentially normative cases
from the tens of thousands of scans of 0- to 6-year old in
our PACS, used our software tools to eliminate all of 383
which needed to be reviewed by an expert to yield our
final cohort of 201 ADC maps. In addition, atlas construc-
tion was based on exploiting recent advances in image
analysis pipelines, which could accurately and consistently
skull strip [Doshi et al., 2013; Ou et al., 2015a] and register
[Ou et al., 2011, 2014] ADC maps, even though images
were from heterogeneous early-life populations and even
though images were clinically acquired.

The resulting atlases (Fig. 3) are with no significant sus-
ceptibility distortions that are common in adult diffusion
MRI images. This is primarily due to the lack of pneumati-
zation of the frontal sinuses before 5 years of age [Adibelli
et al., 2011] and less prominent mastoid air cells compared
to adult populations [Cinamon, 2009]. In addition, multi-
ple experts visually reviewed the ADC maps and excluded
those with severe motion artifacts and susceptibility distor-
tions; and the atlas construction process was able to com-
pute an average geometry/anatomy, which cancels off any
remaining nonsystematic artifacts or distortions from indi-
vidual ADC maps.

The constructed atlases have multiple potential uses:

a. In radiology reading rooms, our normative ADC
atlases can provide valuable quantitative references
to assist radiologists in abnormality detection. Our
recent preliminary results showed that utilizing our
atlases helped reduce inter-rater variability of radiol-
ogy reads [Jaims et al., 2015], however, a larger-scale
study is needed to confirm these initial findings.

b. In radiology classrooms, tutorials can be developed
around these atlases for students and radiology resi-
dents to help them learn the normative appearance
of ADC maps. We believe that our detailed 3D1time
atlases will be able to help them explore regional and
voxel-wise normative ADC variations instead of rely-
ing on single slice (2D) qualitative exemplar images
that are traditionally used.

c. In computer-aided detection, our atlases have the
potential to provide a means to detect a range of
abnormalities as outliers to normal ADC variations.
Our preliminary results showed that voxel-wise com-
parison to atlases allowed us to automatically identi-
fy brain regions with neonatal hypoxic ischemic
injury [Ou et al., 2015c], where our accuracy is
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comparable to that of two independent expert radiol-
ogists [Ou et al., 2017]. Again, larger-scale studies are
needed to confirm these initial results.

d. In neuroscience and brain development studies, our
atlases can be used to quantify how water diffusion
changes in space and time (see Fig. 6). Additionally,
when quantifying regional ADC values (e.g., [Neil
et al., 1998; Provenzale et al., 2007; Watanabe et al.,
2013; Zhai et al., 2003]), our age-specific atlases can
now be used to annotate the ROIs instead of needing

to annotate individual ADC maps, saving both time
and effort yet arriving at comparable results (Tables
III and IV);

e. In multimodal, longitudinal and/or population
imaging studies, our age-specific ADC atlases offer
an additional modality to compare to structural or/
and functional acquisitions. They also provide a stan-
dard space for spatially normalizing individual ADC
atlases in voxel-based morphometry (VBM) or lesion-
symptom mapping (LSM) studies.

Figure 6.

Volumetric changes of age-specific atlases relative to the W1-2 atlas. “Jac. Det.” is short for Jaco-

bian Determinant, which measures the volumetric ratio at each voxel. [Color figure can be

viewed at wileyonlinelibrary.com]
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Limitations and Future Work

This study has limitations. Our comparison to published
ADC values and growth curves are qualitative and not sta-
tistical because prior data is limited (Tables III and IV). In
addition, for regional analysis we were only able to com-
pare our results to the small set of regions for which
results have been previously reported. Also, there were
differences in scanners and in imaging sequences between
our study and existing studies making exact comparisons
difficult. Because of these factors, we could only report
that our clinical data and existing data led to similar ADC
values but could not carry out a detailed voxel-wise statis-
tical comparison.

Another potential limitation is the sample size we had
available for each template. This is a common issue in oth-
er studies, where for example fewer than 10 subjects are in
some age groups in [Sadeghi et al., 2014; Sanchez et al.,
2012b]. Unfortunately, there is a lack of rigorous studies to
suggest an adequate sample size required to capture the
true normal variations in a specific population. Neverthe-
less, our atlases constructed in age groups with fewer sub-
jects (second and third quarter of the first year) fit the
longitudinal trend of global and local ADC and volume
changes (Tables III and IV, Figs. 3–6). We are continuing
to curate our EHR data to identify additional ADC maps
from normative subjects and are exploring collaborations
with other sites. Larger sample size in future studies may
generate atlases with even greater specificity including the
ability to stratify by gender and race.

Because all images were from a single Siemens 3T Trio
scanner, there is no cross-scanner ADC variability. Howev-
er, future studies will demand larger sample sizes and par-
ticipation of multiple institutions, introducing small cross-
scanner ADC variability if the same vendor [Van Leemput,
2009], or larger cross-scanner ADC variability if different
vendors [Walker et al., 2016; Wu et al., 2011]. Our ultimate
goal is to provide atlases to clinicians and researchers irre-
spective of scanner brand. To achieve this, future prospec-
tive studies will include strategies for normalizing diffusion
parameter maps across scanners using, for instance, phan-
toms [Doshi et al., 2016; Iglesias and Sabuncu, 2015] or ide-
ally volunteers as is currently being done in many clinical
studies. Fortunately, our analysis pipeline (brain extraction,
atlas construction) has been shown to sustain high accuracy
and consistency in clinical images from diverse sources [Ou
et al., 2015a; Serag et al., 2012].

Due to the rapid ADC changes in the first year of life
(Fig. 5), we constructed atlases using incrementally larger
age spans beginning with 2-week spans during the first
month and then 3-month age spans. After one year, the
rate of ADC change decreases (Fig. 5) and 12-month age
spans were used. We note that, in all atlases, the standard
deviations of ADC values may come from both inter-
individual differences and age-based ADC variations. This
is a limitation of our study. Separating the two is challeng-
ing and requires larger data sets. As more data sets

become available, each age group can be subdivided more
finely to decrease these age-based variations. For example,
we will further divide the Week 0–1 age bin into half-
week intervals, Year 1–2 age bin into quarters or half-year
intervals, and age bins older than year 2 into half-year
intervals. With more subjects, we will also be able to create
future sex specific atlases and eventually explore varia-
tions with different ethnic groups. The goal is to character-
ize inter-individual variation that is distinct from age and
sex-based ADC variations. By doing so, we will better cap-
ture subtle and regional ADC development thus increasing
the sensitivity of our atlases to identify early-life and sub-
tle ADC abnormalities.

Moreover, it is crucial to point out that this study is
based on cross-sectional not longitudinal images. There-
fore, we cannot determine if age-dependent regional varia-
tions are due to individual differences or due to regional
differences in rates of development. To attain this specific
goal, research funding will be required as normative clini-
cal subjects are highly unlikely to have longitudinal brain
scanned from birth to 6 years of age that would be
required [Walker et al., 2016]. In our study, we exploit the
fact that MRI may be obtained in young children as an
extra step to ensure there is no abnormality when clinical
evaluation is equivocal. However, when MRI is normal
and follow-up is normal, additional follow-up clinical
imaging is unlikely to be obtained.

Finally, future efforts will also focus on further improv-
ing the atlas quality by additional innovative image analy-
sis techniques. For example, our atlases (e.g., Fig. 3) are
blurrier than individual ADC map due to the nature of
atlas construction and averaging. More sophisticated atlas
construction frameworks (e.g., [Shi et al., 2014; Van Leem-
put, 2009; Wu et al., 2011]) may lead to sharper edges and
higher contrast. Future efforts will also include automatic
segmentation of ADC maps into regions of interest [Doshi
et al., 2016; Iglesias and Sabuncu, 2015], instead of using
the manual annotations used in this article. In addition,
when subject sizes are larger we will be able to explore
choosing atlas age groups in a more systematic manner
[Davis et al., 2007; Serag et al., 2012], and constructing
atlases by taking a series of age groups into joint consider-
ation [Davis et al., 2007; Serag et al., 2012]. For instance,
the 13 normative ADC maps for week 0-1 were all from
full term neonates without consideration of gender. These
neonates have different gestational ages (37–40 weeks) and
are a mix of male and female neonates, introducing poten-
tial additional variations in the ADC values. Given a larger
sample size, we could stratify into subgroups by gender
and gestational as well as chronological age to generate
more finely tuned atlases.

Conclusion

In conclusion, we have demonstrated that by careful
review and selection, the EHR and the clinical PACS can
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be mined to create a densely sampled normative database.
In addition, we showed that robust image analysis techni-
ques can be used to create 10 age specific ADC atlases that
quantitatively characterize the mean and standard devia-
tion of ADC values and volumetric change at each voxel
over the first 6 years of life. These normative atlases are
now publicly available at https://www.nitrc.org/projects/
mgh_adcatlases.
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