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Abstract

Purpose—To introduce a novel algorithm for the recovery of high-resolution magnetic resonance 

spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral 

acquisition.

Methods—The reconstruction of MRSI data from dual-density spiral data is formulated as a 

compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite 

and lipid signals, each of which is support limited to the brain and extracranial regions, 

respectively, in addition to being orthogonal to each other. The reconstruction problem is 

formulated as an optimization problem, which is solved using iterative reweighted nuclear norm 

minimization.

Results—The comparisons of the scheme against dual-resolution reconstruction algorithm on 

numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher 

spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the 

scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE)=55 

ms.

Conclusion—The proposed reconstruction method and data acquisition strategy provide an 

efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm 

would be beneficial for fast metabolic mapping and extension to multislice acquisitions.
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INTRODUCTION

Magnetic resonance spectroscopic imaging (MRSI) enables spatial mapping of multiple 

tissue metabolites in vivo, many of which are proven to be valuable biomarkers for several 

diseases (1–3). However, the clinical utility of MRSI is currently restricted by several 

challenges, resulting from very low metabolite concentrations. Specifically, achievable 
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spatial resolution using Nyquist sampling and conventional recovery schemes is limited by 

metabolite signal to noise ratio (SNR) and scan time. Broad point spread functions (PSF) 

result in significant spectral leakage from the extracranial lipid and residual water signals, 

which have several orders of magnitude higher intensity than metabolites.

Several water and lipid suppression schemes are available in MRSI. Chemical-shift selective 

saturation methods (4–6), followed by postprocessing methods such as Hankel singular 

value decomposition (7) can provide reasonable suppression of residual water signal. 

Popular approaches to attenuate lipid signals include outer volume suppression (OVS) (8–

11), inversion recovery (12–14), inner volume excitation (15,16), and use of long echo times 

(TE) (17,18). None of these methods provide perfect lipid suppression, in addition result in 

signal loss or reduced brain coverage. Moreover, many of these methods have practical 

limitations. For example, OVS band placement may be challenging and time-consuming for 

multislice acquisitions and also limited by allowable radiofrequency (RF) energy deposition 

limits at higher field strengths. Performance of many of the above methods (e.g., OVS, inner 

volume excitation) also degrades in presence of field inhomogeneity and chemical shift 

effects, especially at high field strengths.

Postprocessing methods were introduced for minimizing residual lipids. A popular approach 

is k-space extrapolation using high-resolution spatial support estimates (19,20). This method 

provides acceptable spectral quality, when combined with inversion recovery (21). Several 

authors have proposed dual-density acquisition methods, coupled with dual-resolution 

reconstruction algorithms, to further improve lipid suppression. The basic idea is to extend 

k-space coverage to obtain narrower PSF, translating to reduced lipid leakage (18,22–25). 

Since weak metabolite signals cannot be recovered reliably from small voxels in a short 

acquisition time, dual-resolution schemes acquire the central k-space regions with more 

averages. The data are recovered using dual-resolution reconstruction algorithms, which 

restrict the nominal resolution of the metabolites by the k-space regions collected with more 

averages, while lipid regions are estimated at a high spatial resolution. Recovery of strong 

lipid signals at high spatial resolution results in reduced lipid leakage in the brain region. 

While similar dual-resolution algorithms have been successfully used (26,27), all of them 

need to be coupled with some form of lipid suppression. In addition, most of these methods 

are associated with smoothness priors, resulting in low-resolution recovery of metabolite 

regions. To overcome such limitations, recent works have focused on superresolution MRSI 

data recovery. An overview of such superresolution methods in MRSI is available in (28,29).

In this work, we combine dual-density spiral MRSI acquisition method with a novel 

compartmentalized low-rank algorithm to recover metabolic images with higher spatial 

resolution and minimal lipid leakage artifacts. We model field inhomogeneity compensated 

dataset as the sum of metabolite and lipid signals, each of which is nonzero within the brain 

and extracranial regions, respectively. Since each of these signals arise from finite number of 

anatomical regions with distinct spectral signatures, they can each be efficiently represented 

as the linear combination of finite number of basis functions. We propose to organize the 

metabolite and lipid signals as low-rank matrices, and their recovery from noisy 

measurements can be regularized using nuclear norm penalties. Similar low-rank methods 

have been recently introduced for signal recovery in many areas, including MRSI (17,30–34) 
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and dynamic imaging (35–39). Unlike dual-density methods that restrict nominal resolution 

of metabolites to the multiaveraged low-resolution portion of the k-space (18,22–27,40), the 

proposed scheme recovers metabolites from the entire k-space; low-rank prior makes the 

recovery scheme well-posed and recovers metabolite maps with improved spatial detail. 

Metabolite and lipid spectral signatures are drastically different with different chemical 

shifts and T2 decay rates. Inspired by the work of Bilgic et al. (40), we propose to decouple 

the subspaces using an orthogonality penalty, which encourages metabolite and lipid 

subspaces to remain orthogonal. Denoising of lipid signals offered by the low-rank and 

orthogonality priors in our framework offers improved lipid suppression, compared to (40) 

that uses lipid signals estimated from an initial high-resolution reconstruction. We designed 

a variable density spiral sequence using the numerical algorithm in (41). This sequence 

enables us to fully acquire a 128 × 128 image matrix in 7.2 min scan time. The sequence 

acquires the central k-space regions (k-space radius ≤16) with 12-fold oversampling, while 

outer k-space regions are acquired at Nyquist rate. The spiral sequence is a better alternative 

to Cartesian dual-density acquisitions that combine data from separate scans (17,23,33,42); 

since all the data are acquired using a single sequence, no correction methods are needed.

Recently low-rank based method, SPICE was introduced for high-resolution MRSI 

(17,33,34). SPICE uses a low-resolution data to estimate metabolite and lipid bases based on 

spectral priors in the first step. MRSI data from high-resolution measurements is recovered 

using the basis functions in the second step. The proposed method, contrarily uses 

orthogonality priors and does not rely on accurate prior knowledge of spectral supports of 

lipid regions to suppress lipids. Our experiments show that the proposed method is 

applicable to problems where there is considerable field inhomogeneity variations in the 

lipid region, where use of spectral priors may be difficult. Another benefit of the proposed 

scheme is that it may be readily applicable to a variety of sampling schemes, compared to 

(17,33,34) that requires specialized trajectories.

We compare the performance of the proposed scheme to our dual-resolution reconstruction 

scheme that relies on compartmental smoothness priors (26) and dual-density recovery 

scheme in (40), followed by denoising using a low-rank approximation. A simulated 

phantom and in vivo data with and without lipid suppression and TE=55 ms were used to 

validate the method. Experiments show that the proposed method can provide improved 

reconstruction than dual-resolution recovery schemes. Specifically, it yields metabolite maps 

with higher resolution and minimal lipid artifacts, even in absence of lipid suppression.

THEORY

We denote the underlying spatiospectral function in MRSI by x(r, f), where r is the spatial 

index and f is the spectral index. The measured signal from the jth coil in k – t space is 

modeled as,

[1]
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Here, r specifies the spatial location and t denotes time. Δf(r) = γ̄ΔB0(r) is the field 

inhomogeneity induced spectral shift at the spatial location r. cj(r) is the jth coil sensitivity, 

and ηj(k, t) is white Gaussian measurement noise. Note that the spatial integral is restricted 

to Ω, which is a mask that specifies signal support (e.g., head). The entire acquisition scheme 

can be compactly represented as

[2]

The operator Ω includes coil sensitivity encoding, k-space encoding, and spatially varying 

chemical shift resulting from field inhomogeneity. S is a matrix, whose entries correspond to 

the measured k – t space samples. Here, X is the R × N Casorati matrix derived from x(r, f), 
whose rows correspond to the N point spectra from pixels within Ω:

[3]

Here, R is number of pixels in Ω.

Compartmental Low-Rank MRSI Signal Model

Several authors have proposed to model signal x(r, f) using low-rank methods (30,32). A 

challenge with direct application of these methods to lipid unsuppresed data is the strong 

extracranial lipid signals that are several orders of magnitude stronger than metabolites; low-

rank modeling may result in the lower principal components being captured by the lipid 

signals to account for subtle variations in lipid signal. A high-rank representation will hence 

be needed to accurately represent the metabolites, which may make the model inefficient.

The lipid and metabolite signals that originate from disjoint spatial supports have finite 

number of resonant frequencies arising from finite anatomical regions inside the spatial 

compartments. We assume that brain and lipid regions, denoted by ΩM and ΩL respectively, 

to be known a priori from water reference scans. We denote metabolite and lipid components 

of x(r, f) as

[4]

[5]

Here, χΩ is the characteristic function of the region Ω:
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[6]

Since the regions ΩM and ΩL are mutually exclusive, we have

[7]

Note that the dynamic range of signals xM and xL is individually small, even though the 

dynamic range of the signal x is very high. We construct matrices XM and XL similar to (3) 

from xM and xL by only including pixels from ΩM and ΩL, respectively. We assume that XM 

and XL are individually low-rank; the compartmental low-rank model allows these matrices 

to be represented using distinct basis functions and to independently control their ranks.

We observe that spectra of the metabolite and lipid regions are highly dissimilar, and hence 

orthogonal (i.e., 〈xL(r1, f), xM(r2, f)〉 = 0; ∀r1, r2). We are inspired by the use of a similar 

prior in (40) to minimize cross-talk between xM and xL. Combining this prior with the 

decomposition in (7), we obtain

[8]

where XH is the conjugate transpose of the matrix X.

Recovery of the Compartmental Signal Model from k-t Space Data

We pose recovery of the metabolite and lipid components from measured k-space data as the 

optimization problem:

[9]

Here ||X||* denotes the nuclear norm of X. The first term is the data consistency term, while 

the second and third terms are the low-rank priors on metabolite and lipid signals, 

respectively. Note that we do not explicitly use spectral priors of metabolite and lipid regions 

to discourage cross-talk as in (17,33); the cross-talk is automatically minimized by use of the 

orthogonality priors. As shown in (40) and our experiments, orthogonality priors will only 

cause minimal biases in the metabolite signals. We do not use detailed anatomical priors 

(e.g., masks of gray matter, white matter, and cerebrospinal fluid (CSF) regions) as proposed 
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by several authors (26,28,43–48). The inner-product between metabolite and lipid signals 

are penalized, weighted by a high regularization parameter β.

We propose to solve the above problem using the iterative reweighted least square 

minimization algorithm (49,50) for nuclear norm minimization. This approach relies on 

approximating the nuclear norm penalty at the nth iteration as the weighted Frobenius norm:

[10]

where the weight matrix at the nth iteration is chosen as ; where Xn−1 

is the solution of the nuclear norm minimization problem at the (n − 1)th iteration. The 

matrix power is evaluated using eigen value decomposition. Specifically, we perform eigen 

decomposition to obtain  and complete the weight matrix as Q = 

USUH, where S = Σ− (1/4). To avoid division by zero, diagonal entries of S are stabilized as si 

= max(σi, ε)−(1/4), where ε is a stabilization constant. For convergence of the solution, we 

require ε → 0 as n → ∞. When a target rank K is desired, the stabilization parameter is 

chosen as ε = γ σK, where 0 < γ < 1. Using the iterative reweighted least square 

minimization scheme to solve (9) amounts to solving the following quadratic criterion at the 

nth iteration:

[11]

Weight matrices QM and QL are updated at the nth iteration using the solutions {XM,XL}n−1 

as

[12]

[13]

Diagonal entries of the matrices Σ̃M and Σ̃L are stabilized versions of the entries of ΣM and 

ΣL, respectively; i.e., Σ̃(i) = min(Σ(i), ε). Equation [11] may be intuitively interpreted; if the 

matrices XM and XL are low-rank and the singular values decay rapidly, QM and QL are 

projection operators onto the noise subspaces of XM and XL (corresponding to insignificant 

singular values), respectively. Thus, the second and third terms enable denoising by 
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minimizing projection of the signals to the null-spaces, estimated from the previous 

iteration. The projection matrix for orthogonality constraint QO in (11) is obtained as

[14]

METHODS

Variable Density Spiral Spin-Echo Sequence

The k-space trajectories are designed using a numerical algorithm (41). The sequence is 

illustrated in Figure 1. We use a slice selective spin echo sequence with CHESS water 

suppression. No lipid suppression is used. The parameters are pulse repetition time (TR)/

TE=1500/55 ms; total scan time=7.2 mins. A separate water scan, using the same sequence 

with TR = 500 ms and 2.4 mins of scan time, is used to estimate coil sensitivities, field 

inhomogeneity map, and spatial supports of lipid and water regions. Coil sensitivities are 

estimated using the sum of squares method (51). The reduction in lipid leakage due to 

variable density sampling at high resolution is explained in Figure 2.

Digital Phantom for Validation

We developed a numerical MRSI phantom with metabolite and lipid compartments by 

extending the template and code in (52). This phantom is discretized on a 512 × 512 

Cartesian sampling grid as described in Figure 3. Fourier samples of the phantom are 

numerically evaluated at the k-t space points specified by the above described spiral 

trajectory. White Gaussian noise was added to the Fourier samples.

To study the effect of lipid suppression, we considered two realizations of the digital 

phantom (a) without any lipid signals (no lipid compartments) and (b) when lipid signals are 

present. SNR of the k-t space data is 5.26 dB in (a) and 26.7 dB in (b); higher signal energy 

in presence of lipids translates to higher SNR in (b). We compare the performance of 

Tikhonov regularized method and the proposed low-rank method for both realizations. 

Reference reconstruction is obtained by gridding reconstruction of the k-t space data, 

without lipids and additive noise. All reconstructions are performed on a grid size of 96 × 96 

and a field map estimated at the same resolution to correct for field inhomogeneity artifacts.

We also study the sensitivity of the algorithm to inaccurate lipid boundary estimation. 

Specifically, we used two different lipid masks, obtained by morphologically shrinking and 

dilating the original mask used for simulation, to reconstruct the MRSI data.

Recovery of MRSI Data Using Other Algorithms for Comparison

We compare the proposed method against the dual-resolution reconstruction scheme, which 

relies on compartmentalized Tikhonov smoothness regularization (26,27):
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Here, ∇ΩX denotes spatial gradient of X, restricted to the spatial compartment Ω. This 

approach is a variational alternative to iterative methods used in (18,22–25). We consider 

two different settings for choice of α1 to illustrate tradeoffs in dual-resolution 

reconstruction. We consider α1 = 10−5, which corresponds to minimal blurring of 

metabolites, referred to as high resolution (HR) Tikhonov recovery. We also consider α1 = 

10−3, termed as low-resolution (LR) Tikhonov recovery; this is the choice considered in 

(26). These settings translate to PSF full width at half maximum (FWHM) of 1 pixel and 2.5 

pixels, respectively. In both cases, the parameter α2 is chosen as 10−5 to minimize, lipid 

signal smoothing and lipid contamination of XM.

We also compare the proposed algorithm against the dual-resolution reconstruction 

algorithm in (40), which uses orthogonality priors. We used the software provided by the 

authors for the reconstruction. Metabolite signals were further denoised using low-rank 

approximation with rank=15 (using truncated singular value decomposition (SVD)) after 

reconstruction.

In Vivo Experiments

In vivo experiments were performed on a 3T Siemens Trio scanner using a 12 channel 

receive head-coil under a protocol approved by the Institutional Review Board of the 

University of Iowa. Single slice proton MRSI data were collected from two healthy 

volunteers, after receiving informed consent.

Subject 1—An oblique axial slice above the ventricles was acquired with field of view 

(FOV)=240 × 240 mm2 and a slice thickness=10 mm. Whole slice is excited without any 

lipid suppression.

Subject 2—An oblique axial slice is selected containing the corpus callosum and lateral 

ventricles and was acquired with a FOV=240 × 240 mm2. A lipid suppressed dataset (with 

eight OVS bands) and another without lipid suppression were acquired.

High resolution B0 map, lipid, and water images are estimated from the water reference data 

using (56). Water and lipid images are thresholded to derive lipid region ΩL and brain region 

ΩM, respectively. These masks are used in (9) to define the forward model and to construct 

matrices XM and XL. A gridding recovery is performed, followed by residual water 

estimation using the Hankel singular value decomposition algorithm (7). The k-space signal 

corresponding to the residual water signal is subtracted from the measured k-space data 

before any processing.

We study the benefit in expanding k-space coverage, using variable density spiral k-space 

trajectory in Figure 2 using data from subject 1. We truncate k-space data to different sizes 

(radius 32, 64, 96 and 128), corresponding to voxel sizes of 0.56, 0.14, 0.06, and 0.03 mL, 

Bhattacharya and Jacob Page 8

Magn Reson Med. Author manuscript; available in PMC 2017 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. We recover data from these four cases using gridding reconstruction algorithm 

on an image grid size of 128 × 128. Post recovery, metabolite data within the brain is 

smoothed with an iterative algorithm after polynomial baseline removal. Smoothing 

parameters are selected such that the FWHM of the PSF is 2.5 pixels. N-acetyl aspartate 

(NAA) images are estimated using peak integration.

Impact of the orthogonality constraint on the metabolite signals is studied in Figure 4. We 

obtained lipid spectra from four different datasets. Dataset 1 and 2 were distributed along 

with the software for (40) and (17). Datasets 3 and 4 correspond to data acquired from 

subjects 1 and 2, respectively, without any lipid suppression. We modeled 3300 metabolite 

spectra, as idealized peaks at spectral locations corresponding to NAA, Creatine, & Choline 

in the real data. We consider simulations with FWHM=10 Hz and 20 Hz. Peak intensities are 

chosen from a random distribution. Parallel and orthogonal projection of the metabolite 

spectra to the weighted lipid subspace (given by Eq. [14]) is reported in Figure 4. In 

Supporting Figure S1, we report the quantitative reductions in metabolite intensities due to 

orthogonal projection and orthogonal projection energies. We also studied the effect of rank 

change of the lipid subspace which was found to be practically invariant.

Regularization parameters in the proposed algorithm described in (11) are chosen 

empirically to yield the best results for the experiments on data from subject 2. Effect of 

changing the regularization parameters is explained in details in the results section. We 

chose the target rank of 15 for the metabolite signals, and 20 for the lipid signals. The 

parameter γ in the stabilizing parameter equation, ε = γ σK, is chosen as 0.8 for both 

metabolites and lipids. All reconstructions are performed at a grid size of 96 × 96 and 

metabolite maps are obtained by peak integration over a 16 Hz bandwidth.

RESULTS

We study the utility of acquiring data using variable density spiral k-space trajectory with 

extended k-space coverage in Figure 2 using data from subject 1. We show reconstructed 

spectra from three different pixels within the brain, marked in the reference image. Since no 

lipid suppression is used, spectra with 32 × 32 spatial coverage is highly distorted at all the 

three pixels. Noise like variations observed at lower resolutions are essentially systematic 

artifacts introduced by lipid leakage. At lower resolutions, the spectrum at each pixel is a 

weighted linear combination of the spectra at all locations (including lipid regions), 

weighted by sinc PSF. If the magnetic field varies significantly within the lipid regions, the 

weighted linear combination of shifted lipid spectrum with large amplitudes will appear as 

noise-like variations. Experiments clearly show benefit of extended k-space coverage. With 

higher k-space encodes/smaller voxel size, spectrum at the blue pixel in the center of the 

brain is recovered with minimal distortion. The pink pixel closer to skull exhibits some lipid 

leakage, while the red pixel close to skull is corrupted by extracranial lipids even with 

extended k-space coverage. Reduction in leakage-induced ringing artifacts can also be 

visualized from the NAA map. Extended k-space coverage alone cannot eliminate all 

spectral leakage artifacts; therefore, we propose to combine it with the compartmentalized 

low-rank method to further reduce lipid leakage.
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Impact of the orthogonality constraint on the metabolite signals is studied in Figure 4. For 

each of the four datasets, lipid line shapes and metabolite line shapes are shown. Parallel and 

orthogonal projection of a selected metabolite spectra to the lipid subspace is plotted as well. 

The tables in Supporting Figure S1 record average (mean) case percentage reduction of 

metabolite intensities due to orthogonal projection and the orthogonal projection energy. It is 

observed that the NAA peak attenuation depends on the field inhomogeneity in the lipid 

regions. These experiments show that loss of metabolite intensities due to the orthogonality 

assumption is minimal, even for data with poor shimming. These observations are consistent 

with the findings in (40).

Phantom experiment results are shown in Figure 5. The first column corresponds to 

simulations without any lipid signal, while the second column is the one with lipid signal. 

For the lipid-suppressed case, Tikhonov high-resolution (Tikhonov HR), Tikhonov low-

resolution (Tikhonov LR), and the proposed algorithm are compared, whereas reconstruction 

using the scheme described in (40) are added for the lipid unsuppressed case. For 

comparisons, we recover a reference data from signals without any lipids and noise using 

gridding, followed by field inhomogeneity compensation. NAA maps, their error maps, and 

spectra at marked pixels are shown in Figure 5a for lipid-free simulation and in Figure 5b for 

simulation with lipids. For the lipid free case, we observe that Tikhonov HR method results 

in relatively noisy maps, while Tikhonov LR method oversmoothes the spatial maps, 

resulting in systematic edge information loss, seen from the error maps. The proposed 

method provides maps with reduced noise and minimal blurring. These results can also be 

appreciated from the spectra corresponding to the pixels marked on the reference image. 

Root mean square error (RMSE) of NAA maps are calculated to be 3.08% and 5.20% for 

Tikhonov HR and Tikhonov LR, respectively, while the proposed has the least RMSE of 

2.69%. In the lipid unsuppressed phantom experiments (second column), we observe that 

Tikhonov HR method is noisy and has severe ringing artifacts (seen from maps and spectra 

in Fig. 5b). Tikhonov LR method on the other hand reduces lipid leakage artifacts, but 

results in blurred maps. Error maps and spectra show that pixels closer to skull have residual 

lipid artifacts in the Tikhonov LR method. Dual density with orthogonality method (as in 

(40)) suppresses lipids efficiently except for pixels close to skull (first and fifth row) but 

results in blurred maps. By contrast, the proposed method reduces noise and eliminates 

artifacts without smoothing the data and retains most of the high-resolution details. 

Tikhonov HR method has a poor RMSE of 42.73%, due to extensive lipid leakage. Tikhonov 

LR method and (40) have RMSE of 10.85% and 5.16 % for NAA maps, respectively, while 

the proposed method maintains a RMSE of 2.88%, which is comparable to the lipid 

suppressed setting. Table (c) reports other metabolite map RMSEs. Thus the reconstruction 

quality of the proposed method is robust even in presence of lipids. Lipid maps obtained by 

peak integration over lipid resonances are shown in Figure 5d for the lipid unsuppressed 

case.

Recovery using different lipid masks, obtained by morphologically dilating or shrinking the 

original lipid mask is presented in Figure 6. We observe minimal changes in NAA maps, 

while the spectra show slight increases in lipid leakage when the lipid region is 

underestimated. These results show that the algorithm is relatively robust to inaccurate mask 
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estimation. Since moderately overestimating the lipid mask provides good reconstructions, 

we resort to this approach in the remaining experiments.

Effect of changing different regularization parameters of the algorithm is studied with the 

lipid unsuppressed data acquired from subject 2. In Supporting Figure S2, the left box 

illustrates the effect of changing λ1, which controls metabolite compartment rank. In these 

experiments, we set λ2 = 1e−8; β = 1000. We observe that increasing λ1 is associated with 

spectral denoising, while high values are associated with spatial details loss. We choose λ1 = 

4e−6, which provide good compromise. The middle box demonstrates the effect of changing 

λ2, which controls lipid compartment rank. We set λ1 = 4e−6; β = 1000 in these 

experiments. Over regularizing the lipid compartment (increasing value of λ2) results in 

lipid signal attenuation, increased lipid leakage to metabolite signals and noisier metabolite 

signals. Lipid maps show increased lipid leakage in pixels close to skull. We fix λ2 to 1e−6 

which offers slight increase in metabolite intensities in comparison to unregularized lipid 

compartment. In our experiments (right box), we observe the parameter β can be assigned a 

high value to impose the constraint of lipids being orthogonal to the metabolites; the 

algorithm’s performance was observed to be relatively insensitive to this parameter, 

provided it is high enough. Some spatial details are lost when very high β values are chosen, 

probably due to poor convergence. β is set to 1000 for the remaining experiments.

Results for the in vivo experiments with lipid suppression on subject 2 are shown in Figure 

7. The proposed method is compared against Tikhonov LR scheme and dual-density scheme 

in (40), denoised further using low-rank approximation. Lipid region is overestimated based 

on our findings in Figure 6. From Figure 7a, it is seen that the Tikhonov regularized method 

has substantial lipid leakage artifacts (maps are scaled by 2.5 times for Tikhonov method). 

Lipid leakage can also be seen from the spectra. We observe that the dual-density 

orthogonality method achieves good lipid suppression. However, nominal resolution of the 

maps is restricted by the extent of central k-space regions. The proposed method is observed 

to result in negligible lipid leakage artifacts, while the maps are seen to have improved 

spatial details. This is expected since we estimate metabolite signals from the entire k-space 

data, which is regularized by low-rank priors. Considering that detailed anatomical priors of 

gray matter, white matter, and CSF are not used in the recovery, the ability of the algorithm 

to recover the spatial details is significant. The lipid maps obtained by peak integration of 

the lipid resonances are shown for all three methods. The Tikhonov method shows heavy 

lipid leakage in regions close to skull whereas lipid leakage is negligible for the dual-density 

orthogonality and the proposed method. Spectra at the pixel grid marked in the reference 

image are shown for the Tikhonov regularized method, dual-density orthogonality method, 

and the proposed method in Figure 7b–d, respectively. Similar to the phantom simulation 

results, spectra obtained from Tikhonov method are noisy and have spectral leakage 

especially in pixels close to skull. By contrast, dual-density orthogonality method and the 

proposed method denoises the spectra and removes all spectral leakage.

Comparisons of the methods on the lipid unsuppressed dataset from the same subject are 

shown in Figure 8. Metabolite maps in Figure 8a show quite significant lipid leakage for the 

Tikhonov regularized method (the images are scaled by 5 times). The dual-density method 

in this case has some residual lipids close to skull as pointed out by arrows in the lipid maps. 
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The proposed method is seen to recover the data with minimal lipid leakage and with 

improved spatial details. Spectra at the pixels marked in the reference image are shown in 

Figure 8b–d for Tikhonov LR, dual-density orthogonality, and proposed method, 

respectively.

DISCUSSION

We introduced a novel compartmentalized low-rank-based algorithm and a spiral dual-

density MRSI sequence for high-resolution MRSI reconstruction. The proposed method 

enables recovery of high-resolution metabolite maps with minimal lipid leakage artifacts 

from TE=55 ms acquisitions in absence of lipid suppression. This approach may be useful in 

three dimensional acquisitions, when OVS band placement is difficult.

Low-rank methods have been used in MRSI by several groups for denoising (30) and 

reconstruction (17,32–34,57). Direct use of global low-rank methods as in (32) may be 

challenging in our lipid unsuppressed setting. Using a single subspace to represent both lipid 

and metabolite signal may result in the subspace being dominated by lipid basis functions, 

especially due to huge dynamic range between lipid and metabolite signals. The proposed 

single step compartmentalized low-rank algorithm shares conceptual similarities to two step 

low-rank (SPICE) method (17,33,34). SPICE estimates basis functions from low spatial 

resolution data, which are separated into metabolite and lipid basis using spatial and spectral 

prior information in the first step; these basis sets are used for recovery of the signals from 

high-resolution measurements in the second step. Good recovery is demonstrated using OVS 

or long TEs to reduce lipid signals. Our preliminary experiments (not shown here) using the 

software provided by the authors (17) indicate that direct use of these methods in our setting 

is challenging. Specifically, large field inhomogeneity-induced variations present in the 

extracranial regions made it difficult to separate the lipid and metabolite basis sets using 

spectral prior information; the default parameter set for the line shapes did not provide good 

estimation and lipid suppression. Complexity of the dataset can be appreciated by the huge 

variability of lipid spectra in the second row (Dataset 3 and 4) of Figure 4, compared to the 

dataset considered by (17) (Dataset 2). While a more exhaustive optimization of the large 

parameter set SPICE may provide improved recovery, this is beyond the scope of the present 

work.

Note that our scheme does not require extensive prior knowledge of lipid line shapes, which 

is a benefit over (17,33,34), especially with poorly shimmed datasets. The proposed method 

estimates basis functions from all the available k-space encodes using the orthogonality 

between the metabolite and lipid signals. This work is inspired by use of orthogonality 

constraints in (40), where lipid and metabolite signals are shown to have strikingly different 

spectral signatures (e.g., metabolite are highly localized in frequency, while lipids are very 

broad due to fast T2 decay). Distinction between these signals is preserved even in presence 

of field inhomogeneities. Use of these priors, along with field inhomogeneity compensation, 

enables metabolite data recovery with minimal leakage, even without lipid suppression.

Low-rank penalty on the lipid signal serves to regularize lipid signal recovery, which in turn 

can enhance lipid suppression using orthogonality priors. Specifically, noisy lipid signals 
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can result in a large subspace (of large rank); use of this subspace for lipid suppression may 

result in unwanted metabolite signal attenuation. Denoising enables us to use a larger 

orthogonality parameter (β), thus effectively suppressing lipids without suppressing 

metabolites. Impact of the lipid low-rank prior may be more pronounced when the 

acquisition is more noisy, or undersampled, as proposed in (40).

We observe from Figure 8 that the proposed scheme offers improved lipid suppression than 

that of the scheme in (40), where an initial high-resolution lipid signal recovery is used in 

the orthogonality prior. The key difference is that the lipid subspace estimate improves with 

iterations, due to orthogonality and lipid low-rank priors. Lipid estimate at the first iteration 

is unregularized and hence is corrupted by noise, and also leakage from metabolites. Use of 

this subspace can result in unwanted metabolite suppression (due to overlap), especially 

when used with large β values. As iterations progress, the lipid subspace is decontaminated 

from metabolite signals (due to orthogonality priors) and denoised (due to low-rank priors). 

Cleaner lipid subspace improves lipid suppression efficiency, thus reducing metabolite 

suppression; this allows us to use a larger β values and more effectively suppress lipids 

without suppressing metabolites.

The dual-density acquisition method is inspired by (18,58). This approach capitalizes the 

considerably higher lipid signal intensity. Variable density spiral approach is more reliable 

than dual-density Cartesian scans, which require sophisticated data registration and data 

mismatch correction to combine data from different acquisitions (17,23,33,34,42). Our 

future work will include use of only a subset of 288 interleaves, which corresponds to 

Nyquist sampling of lower k-space regions and subsampling of higher k-space regions. We 

expect the compartmentalized low-rank method, bolstered with parallel imaging (59,60), to 

provide good recovery even in this setting. Efficiency may improve by using more spectral 

interleaves. Specifically, around 40% of acquisition time is now devoted for ramping down 

the spiral gradients and rewinders. SNR efficiency can be improved by using faster 

rewinders and also using the k-space data from the rewinders for recovery.

Utility of lipid orthogonality priors in suppressing lipids in short TE data, where higher 

macromolecule induced baseline signals are present, has not been determined yet. This is 

also a topic for further research.

CONCLUSION

We introduce a novel compartmentalized low-rank algorithm with orthogonality constraint 

which enables reconstruction of high-resolution metabolite maps without any lipid 

suppression method. The proposed method is validated with TE (55 ms) acquisitions. Also 

an efficient dual-density data acquisition method using variable density spirals has been 

introduced to achieve high-resolution lipid estimates in a feasible scan time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Pulse sequence diagram for spin echo-based variable density spiral spectroscopic imaging: 

Water suppression is achieved using CHESS pulses. Slice selective excitation and refocusing 

RF pulses are applied, followed by repeatedly playing out the spiral gradients, ramp-down 

gradients, and rewinders. For sake of simplicity, the ramp-down gradients and crushers for 

each spiral gradient are not shown in the figure. Image matrix size=128 × 128 is acquired 

with variable density spiral trajectory with 24 interleaves, which samples the lower k-space 

region of radius less than 16 at the Nyquist rate, and the higher k-space region at  times 

Nyquist rate. Twelve averages are collected by rotating the trajectories by  degrees at 

each average. Thus the central k-space regions is averaged 12-fold, while the higher k-space 

region is Nyquist sampled. The acquisition requires 24 × 12=288 spatial interleaves and thus 

288 RF excitations. The spectral bandwidth= 574.7 Hz (4.7 ppm), temporal interleaves=256; 

which achieves a spectral resolution of 2.2 Hz. The k-space trajectory consists of (a) lower 

k-space region (35% of sampling time), (b) higher k-space regions, (24% of time, and (c) 

gradient ramp down and rewinding (41% of time). Field of view=240 mm, maximum 

gradient amplitude=22.4 mT/m, and a slew rate= 125 T/m/s.
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FIG. 2. 
Benefit of extended k-space coverage in acquisition without lipid suppression: The top 

figure (a) shows the spectra at three different locations (blue pixel at the center of the brain, 

pink pixel between the center and skull, and red pixel near the skull or lipid layer). In the 

absence of lipid suppression, better line shape and reduction of lipid signal is achieved with 

increased k-space coverage. The peak integral NAA images in (b) demonstrate the decreased 

ringing artifacts with increasing k-space coverage.
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FIG. 3. 
Construction of the digital phantom: The phantom is constructed with five different spatial 

compartmental basis functions (two lipid compartments, CSF, white matter, and gray 

matter). Each of these compartments has a unique metabolite or lipid spectrum associated 

with it. The metabolite spectra have peaks corresponding to NAA (at 2.008 ppm), Creatine 

(at 3.027 and 3.913 ppm) and Choline (3.185 ppm) (53). We choose the concentration of the 

metabolites in different compartments based on normal brain concentrations reported in 

literature (54). The lipid peaks are constructed with a six peak model, reported in (60). The 

lipid peaks are chosen to be 500–1000 times larger in amplitude, in accordance to real data 

without lipid suppression. We also accounted for the T2 decay with appropriate parameters, 

which translates to spectral broadening of the line shapes. A field inhomogeneity map using 

fourth order polynomial in both the spatial dimensions is also simulated. The spatial masks 

(support) of lipid and metabolite region are shown on the top left and right, respectively. It is 

to be noted that uniform spatial masks are used instead of detailed maps with edge weights 

of white matter, gray matter, and CSF regions.
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FIG. 4. 
Spectral orthogonality of lipid and metabolite line shapes: Orthogonality between lipids and 

metabolites are demonstrated using four datasets. Dataset 1 and 2 are simulated using real 

lipid unsuppressed data of (40) and (17), which are distributed with the software. Dataset 3 

and 4 are simulated using real data acquired from subject 1 and 2, respectively, without any 

lipid suppression. For each dataset, lipid line shapes generated from real data are shown in 

(a). The idealized metabolite spectra consisting of NAA, Creatine, and Choline peaks are 

simulated with FWHM=10 and 20 Hz (color-coded outline in red and blue, respectively) in 

(b) and (c), respectively. The metabolites are projected to a rank=20 weighted lipid subspace 

as given by Equation [14]. The parallel (in red) and orthogonal (in green) projection of a 

randomly selected metabolite spectra (in black) of the dataset, to the lipid subspace for the 

two simulations are plotted in (d) and (e), respectively. (For quantitative report of orthogonal 

projection energy, please refer to Supporting Fig. S1).
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FIG. 5. 
Simulated phantom experiments: We consider the recovery of the MRSI phantom in Figure 

3 from its noisy k-space measurements on the spiral trajectory. The case without lipid 

signals (corresponding to perfect lipid suppression) is shown on the left column and the case 

with lipid signals (no lipid suppression) on the right column. We compare the 

reconstructions obtained using Tikhonov HR, Tikhonov LR, and the proposed method for 

the lipid suppressed case whereas the results for dual density with orthogonality (DD+Orth) 

scheme as proposed in (40) are added for the lipid unsuppressed case. The NAA maps and 

the corresponding error maps (scaled up) for all the methods under comparison with and 

without lipids are shown in (a) and (b), respectively. Also the spectra at five representative 

locations marked in the reference image are shown for all the methods for lipid free and lipid 

unsuppressed case in (a) and (b), respectively. The lipid maps for the case without lipid 

suppression are shown in (d). Table (c) shows the RMSEs for the different maps.
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FIG. 6. 
Simulated phantom experiments showing robustness to incorrect lipid mask selection: (a) 

Reconstructed NAA maps are shown in the first row whereas the corresponding lipid masks 

and lipid maps are shown in the second and third row, respectively. The NAA maps are of 

comparable quality. The lipid leakage reduces slightly for an overestimated/wide mask. Only 

the metabolite region is shown in the lipid maps for better visualization of differences. (b) 

The spectra at five representative locations shown in the reference image are plotted. The 

lipid leakage and denoising is comparable even for incorrect mask estimation. However, a 

wide mask might show improvement in lipid suppression. It is to be noted that the 

reconstructions with ideal mask (second column) is same as reconstruction with proposed 

method as in Figure 5b and d. The metabolite mask used in all the simulations is same.
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FIG. 7. 
In vivo experiments with lipid suppression: The spatial contours for the metabolite and lipid 

region and the field map are shown in the top row. The metabolite maps and the lipid maps 

are shown for the Tikhonov method, dual-density orthogonality as in (40) followed by low-

rank approximation (using truncated SVD) and proposed method in (a). The metabolite 

maps obtained from Tikhonov method are scaled up by 2.5 times. The color scale for the 

metabolite maps in the second and third row are shown below. It is observed that the 

proposed method has superior spatial details compared to the dual-density orthogonality 

method. For the dual density method, spatial details are not observed because the metabolite 

data are constrained to center k-space. The lipid for all the methods is plotted in the same 

log scale. The Tikhonov method has heavy lipid leakage in the metabolite region whereas 

the dual-density method and the proposed method has no residual lipid in the metabolite 

region. Spectra from the locations marked in the reference image are shown in (b) for the 

Tikhonov method (in blue), (c) dual-density orthogonality followed by truncated SVD (in 

purple), and in (d) for the proposed method (in red).
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FIG. 8. 
In vivo experiments without lipid suppression: The spatial contours for the metabolite and 

lipid region and the field map are shown in the top row. The metabolite maps and the lipid 

maps are shown for the Tikhonov method, dual-density orthogonality as in (40) followed by 

low-rank approximation (using truncated SVD) and proposed method in (a). The metabolite 

maps obtained from Tikhonov method are scaled up by 5 times. The color scale for the 

metabolite maps in the second and third row are shown below. It is observed that the 

proposed method has superior spatial details, whereas the dual-density orthogonality method 

has some residual lipids at the edges. Spatial details are lost for the dual density method 

because the metabolite data are limited to center k-space. The lipid for all the methods is 

plotted in the same log scale. The Tikhonov method has heavy lipid leakage in the 

metabolite region, whereas the dual-density method has some residual near the edges as 

shown by the yellow arrows. The proposed method on the other hand has no residual lipid in 

the metabolite region. Spectra from the locations marked in the reference image are shown 

in (b) for the Tikhonov method (in blue), (c) dual-density orthogonality followed by 

truncated SVD (in purple), and in (d) for the proposed method (in red).
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