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Abstract: Atlases constructed using diffusion-weighted imaging are important tools for studying
human brain development. Atlas construction is in general a two-step process involving spatial registra-
tion and fusion of individual images. The focus of most studies so far has been on improving the accuracy
of registration while image fusion is commonly performed using simple averaging, often resulting in fuzzy
atlases. In this article, we propose a patch-based method for diffusion-weighted (DW) atlas construction.
Unlike other atlases that are based on the diffusion tensor model, our atlas is model-free and generated
directly from the diffusion-weighted images. Instead of independently generating an atlas for each gradi-
ent direction and hence neglecting angular image correlation, we propose to construct the atlas by jointly
considering DW images of neighboring gradient directions. We employ a group regularization framework
where local patches of angularly neighboring images are constrained for consistent spatio-angular atlas
reconstruction. Experimental results confirm that our atlas, constructed for neonatal data, reveals more
structural details with higher fractional anisotropy than the atlas generated without angular consistency as
well as the average atlas. Also the normalization of test subjects to the proposed atlas results in better
alignment of brain structures. Hum Brain Mapp 38:3175–3189, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

MRI brain atlases are widely used for neuroscience stud-
ies, disease diagnosis [Evans et al., 2012], and identifying
traits of typical or abnormal brain development [Desh-
pande et al., 2015; Shi et al., 2012; Xue et al., 2006b; Wang
et al., 2014; Zhang et al., 2015; Wang et al., 2011; Jia et al.,
2012]. Among many imaging modalities used for con-
structing atlases, diffusion-weighted imaging (DWI) is a
key modality for investigating white matter changes
[Chilla et al., 2015; Verma et al., 2005], especially in the
developing infant brain, which is characterized by dynam-
ic myelination [Huang et al., 2006]. However, diffusion-
weighted (DW) atlases constructed specifically for infants,
especially neonates, are lacking. Atlases of adults or older
children [Hua et al., 2008; Mori et al., 2005] are not optimal

B. Saghafi and J. Kim contributed equally to this work.
Contract grant sponsor: NIH grants; Contract grant numbers:
NS093842, EB006733, EB008374, EB009634, AG041721, MH100217,
1U01MH110274; Contract grant sponsor: Efforts of the UNC/
UMN Baby Connectome Project Consortium.

*Correspondence to: Dinggang Shen; CB #7513, 3123 Bioinformat-
ics Building, 130 Mason Farm Road, Chapel Hill, NC 27599.
E-mail: dgshen@med.unc.edu

Received for publication 2 November 2016; Revised 9 March 2017;
Accepted 13 March 2017.

DOI: 10.1002/hbm.23583
Published online 27 March 2017 in Wiley Online Library (wileyon-
linelibrary.com).

r Human Brain Mapping 38:3175–3189 (2017) r

VC 2017 Wiley Periodicals, Inc.

http://orcid.org/0000-0003-1605-1825


for neonatal studies, since the white matter structures
develop very rapidly in the first year of life and are in
general dissimilar to those of the older age groups. There-
fore, atlases constructed specifically for neonates are high-
ly desirable for neonatal studies.

In DWI, various models have been used to characterize
the diffusion patterns of water molecules measured by the
diffusion MRI signal [Johansen-Berg and Behrens, 2013].
Most existing atlases are based on the diffusion tensor
model (DTM). Despite its wide utility, DTM assumes one
coherent fiber bundle per voxel and fails in regions with
fiber crossings. Although this can be overcome by higher-
order models, such as the multi-tensor model [Descoteaux
et al., 2006], the utility of a model-based atlas is dictated
by the model by which it is generated. In this work, we
focus on constructing a model-free atlas that is based on
the diffusion-weighted images directly. Our atlas is hence
not reliant on any model and can be used for multifaceted
analysis using different diffusion models.

In general, constructing atlases involves two major steps: a
spatial registration step to align a population of images to a
common space, followed by an image fusion step that com-
bines all the aligned images into an atlas. The focus of most
effort so far has been on the improvement of the spatial regis-
tration step [Jia et al., 2010; Oishi et al., 2011; Shen et al.,
1999; Tang et al., 2009; Xue et al., 2006a; Yap et al., 2009;
Yang et al., 2008; Zacharaki et al., 2008]. For image fusion,
simple or weighted averaging is typically used. Image aver-
aging typically blurs fine anatomical details and is sensitive
to outliers. To overcome these drawbacks, Shi et al. proposed
a patch-based sparse representation method for image fusion
to construct T2-weighted atlases [Shi et al., 2014]. They simul-
taneously represent K nearest patches to the mean patch by
sparse selection from an overcomplete codebook. Selected
patches are fused to construct the atlas. They enforce spatial
consistency by using group LASSO [Liu et al., 2009] to ensure
that neighboring patches have similar representations.

In DWI, each image is sensitized to the diffusion of water
molecules in the direction of a magnetic diffusion gradient.
Since DW images associated with gradients of neighboring
directions are sensitized to diffusion in similar directions,
there should be some form of angular consistency when a
DW atlas is constructed. In this article, we propose to
employ a group-regularized estimation framework to enforce
spatio-angular consistency in patch-based atlas construction.
Each patch in the atlas is constructed using similar patches
in a spatio-angular neighborhood. We apply our method to
construct an atlas from neonatal DWI data. DW images of
neonates typically suffer from insufficient spatial details.
Enforcing spatio-angular consistency improves the preserva-
tion of anatomical details. Experimental results indicate that
our proposed atlas, when used as a template for individual
DW image normalization, preserves white matter integrity
better than the other atlases without angular consistency.
Moreover, the proposed atlas reveals more structural details
with higher anisotropy.

A preliminary version of the method has been published
in a workshop [Saghafi et al., 2016]. Here, we improve the
robustness of the method to outliers by employing a mean
shift algorithm. This results in DW atlas with sharper details.
We have also added extensive experiments to validate the
choices of the parameters and the effectiveness of the pro-
posed method. The rest of the article is organized as follows.
Section “Proposed Method” details the proposed method.
Section “Experiments” reports the experimental results.
Finally, section “Conclusion” concludes the article.

PROPOSED METHOD

Overview

In order to construct the atlas, DW images of all subjects
are first registered to a common space. Then, for each gradi-
ent direction, each patch on the atlas is constructed using a
sparse subset of spatio-angular neighboring patches, obtained
based on a reference patch. Here, the reference patch is com-
puted using the mean shift algorithm from the images of all
subjects. For consistency, neighboring patches are constructed
concurrently.

Image Preprocessing

All DW images are preprocessed in preparation for atlas
construction. The preprocessing steps are as follows: (1) Cor-
rection of subject motion and eddy current distortion by reg-
istering all DW volumes to the b 5 0 volume using the eddy
correct function in the FSL package [Jenkinson et al., 2012],
(2) brain region extraction by applying the brain extraction
tool (BET) [Smith, 2002] in the FSL on the b 5 0 image of the
acquisition, and (3) removal of hyper-intensity voxels, sur-
rounding the brain region due to eddy distortions, by apply-
ing binary erosion to the brain mask [Schwarz et al., 2014].

The processed DW images are aligned to a common
space, obtained by a group-wise registration [Joshi et al.,
2004] using their fractional anisotropy (FA) images. In this
approach, the FA images of all subjects are first aligned to
their geometric median image using affine registration.
Then, they are iteratively registered to the average FA image
via non-linear registration with diffeomorphic demons [Ver-
cauteren et al., 2009] until the average FA image is not
changed. The DW images are eventually warped to the
common space with the deformation fields to the average
FA image. The diffusion signals are reorientated by utilizing
affine transformations that are estimated locally from the
non-linear deformation fields [Chen et al., 2016].

Atlas Construction via Spatio-Angular

Consistency

Patch-based sparse representation

For each gradient direction, we construct the atlas using
overlapped patches. Patch-based approaches are more
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robust to noise than voxel-based approaches. Each patch is
of size s3s3s. The intensity values associated with each
patch is denoted using vector p with M5s3 elements.

To avoid structural blurring, we fuse spatio-angular
patches across subjects using a sparse representation
framework. For each patch on the atlas, we construct a
codebook C consisting of same location patches from N
subjects, that is, C5 p1; p2; . . . ; pN½ �. The atlas patch, ~p, is
estimated using ~p5Cx, where x is a sparse coefficient vec-
tor. Construction of atlas patch using same location
patches is illustrated in Figure 1.

To construct a particular patch of the atlas, we estimate
a sparse coefficient vector x from the codebook (C) and a
reference patch (y), representing a weighted average of the
density distributions across subjects, by solving the follow-
ing ‘1-norm regularized least-squares problem [Tibshirani,
1996]:

x̂5arg min
x>0

k Cx2y k2
2 1kk x k1

� �
; (1)

where C 2 RM3N; x 2 RN31; y 2 RM31. The first term is
the fitting term that minimizes the squared l2-norm dis-
tance between the reconstructed atlas patch Cx and the ref-
erence patch y. The second term is the regularization term
that minimizes the l1-norm of the coefficient vector x and
promotes sparsity. Tuning parameter k � 0 controls the
amount of regularization.

The reference patch y is determined by a variable band-
width mean shift algorithm [Comaniciu et al., 2001] from
the aligned patches fpigN

i51. The mean shift algorithm con-
verges to the mode of the distribution of samples, as seen
in Figure 2c, and is thus robust to outliers, unlike averaging
the K nearest patches as done in Saghafi et al. [2016]. Each
component of patch y, ŷj, is obtained iteratively using

ŷj5

XN

i51

p̂iaiðŷj21Þ

XN

i51

aiðŷj21Þ
; (2)

Figure 1.

Construction of a patch on the atlas by sparse representation. [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 2.

An illustration of the variable-bandwidth mean shift algorithm. (a) Bandwidth (ĥ) versus compo-

nent (̂y j); (b) Weight (a) versus component (ŷ j); (c) Normalized histogram of samples. The blue

bar marks the mean, and the red bar marks the mode estimated by the mean shift algorithm.

[Color figure can be viewed at wileyonlinelibrary.com]
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where

aiðŷj21Þ5
1

ĥ
3

i

g k
p̂i2ŷj21

ĥi

k2

 !
(3)

and ŷj is an estimate of a component of y at the j-th itera-
tion. The initial estimate ŷ0 is computed as the average of
fp̂ig

N
i51. The function g �ð Þ is a Gaussian kernel:

g k
p̂i2ŷj21

ĥi

k2

 !
5e

2
p̂ i2ŷ j21ð Þ2

2ĥ
2
i : (4)

The bandwidth ĥi for each p̂i is computed using the fol-
lowing steps [Comaniciu et al., 2001]:

1. Compute a pilot estimate of the density function,

f p̂i

� �
5

1

Nĥ

XN

k51

g k p̂i2p̂k

ĥ
k2

� �
; (5)

using a fixed bandwidth ĥ.

2. Compute

log ĥ5
1

N

XN

i51

log f p̂i

� �
: (6)

3. Compute ĥi5ĥ ĥ=f p̂i

� �� �1=2
.

The bandwidth ĥ is computed as the standard deviation
of fp̂ig

N
i51. See Figure 2 for an illustration of the variable-

bandwidth mean shift algorithm.

Spatio-angular consistency via multi-task LASSO

To promote spatial consistency, we constrain nearby
patches to be represented using similar corresponding
patches in the codebooks. For each patch, we consider its
6 connected patches, grouping them in a spatial group of
size G 5 7. Let Cg, xg, and yg represent the codebook, coef-
ficient vector, and reference patch for the g-th group mem-
ber, respectively. We group the coefficient vectors using
matrix X5 x1; . . . ; xj; . . . ; xG

� �
. X can also be written in the

form of row vectors X5 u1; . . . ; ui; . . . ; uN½ �, where ui indi-
cates the i-th row. We estimate X by solving the following
l2;1-norm regularized multi-task least-squares problem [Liu
et al., 2009]:

X̂5arg min
X�0

XG

g51

k Cgxg2yg k2
21kk X k2;1

2
4

3
5; (7)

where k X k2;15
XN

i51

k ui k2.

We propose to construct the diffusion atlas by jointly
considering diffusion-weighted images of neighboring gra-
dient directions. For simplicity, we index different gradi-
ent directions as d51; . . . ;D. We solve the following
problem:

X̂5arg min
X�0

hPD
d51

wd
PG
g51

k Cd
gxd

g2yd
g k2

2

1k k ½w1X1; . . . ;wdXd; . . . ;wDXD� k2;1

i (8)

where Cd
g; xd

g, and yd
g denote the codebook, coefficient vec-

tor, and reference patch for the g-th spatial group member
and d-th gradient direction, respectively, and
Xd5 xd

1; . . . ; xd
j ; . . . ; xd

G

h i
. Figure 3 illustrates the l2;1 con-

straint on the coefficient matrix in Eq. (8), that is,
k w1X1; . . . ;wdXd; . . . ;wDXD
� �

k2;1. We compute l2-norm
from the rows. Then we compute the l1-norm of the results
to obtain the final l2;1-norm. Minimizing the l2;1-norm
makes the coefficients of the current and neighboring gra-
dient directions to be sparse.

The inclusion/exclusion of each gradient direction for
consideration in Eq. (8) is controlled by wd, which is
defined as

wd5
1; jDudj � e:

0; otherwise;

(
(9)

where Dud5cos 21ðv1 � vdÞ is the angular distance between
the unit vectors along current direction (v1) and the d-th
direction vd. e is the threshold for angular distance. This
will allow an atlas patch to be constructed jointly with
patches in both spatial and angular neighborhoods. The
binary weights wd will include the Xds close to current gra-
dient direction and exclude the rest. Figure 4a shows how
the binary weight is determined based on angular distance

Figure 3.

l2;1 constraint on the matrix of coefficients in Eq. (8). [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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with the current direction. Figure 4b shows same-location
spatial group patches from three gradient directions and
the current direction. Two of the gradient directions (blue
and green) are within the angular distance threshold based
on (a) and are included for consideration in Eq. (8). On the
other hand, the red direction is excluded.

Eventually the atlas patch for the current direction
(d 5 1), is reconstructed sparsely from the overcomplete
codebook C1

1 (associated with the 1th spatial group mem-
ber and 1th gradient direction) by C1

1x1
1. The pseudo-code

of proposed method is given in Algorithm 1. This
algorithm applies for diffusion-weighted images. For non-
diffusion-weighted images we use Eq. (7).

EXPERIMENTS

Dataset

The DWI data of 30 healthy neonates [postnatal age:
14e:n days (27 2 9)] were acquired using the 3T Siemens
Allegra scanner. All of the subjects were born at full term.
DW imaging was performed with a spin-echo echo-planar

imaging sequence with TR/TE 5 7,680/82 ms, reso-
lution 5 23232 mm3, and b51; 000 s=mm2. For each neo-
nate, diffusion-weighted images were acquired with 42
non-collinear diffusion gradients. Seven non-diffusion-
weighted reference scans were also acquired. The dimen-
sion of the diffusion-weighted image is 128396360. In
order to evaluate the effectiveness of the proposed meth-
od, we have performed three-fold cross-validation. In the
following experiments, we first show how the parameters
are selected for the training dataset (20 subject) in each
fold. Then, we demonstrate the effectiveness of the pro-
posed method in DW atlas construction and image nor-
malization, compared with various patch-based fusion
methods.

Effects of Parameters in the DW Atlas

Construction

For constructing the neonate brain atlas, the following
parameters need to be determined: (1) k used to control
the sparsity and the spatio-angular consistency with l2;1

regularization, (2) the patch size and also the step size
used for patch shifting in each dimension, and (3) the
angular distance threshold, e, used for determining the

Figure 4.

(a) The participation weight for each gradient direction is deter-

mined based on its angular distance from the current direction;

(b) Same-location spatial group patches from 3 gradient direc-

tions as well as the current direction. Two of the gradient direc-

tions (blue and green) are within the angular distance threshold

based on figure (a) and are included in patch reconstruction. On

the other hand, the red direction is excluded. [Color figure can

be viewed at wileyonlinelibrary.com]

Algorithm 1: Diffusion-weighted Atlas Construction
with Spatio-Angular Consistency

Input: N registered sets of diffusion-weighted (DW)
images.
Output: DW atlas.

for the dth gradient direction do
Find neighboring gradient directions according to
Eq. (9).
for each patch on the atlas do

1. Construct a codebook including the same location
patches of N subjects.
2. Assign the reference patch by computing mean
shift from N same location patches for each spatio-
angular neighbor.
3. Compute a sparse coefficient vector xd

g to repre-
sent the reference patch based on the codebook
using Eq. (8).
4. Estimate the atlas patch by multiplying the code-
book C1

1 with the coefficient vector x1
1.

end for
Obtain the DW image of the atlas associated with
the current gradient direction by averaging the esti-
mates over overlapping patches.

end for
To prevent abrupt changes at the patch boundaries, the

patches are allowed to overlap. The final atlas is obtained
by averaging multiple estimations at each patch location.
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angular neighbors for each diffusion-weighted volume. In
order to determine the optimal parameters, we compare
the atlases using the following criteria: (1) the intensity
changes of DW images and their fractional anisotropy, and
(2) the level of detail in the FA maps. This is quantified
using a total variation metric, defined as the sum of mag-
nitudes of image gradients [Vogel and Oman, 1998]. Note
that the parameter k is adjusted so that it is proportional
to the number of subjects and the number of spatial and
angular neighbors.

As shown in Figure 5, the image intensity and anisotro-
py of the resulted DW atlases varies with k. We set k to
1.0 because this results in smaller difference in image
intensity with respect to the average DW atlas and also
similar level of detail as the subjectsy FA maps. The total
variation of subjectsn FA maps is in a range of 55.98–96.42
(68.62 8.6.20). The total variation of the atlas with k 5 1 is
71.39. Figure 5 also shows the slices of the DW atlases
with the FA and color-coded FA maps. As k increases to

1.0, the boundaries of white matter structures can be dis-
tinguished more clearly (as indicated by arrows in Fig. 5).
However, with large values (1.5 and 2.0), the average FA
exceeds the subjectsd average and the FA maps become
more noisy. The patch size is determined using the same
metrics. As shown in Figure 6, the small patch size (52)
results in blurry FA map (arrows in Fig. 6) and the lowest
total variation. The different patch sizes (54, 6, and 8) pro-
vided very similar visual results and also the average FA
and total variation. We choose 6 for the patch size, which
shows the highest total variation. The step size is deter-
mined as 1 to avoid block artifacts in the resulting atlas.
Finally, the angular distance threshold, e, is chosen to
involve a sufficient number of angular neighbors in the
patch-based sparse representation. Table I lists the total
number of gradient direction pairs and the median num-
ber of the neighboring within e. Choosing e 5 228 gives
us an average of 2 angular neighbors for each gradient
direction.

Figure 5.

Effects of the weight parameter k for the l2;1 regularization in the diffusion-weighted (DW) atlas

construction. The plots at bottom row indicate the average intensity of the visualized slice of the

DW atlas, the average of its fractional anisotropy (FA) map, and the total variation of the FA

map. “Subject Avg.” means the average of corresponding metrics from the training subjects,

images. [Color figure can be viewed at wileyonlinelibrary.com]
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Sparse construction of a DW atlas takes about 10 hours
on an Intel i7 processor with 3.4 GHz and 16 GB of memo-
ry, based on our current MATLAB implementation. The
processing time depends on both image dimensions and
parameter settings. For instance, choosing a higher angular
distance threshold (i.e., involving more angular neighbors)
will increase the overall processing time.

Effect of Codebook in the DW Atlas

Construction

Unlike existing methods using sparse representation for
T1-weighted or T2-weighted atlas construction [Shi et al.,

Figure 6.

Effects of the patch size in the diffusion-weighted (DW) atlas construction. The plots at bottom

row indicate the average intensity of the visualized slice of the diffusion-weighted (DW) atlas, the

average of its fractional anisotropy (FA) map, and the total variation of the FA map. “Subject

Avg.” means the average of corresponding metrics from the training subjects’ images. [Color fig-

ure can be viewed at wileyonlinelibrary.com]

TABLE I. Relationship between the neighboring gradient

directions and the angular distance threshold (e) in the

acquired diffusion-weighted images

e (degrees)
Number of

direction pairs
Median number of

neighboring directions

15 0 0
20 13 1
22 33 2

25 78 4
45 241 11
90 861 41
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2014; Zhang et al., 2016], we build the codebook using
samples extracted from individual images at correspond-
ing patch locations for DW atlas construction. To evaluate
the effect of the number of samples in the codebook, we
have compared the atlases generated using two code-
books: (1) patches from the same location and (2)
patches from 26 neighboring locations. Figure 7 shows
that the second codebook produces a blurred DW atlas,
indicating that the redundancy in the second codebook
raised issue in selecting correct patches for DW atlas
construction. For this reason, we have chosen to use the
first codebook.

Comparison with Different Patch-Based Fusion

Methods

We have compared the proposed method with other
patch-based fusion techniques, i.e. the atlases obtained via
(1) the average of all training DW images, (2) the average
of K-closest patches to the average patch, (3) the median of
all training DW patches, (4) sparse representation with
spatial constraint only, and (5) the proposed method for
spatio-angular consistency. We determine K as 4, which
provides similar total variation as the atlas of the proposed
method. The FA and color-coded FA maps of the resulting
atlases are shown in Figure 8. The atlases obtained by
sparse representation are less fuzzy and contain more
white matter details. This is mainly because sparse repre-
sentation tends to choose a sparse set of samples from a
large number of patches to fit to the reference patch.
Unlike simple averaging, the sparse representation

combines a smaller set of samples, thus avoiding over-
smoothing. Considering the spatio-angular consistency,
our method preserves more structural details with greater
anisotropy. The orientation distribution functions (ODFs)
[Yap et al., 2016], shown in Figure 9, indicate that our atlas
gives more coherent fiber orientations, especially in the
cerebral cortex.

Evaluation Based on Atlas-Guided Image

Normalization

An important criteria for a diffusion atlas would be
maintaining the white matter integrity of normalized indi-
viduals as much as possible. Thus, in this section, we eval-
uate how well our proposed atlas align different structures
in the atlas-guided image normalization. In this evaluation,
we have performed the atlas construction and the DW
image normalization with their FA maps via three-fold
cross-validation using the DW images of the 30 subjects.
Specifically, we first build DW atlases using the DW
images of 20 training subjects for each fold. Then, we nor-
malize the DW images of 10 test subjects using their FA
maps via affine registration, followed by diffeomorphic
demons as described in section “Image Preprocessing.” In
this experiment, we have compared the proposed method
with the atlases, acquired by the simple averaging and the
sparse representation with the spatial constraint only. The
patch-based fusion methods using the average of the K-clos-
est patches and the median of training patches have been
excluded due to their worse results in terms of the detail

Figure 7.

(a) A diffusion-weighted image, (b) fractional anisotropy (FA) and (c) color-coded FA map from

the atlases constructed using (Top) same location patches and (Bottom) 26 neighboring patches

for the codebook. [Color figure can be viewed at wileyonlinelibrary.com]
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representation, as demonstrated in section “Comparison
with Different Patch-Based Fusion Methods.”

In order to evaluate the normalization performance of
the atlases within the brain regions, we employ the parcel-
lation map of JHU-neonate-SS atlas provided in [Oishi

et al., 2011]. The parcellation map consists of 122 regions
of interest (ROIs) [Oishi et al., 2011]. Among them, ROIs of
label 1–66 mostly correspond to cerebral white matter
structures, deep gray matter structures, cerebellar structures
and brainstem. The rest are mainly associated with cortical

Figure 8.

(Top) Fractional anisotropy (FA) and (Bottom) color-coded FA maps of the diffusion-weighted

atlases, acquired by (a) average, (b) average of 4-closest patches to average, (c) median, (d)

sparse representation with spatial consistency, and (e) sparse representation with spatio-angular

consistency. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 9.

Orientation distribution functions (ODFs) of the diffusion-weighted atlases, acquired by (a) aver-

age, (b) average of 4-closest patches to average, (c) median, (d) sparse representation with spa-

tial consistency and (e) sparse representation with spatio-angular consistency. [Color figure can

be viewed at wileyonlinelibrary.com]
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gray matter structures [Oishi et al., 2011]. Figure 10
shows the ROIs of label 1–66 and 67–122 separately on
the DTI atlas. We determine the brain regions of the three

atlases by mapping the parcellation map onto the atlases
following the registration of the FA map of the DTI brain
atlas to the FA maps of the atlases. Then, we compare the

Figure 10.

Parcellation map of the diffusion tensor atlas, provided in (Oishi et al., 2011). (Left) Regions of

interest (ROIs) of label 1–66 mostly correspond to white matter and subcortical structures.

(Right) ROIs of label 67–122 are mostly associated with cortical gray matter structures. [Color

figure can be viewed at wileyonlinelibrary.com]

TABLE II. Statistical differences in diffusion parameters between the average atlas (average), the spatially consis-

tent atlas (spatial) and the spatio-angularly consistent atlas (spatio-angular) across whole brain regions using

3-fold cross validation

Average Spatial Spatio-angular
Wilcoxon signed-ranks

(M) (S) (SA) (SA-M) (SA-S)

FA CV1 0.099 6 0.049 0.105 6 0.053 0.116 6 0.060 8.785, <0.001 8.282, <0.001

CV2 0.100 6 0.048 0.106 6 0.053 0.118 6 0.060 8.788, <0.001 7.273, <0.001

CV3 0.098 6 0.047 0.105 6 0.052 0.116 6 0.059 8.471, <0.001 7.935, <0.001

AD CV1 1.495 6 0.151 1.487 6 0.157 1.467 6 0.164 23.525, <0.001 23.189, <0.001

(31,000) CV2 1.479 6 0.150 1.469 6 0.153 1.452 6 0.155 23.453, <0.001 23.250, <0.001

CV3 1.437 6 0.144 1.417 6 0.142 1.411 6 0.146 23.274, <0.001 1.332, 0.183
RD CV1 1.286 6 0.130 1.269 6 0.130 1.229 6 0.132 28.683, <0.001 28.880, <0.001

(31,000) CV2 1.273 6 0.141 1.253 6 0.138 1.216 6 0.136 28.578, <0.001 28.635, <0.001

CV3 1.238 6 0.128 1.209 6 0.123 1.183 6 0.120 28.185, <0.001 26.890, <0.001

MD CV1 1.356 6 0.128 1.341 6 0.128 1.308 6 0.129 27.371, <0.001 27.346, <0.001

(31,000) CV2 1.342 6 0.136 1.325 6 0.134 1.294 6 0.130 27.214, <0.001 27.296, <0.001

CV3 1.304 6 0.126 1.278 6 0.120 1.259 6 0.116 26.777, <0.001 25.256, <0.001

FA, fractional anisotropy; AD, axial diffusity; RD, radial diffusity; MD, mean diffusivity.
Values in 6th and 7th columns: Z and P values of a Wilcoxon signed-ranks test.
Significant values (P< 0.05) are highlighted in boldface.
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diffusion parameters, measured from the mean images of
the normalized DW images of testing subjects, using Wil-
coxon signed-rank test. In the experiment, we use four
diffusion parameters: fractional anisotropy (FA), axial
diffusivity (AD), radial diffusivity (RD), and mean diffu-
sivity (MD).

Table II shows the diffusion parameters, measured
across entire ROIs of the average atlas, the spatially consis-
tent atlas and the spatio-angularly consistent atlas. The FA
across the whole brain for the spatio-angularly consistent
atlas is significantly higher than both the spatially consis-
tent atlas and the average atlas. The AD, RD, and MD for
the spatio-angularly consistent atlas are significantly lower
than both the spatially consistent atlas and the average
atlas. These results indicate that the average diffusion sig-
nals of the individual DW images, registered to the spa-
tially consistent atlas and the average atlas, are more
isotropic than those from the proposed atlas. These results
also demonstrate that the brain structures are aligned
more accurately, especially in white matter. Their aniso-
tropic characteristics are not smoothed out even after aver-
aging of the diffusion signals of the testing subjectsn DW
images.

More specifically, Figure 11 shows the comparison of
the FA values of the mean images between the average
atlas, the spatially consistent atlas and the spatio-angularly
consistent atlas. In the observation from the ROIs of label
1–66, the testing images are aligned better at the brain
structures, such as cerebellar white matter structures and
cerebellar structures using the spatio-angularly consistent
atlas than using other atlases. Especially, the proposed
atlas considering spatio-angular consistency shows better
performance in the DW image normalization than others
even for the brain structures having thin shapes, such as
the anterior and posterior limb of internal capsule and the
cingulum. This may be explained by the detailed represen-
tation of the white matter structures in the proposed atlas.
There are few exceptions of lower FA for the proposed
atlas at some regions, such as the putamen and the ponti-
ne crossing tract. Since the putamen generally has lower
FA values than other surrounding structures as a deep
gray matter structure [Bhagat and Beaulieu, 2004], the low-
er FA of the mean DW images for the proposed atlas at
the putamen may reflect the better alignment of the indi-
vidual images. The smaller volumes of the pontine cross-
ing tract may yield more mis-alignment of those regions

Figure 11.

Comparison of average fractional anisotropy (FA) across all brain regions of interest between:

the average atlas and the spatio-angularly consistent atlas (Top); the spatially consistent atlas and

the spatio-angularly consistent atlas (Bottom). The data was obtained from the first fold of

three-fold cross-validation. Please refer to Figure 10 for the names of the regions. [Color figure

can be viewed at wileyonlinelibrary.com]
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than other brain structures [Oishi et al., 2011]. Table III
provides the statistical analysis supporting our observation
for the ROIs of label 1–66. The spatio-angularly consistent
atlas gives higher FA and lower RD and MD than the
average atlas and the spatially consistent atlas in the mean
DW image. However, there is no significant difference in
AD between the atlases. This is due to the mis-alignment
of the diffusion signals between corresponding brain
regions in the spatially consistent atlas and the average
atlas. Considering the similar AD values for all atlases at
the ROIs of label 1–66, the higher AD, RD, and MD values
for the spatially consistent atlas and the average atlas at
whole brain regions may be affected by larger variations
of brain structures in the outer brain regions across sub-
jects. For those regions of label 67–122, the FA values for
the spatio-angular consistent atlas are slightly higher than
or comparable to the other atlases (see Fig. 11). Since we
use the FA maps of the individual DW images for image
alignment, the observed diffusion parameters across the
ROIs of label 67–122, corresponding mostly to the outer
regions of the brain, can be more affected by the individu-
al variations in those regions than the ROIs of label 1–66.
These results indicate that the proposed atlas with the
spatio-angular consistency provides better alignment for
the white matter structures using the FA maps in the
atlas-guided DW image normalization.

Evaluation of the Neonatal DW Atlas Using

Diffusion Tensor Imaging and Tractography

In this section, we evaluate the quality of the neonatal

DW atlas obtained from 29 subjects. Due to the large num-

ber of subjects, we use k as 1.5 to build the DW atlas. The

TABLE III. Statistical differences in diffusion parameters between the average atlas (average), the spatially

consistent atlas (spatial) and the spatio-angularly consistent atlas (spatio-angular) at the regions of interest of

label 1–66 using 3-fold cross validation

Average Spatial Spatio-angular
Wilcoxon signed-ranks

(M) (S) (SA) (SA-M) (SA-S)

FA CV1 0.132 6 0.044 0.140 6 0.046 0.159 6 0.049 6.807, <0.001 6.436, <0.001

CV2 0.133 6 0.041 0.142 6 0.044 0.162 6 0.049 6.877, <0.001 6.615, <0.001

CV3 0.131 6 0.041 0.142 6 0.044 0.158 6 0.048 6.768, <0.001 6.174, <0.001

AD CV1 1.522 6 0.185 1.526 6 0.198 1.51160.208, 20.233, 0.816 20.572, 0.568
(31,000) CV2 1.504 6 0.180 1.501 6 0.185 1.495 6 0.188 0.246, 0.806 0.093, 0.926

CV3 1.464 6 0.172 1.446 6 0.173 1.454 6 0.178 0.272, 0.786 1.760, 0.078
RD CV1 1.247 6 0.148 1.234 6 0.160 1.186 6 0.159 25.989, <0.001 26.372, <0.001

(31,000) CV2 1.234 6 0.160 1.213 6 0.157 1.172 6 0.155 25.644, <0.001 25.829, <0.001

CV3 1.203 6 0.145 1.169 6 0.140 1.144 6 0.139 25.363, <0.001 23.874, <0.001

MD CV1 1.339 6 0.154 1.331 6 0.166 1.294 6 0.168 24.347, <0.001 24.577, <0.001

(31,000) CV2 1.324 6 0.162 1.309 6 0.161 1.280 6 0.159 23.638, <0.001 23.734, <0.001

CV3 1.290 6 0.149 1.261 6 0.145 1.247 6 0.145 23.395, <0.01 21.524, 0.128

FA, fractional anisotropy; AD, axial diffusity; RD, radial diffusity; MD, mean diffusivity.
Values in 6th and 7th columns: Z and P values of a Wilcoxon signed-ranks test.
Significant values (P< 0.05) are highlighted in boldface.

Figure 12.

Fractional anisotropy (FA) maps of (a) average atlas, (b) spatially

consistent atlas, and (c) spatio-angularly consistent atlas. [Color

figure can be viewed at wileyonlinelibrary.com]
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patch size is determined as 4 in consideration of the com-
putation time. We have performed DTI and tractography
using the TractVis (Version 0.6.3, trackvis.org) software.
The Fiber Assignment by Continuous Tracking (FACT)
method [Mori et al., 1999] is employed with the following
parameters: seed FA threshold 5 0.1 and maximum turning
angle 5 408. From whole brain fiber tracts, we extract five
major bundles, including forceps minor, forceps major, fornix,
uncinate fasciculus and inferior fronto-occipital fasciculus, via
a multiple-region-of-interest approach [Catani et al., 2002;
Wakana et al., 2004].

Figure 12 shows the FA maps of the average, spatially
consistent and spatio-angularly consistent atlases. In the

average atlas, the white matter structures have low con-
trast and unclear boundaries. These results indicate that
the average atlas contains more isotropic signals on the
white matter by simply averaging the diffusion signals of
different orientation of the individual subjects. In the spa-
tially consistent atlas, the white matter structures have
more detailed representation in the entire brain. However,
the FA of the spatially consistent atlas has similar magni-
tude to the average atlas. Without consideration of the
angular neighbors, sparse representation selects angularly
uncorrelated patches from the codebooks, introducing
noise that weakens the signals in the white matter. Com-
pared with the other atlases, there are more details in the

Figure 13.

Tractography of (a) corpus callosum (Fminor, Fmajor), (b) inferior fronto-occipital fasciculus, (c)

fornix and (d) uncinate fasciculus on the average atlas (left), spatially consistent atlas (middle),

and spatio-angularly consistent atlas (right). The colors indicate the value of fractional anisotropy

(FA) along the tracts. Darker color shows higher value for FA. [Color figure can be viewed at

wileyonlinelibrary.com]
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white matter with higher FA values in the spatio-
angularly consistent atlas.

The effectiveness of our method is also supported by
the tractography on the major fiber bundles. Figure 13
shows the tractography of the fiber bundles with their FA
values. Table IV shows the diffusion parameters on the
fiber bundles of each atlas. According to the diffusion
parameters, the average atlas has more isotropic diffusion
signals on the fiber tracts (lower FA and higher AD, RD,
and MD) than the spatio-angularly consistent atlas. With
the spatio-angular consistency, the fiber orientation is
more consistent along the fiber bundles and more details
of the fiber bundles can be observed (see (b) in Figure 13).

CONCLUSION

In this article, we have proposed a novel method for
DW atlas construction that ensures consistency in both
spatial and angular dimensions. Our approach constructs
each patch of the atlas by jointly representing reference
patches obtained from spatio-angular neighboring patches.
Each reference patch is determined by mode of the distri-
bution of aligned patches using mean shift algorithm
which is not sensitive to outliers. Experimental results
based on diffusion tensor imaging confirm that, using our
proposed method of considering spatio-angular consisten-
cy, the constructed atlas preserves richer structural details
compared with the average atlas and the spatially consis-
tent atlas. Also considering spatio-angular consistency, the
fiber orientations were more consistent along the fiber
bundles, showing more anisotropic behavior. Moreover,
the proposed atlas, when used as normalization template,
better aligns brain structures, especially in the white mat-
ter region, than atlases constructed without angular
consistency.
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