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ABSTRACT Listeria monocytogenes is a Gram-positive opportunistic pathogen that is
the causative agent of listeriosis. Here, we report the draft genome sequences of 25
L. monocytogenes strains isolated from patients with clinical listeriosis in the Republic
of Ireland between 2013 and 2015.

Listeria monocytogenes is a Gram-positive, intracellular foodborne pathogen that
causes listeriosis. Contaminated foods, in particular, ready-to-eat foods, are the

primary vehicle of transmission to humans. Infections can result in mild gastroenteritis
in otherwise healthy individuals. However, more common presentations of the disease
are invasive infections such as bloodstream infection, meningitis, and meningoenceph-
alitis. These conditions are typically associated with pregnancy, the new-born, the
elderly, and those that are otherwise immunocompromised (1, 2). Although disease
incidence is uncommon, mortality is as high as 30% (1). Given the severity of the
disease, epidemiological surveillance and control of L. monocytogenes is important to
ensure early detection of linked cases allowing timely intervention to protect public
health and ensure the safety of the food chain. Whole-genome sequencing of L. mono-
cytogenes is emerging as the primary means of molecular typing of isolates and allows
epidemiological surveillance of strains from food sources and from clinical disease, thus
facilitating detection of previously undetected links. This underpins the investigation of
mechanisms that may influence disease pathogenesis (1, 3). To aid in the molecular
epidemiological surveillance of the pathogen, the draft genome sequences of 25
L. monocytogenes isolates have been determined. The isolates were obtained from
clinical cases of disease in Ireland between 2013 and 2015 and were submitted to the
National Salmonella, Shigella and Listeria (human health) Reference Laboratory service
at Galway University Hospital.

Whole-genomic DNA was extracted using the GenElute bacterial genomic DNA kit
(Sigma Aldrich) per the manufacturer’s instructions. Library preparation and 250-bp
paired-end sequencing was performed using the Illumina HiSeq 2500 platform (Mi-
crobes NG, University of Birmingham, UK). Raw reads were mapped to a reference
genome using BWA-mem and de novo assembly was performed using SPAdes genome
assembler. Contigs were reordered using Mauve aligner (v2.4.0). Prediction of putative
open reading frames (ORFs) was performed using PRODIGAL prediction software
(http://prodigal.ornl.gov/) and supported by BLASTx (4) alignments. Results of Prodigal/
BLASTx were combined manually and a preliminary identification of ORFs was per-
formed on the basis of BLASTp (4) analysis against a nonredundant protein database
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provided by the National Centre for Biotechnology (http://www.ncbi.nlm.nih.gov/).
Using the ORF finding outputs and associated BLASTp results, Artemis (5) was em-
ployed for visualization and manual editing in order to verify and, where necessary,
redefine the start of every predicted coding region, or to remove or add coding regions.
The assignment of protein function to predicted coding regions was performed manually.
In addition, the individual members of the revised gene/protein data set were searched
against the protein family (Pfam) (6) and Clusters of Orthologous Groups (COG) (7)
databases. rRNA and tRNA genes were detected using RNAMMER (http://www.cbs.dtu
.dk/services/RNAmmer/) and tRNA-scanSE (http://lowelab.ucsc.edu/tRNAscan-SE/), re-
spectively. COG category assignment (7) was performed by means of BLASTp (4)
analysis against the COG database (8) for deduced proteins of all identified ORFs
contained by the genomes of both L. monocytogenes strains that were sequenced as
part of the current study, and of all publicly available L. monocytogenes strains.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank. Accession numbers and basic genome information are presented
in Table 1.
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MQ150011 SAMN06309535 MVEX00000000 3,025,843 8 75.1359
MQ150012 SAMN06309536 MVEY00000000 2,926,961 11 139.049
MQ150013 SAMN06309537 MVEZ00000000 3,009,735 13 147.238
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