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ABSTRACT The McDonald–Kreitman (MK) test is a widely used method for quantifying the role of positive
selection in molecular evolution. One key shortcoming of this test lies in its sensitivity to the presence of
slightly deleterious mutations, which can severely bias its estimates. An asymptotic version of the MK test
was recently introduced that addresses this problem by evaluating polymorphism levels for different mu-
tation frequencies separately, and then extrapolating a function fitted to that data. Here, we present
asymptoticMK, a web-based implementation of this asymptotic MK test. Our web service provides a simple
R-based interface into which the user can upload the required data (polymorphism and divergence data for
the genomic test region and a neutrally evolving reference region). The web service then analyzes the data
and provides plots of the test results. This service is free to use, open-source, and available at http://
benhaller.com/messerlab/asymptoticMK.html. We provide results from simulations to illustrate the perfor-
mance and robustness of the asymptoticMK test under a wide range of model parameters.
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The extent to whichmolecular evolution is driven by positive selection,
rather than neutral evolutionary processes such as randomgenetic drift,
is one of the central questions of modern evolutionary biology. This
question can be studied quantitatively by estimating the parameter a,
which specifies the fraction of nucleotide substitutions in a given
genomic region that were driven to fixation by positive selection
(Eyre-Walker 2006). Values of a close to one indicate that most sub-
stitutions in the region were indeed the result of positive selection,
whereas values close to zero indicate neutral evolution.

One of the most widely used approaches for inferring a from poly-
morphism and divergence data is the McDonald-Kreitman (MK) test
(McDonald and Kreitman 1991; Eyre-Walker 2006), which compares
levels of divergence between a genomic test region and a neutrally
evolving reference region with the levels of polymorphism in the two
regions. Early applications of the MK test typically focused on non-
synonymous sites in protein-coding regions as the test region, while
synonymous sites were used as the neutral reference. However, the

approach can also be applied to arbitrary genomic compartments or
classes of mutations (Andolfatto 2005).

The original MK test makes several critical assumptions about the
nature of the evolutionary process. First, it assumes that the positively
selected mutations that ultimately contribute to divergence in the test
region go tofixationquickly, such that they donot contribute noticeably
topolymorphismlevels. Second, it assumes that deleteriousmutations in
the test regionare sufficientlydeleterious tobe lostquickly, suchthat they
contribute to neither polymorphism nor divergence. Finally, neutral
mutations in the test region are assumed to be subject to drift similar to
the mutations in the neutral reference region and can therefore con-
tribute to both polymorphism and divergence. Under these assump-
tions, it holds that

a ¼ 12
d0
d

p
p0
; (1)

where d and d0 are substitution rates per site in the test region and
neutral reference region, respectively, while p and p0 specify the re-
spective levels of polymorphism per site in the two regions (Eyre-
Walker 2006). Note that if polymorphism and divergence levels are
estimated over the same region, the total number of sites cancels out
in the ratios p/d and d0/p0, and one may then simply use the actual
counts of observed substitutions (D and D0) and polymorphic sites
(P and P0) instead of rates per site (Eyre-Walker 2006).

With the growing availability of genome-level polymorphism and
divergence data sets, the MK test has become a popular method for
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inferring positive selection in various organisms (Fay 2011). Several
software tools and web services with implementations of the test have
also been developed (Egea et al. 2008; Librado and Rozas 2009; Eyre-
Walker and Keightley 2009; Stoletzki and Eyre-Walker 2011; Vos et al.
2013). The estimates of a obtained in these studies range from as high
as �0.5 for nonsynonymous substitutions in Drosophila (Sella et al.
2009), to close to zero in organisms such as yeast (Elyashiv et al. 2010)
ormany plants (Gossmann et al. 2010). Indeed, estimates ofa obtained
fromEquation (1) are often negative, indicating that at least some of the
assumptions of the test were likely not met (since negative values of a
have no biological meaning - estimates of a may be negative, but the
true value cannot be).

One major problem with the original MK test lies in its assumption
thatdeleteriousmutationsdonot contribute topolymorphism in the test
region. This stands in contrast to the frequent observation of weakly
deleterious mutations in many organisms, and the fact that such
mutations can substantially affect the site frequency spectrum (SFS)
of polymorphisms in functional genomic regions (Bustamante et al.
2005; Eyre-Walker et al. 2006). In the presence of weakly deleterious
mutations, the observed level of polymorphism in the test region (p) in
Equation (1) will overestimate the rate at which neutral polymorphisms
are expected to go to fixation in this region, which will bias estimates of
a downward (providing one possible explanation for the frequent ob-
servation of negative a estimates).

As one strategy to address this problem, it has been proposed to only
consider polymorphisms for which the derived allele is above a certain
threshold frequencywhen estimating p and p0 (Charlesworth and Eyre-
Walker 2008). This is because the fraction of weakly deleterious
mutations among all polymorphisms should be lower for higher derived-
allele frequencies. Ideally, one would wish to set this cutoff high,
to minimize the bias due to weakly deleterious mutations; however,
the higher this cutoff, the fewer polymorphisms will actually remain
in the data set, thus increasing statistical noise. To circumvent this
problematic tradeoff, more sophisticated extensions of the original
MK test first attempt to infer the actual distribution of fitness effects
among new mutations in the test region from the SFS, and then
correct fixation probabilities accordingly (Boyko et al. 2008; Eyre-
Walker and Keightley 2009). Yet these approaches can still suffer
from unknown effects of demography or linked selection that are also
expected to affect the shape of the SFS. The most sophisticated
extensions of the test therefore additionally incorporate basic demo-
graphic models to improve their estimates (Keightley and Eyre-
Walker 2007; Boyko et al. 2008; Eyre-Walker and Keightley 2009),
which requires additional (and often uncertain) assumptions about
the demographic history of the population of interest.

In contrast to suchmodel-based approaches, a considerably simpler,
heuristic approach was recently proposed byMesser and Petrov (2013).
This approach generalizes the frequency-cutoff approach described
above, without the need to discard polymorphism data. Instead of
setting a specific frequency cutoff, it separately estimates a for each
of a set of discrete mutational frequency classes:

aðxÞ ¼ 12
d0
d

pðxÞ
p0ðxÞ

: (2)

Here, p(x) and p0(x) specify the levels of polymorphism per site in the
test and reference regions, respectively, considering only those poly-
morphisms for which the derived allele is present at frequency x in the
population (estimated from a population sample, for example). In the
presence of deleterious mutations, a(x) will underestimate the true
value of a for small x, yet should converge to the correct value as x

approaches one (Messer and Petrov 2013). The asymptotic estimate
of a is then obtained by fitting a function afit(x) to the empirical a(x)
values and extrapolating this function to x = 1:

aasymptotic ¼ afitðx ¼ 1Þ: (3)

One key advantage of this approach is that, because a(x) does not
depend on the individual functions p(x) and p0(x) but only on their
ratio, any biases due to demography or linked selection that affect the
SFS in the test and reference regions in the same way will effectively
cancel out (Messer and Petrov 2013). Another advantage over model-
based approaches is that the asymptotic MK approach is much more
computationally efficient, as it requires only fitting a simple curve to
the data.

In this paper, we present asymptoticMK, a web-based tool for
executing the asymptoticMK test quickly and easily in anywebbrowser.
After thenecessaryvaluesare entered, asymptoticMKgenerates analyses
and plots that are directly usable in publications. It is based internally on
R, but no knowledge of R is needed to use it, nor does the user of
asymptoticMK need to have R installed on their computer. For those
who do wish to run the test themselves in R, the necessary code is freely
available online. The asymptoticMK service can also be run in an
automated fashion at the command line, for bulk analysis in script-
based workflows. Finally, we present results from forward genetic
simulations to illustrate the performance and robustness of the asymp-
totic MK test in various scenarios.

METHODS

Implementation
The asymptoticMK web service is implemented in R (R Development
Core Team2016). It uses the package FastRWeb (Urbanek 2008) to parse
HTTP requests and generate responses, and uses the package Rserve
(Urbanek 2003) as the lower-level interface that communicates with
the web server through the standard CGI mechanism. A version of
asymptoticMK that runs in R on the user’s localmachine is also provided.
Source code and additional resources related to asymptoticMKare posted
on GitHub at https://github.com/MesserLab/asymptoticMK.

Usage
Thewebservice is free touse,without license restrictionsof anykind, and
is available at http://benhaller.com/messerlab/asymptoticMK.html.
That URL displays an entry page (Figure 1) with an input form in
which the user may enter the necessary data for the test: d (the sub-
stitution rate in the test region), d0 (the substitution rate in the neutral
reference region), and an uploaded file containing tab-delimited rows
of data with values for x (the derived allele frequency), p(x) (the poly-
morphism level in the test region at that frequency), and p0(x) (the
polymorphism level in the neutral reference region at that frequency).
A sample polymorphism file is provided on the website. In practice, it is
often advisable to combine polymorphism levels into a smaller number
of frequency bins, where x then specifies the central frequency of the
bin. This is particularly relevant when the data includes frequencies at
which no polymorphisms are actually present in the neutral region,
in which case a(x) would be undefined for those particular fre-
quencies according to Equation (2). The frequency bins supplied
to asymptoticMK do not need to be equally spaced, but to obtain
the best possible a estimate it is preferable to have bins providing
good coverage across the full frequency spectrum. The input form
also allows entry of minimum andmaximum values defining a cutoff
interval for x, such that the test is run using only the polymorphisms
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whose frequencies fall within that cutoff interval; this is usually desir-
able as a means of excluding the lowest- and highest-frequency poly-
morphisms, where SNP quality issues and polarization errors are
generally most pronounced. This frequency cutoff is set to [0.1, 0.9]
by default, but should be adjusted as needed.

Upon submission of the web form, asymptoticMK conducts its
analysis and then opens a results page in a new browser tab, presenting
a summary of the input data and the results from the analysis. The first
plot on this results page shows binned polymorphism counts, p0(x) and
p(x), for the submitted data; the second plot shows that same data
normalized (i.e., the normalized SFS in the test and reference regions).
A third plot shows the calculated empirical a(x) as a function of x,
estimated from the input data according to Equation (2). The fourth
plot shows the same a(x) data, with the best-fitting model and the
asymptotic estimate of a from Equation (3) superimposed upon the
data.

Below these plots, the results of the analysis are presented in two
tables. The first table provides the coefficients a, b, and (for exponential
fits) c of the model yielding the best fit to the data. The second table
provides the estimated aasymptotic according to Equation (3), and the
upper and lower limits of the 95% C.I. around that estimate, as well as
the estimated a from the original nonasymptotic MK test (aoriginal) for
comparison (also estimated from all polymorphisms falling within the
frequency cutoff interval specified on the input page).

For purposes of automation, the asymptoticMKweb service can also
be run at the command line using the Linux/Unix curl command. For
example, the command

curl-F"d=593" -F"d0=930" -F"xlow=0.1" -F"xhigh=
0.9" -F"datafile=@polymorphisms.txt" -F"reply =
table" -o "MK_table.txt"
http://benhaller.com/cgi-bin/R/asymptoticMK_run.html

would run asymptoticMK with the given values of d and d0, the given x
cutoff interval, and polymorphism data uploaded from the local file
polymorphisms.txt, andwould output a simple table of results to the file
MK_table.txt. Further documentation on the use of this feature is pro-
vided on the asymptoticMK web page.

Finally, it is alsopossible torunasymptoticMKinRon theuser’s local
machine. The R code for doing so can be found on asymptoticMK’s
GitHub repository. In addition to allowing the user to modify asymp-
toticMK’s analysis as desired, this option also allows PDF plots to be
created, rather than the PNG plots provided by the web-based service.

Fitting and analysis procedure
The asymptotic MK test first involves calculating values of a(x) by
applying Equation (2) to each frequency bin provided, as described
by Messer and Petrov (2013). The next step involves fitting a function
afit(x) to these empirical a(x) values. For greater robustness, asympto-
ticMK fits two functions to the data. The first function is exponential, of
the formafit(x) = a + b exp(2cx), and is fitted using the nls2() function,
from the R package nls2 (Grothendieck 2013). This fit is done in two
steps. First, a brute-force scan for the closest fit is conducted across the
likely portion of the three-dimensional parameter space defined by a, b,
and c, by exhaustive search. This supplies reasonably good starting
values for the second step, which refines those starting values using
standard nonlinear least-squares regression. While this two-step pro-
cedure generally works well, it can fail to converge if the data are not
exponential in form.

To address this possibility of nonconvergence of the exponential fit,
asymptoticMKalsofits a linear function of the formafit(x) = a+ bx, with
the lm() function that is part of the stats package included in R. This fit
always converges, and thus provides a backstop that allows the test to
complete evenwhen given irregular or extremely noisy data; however, it
is always recommended that the results of the analysis be inspected
visually to confirm that they are in fact meaningful.

Once these two models have been fitted, asymptoticMK chooses
which model will be used for the remainder of the analysis. If the
exponentialfit failed to converge, then the linearmodel is chosen; if both
fits succeeded, then the better model is chosen using the Akaike In-
formation Criterion (AIC). Occasionally, in pathological cases, the
exponential fit will have the better AIC but will have extremely large
coefficient SEs; in this case, the linearfit is chosen since predictions from
the exponential model would be effectively worthless.

The chosenmodel is then used to provide an estimate of the value of
aasymptotic according to Equation (3), by evaluating the fitted function

Figure 1 A screenshot of the web page for
asymptoticMK. After entering values for d and d0,
choosing an input file with binned values for x, p,
and p0, and choosing the x interval to fit, the user
can click the Submit button and asymptoticMK will
provide its results in a new browser window or tab.
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afit(x) at x = 1; this is the primary result of the test, and provides the
test’s estimate of the true value of a within the test region. A 95% C.I.
around this estimate is also calculated. For the exponential model, this
is done using Monte Carlo simulation based upon the fitted model,
using the predictNLS() function published online by Spiess (2013); for
the linear model, it is done using the standard R function predict().

Test data sets
To provide a test of asymptoticMK using empirical data, we used the
same Drosophila melanogaster data set that Messer and Petrov (2013)
used in their Figure 3C. This data set consists of SNPs obtained from
the genome sequences of 162 inbred fly lines generated by theDrosoph-
ila genetic reference panel (Mackay et al. 2012). Divergence data were
obtained from genome alignments between D. melanogaster and
D. simulans, extracted from the 12 Drosophila genomes data (Clark
et al. 2007). The test data in the asymptoticMK analysis (d and p) are
genome-wide nonsynonymous mutations, while synonymous sites
were used as the neutral reference (d0 and p0). The polymorphism data
are available online at asymptoticMK’s GitHub repository, with asso-
ciated values d = 59570 and d0 = 159058. The default frequency cutoff
interval of [0.1, 0.9] was used in the analysis of this data set with
asymptoticMK.

We also tested asymptoticMK on simulated data, using the forward
genetic simulation framework SLiM 2 (Haller and Messer 2017). A
population of 1000 diploid individuals was simulated to evolve in a
total of 13 different scenarios, with 20 replicates for each scenario.
Simulation runs depended upon six free parameters (T, L, m, rb, sd,
and sb) as described hereafter. After an initial burn-in period of 10,000
generations to equilibrate the model, runs executed for T additional
generations. The simulated chromosome was L base pairs long. Nucle-
otide mutations occurred uniformly at a rate of m per base per gener-
ation, and recombination occurred uniformly at a rate of 1027 per base
per generation. Each new mutation was either of neutral type “m1”
(relative proportion of 0.5 of all new mutations), of functional non-
beneficial type “m2” (relative proportion of 0.5 of all newmutations), or
of functional beneficial type “m3” (relative proportion of rb of all new
mutations); these relative proportions were automatically rescaled by
SLiM to be absolute proportions. The neutral m1mutations always had

a selection coefficient of s = 0.0; the selection coefficients of m2 muta-
tions were drawn from a gamma distribution with a mean of sd and a
shape parameter of 0.2; and m3 mutations always had a selection co-
efficient of sb. Fitness effects were assumed to be codominant. Every
500 generations after the burn-in period, all polymorphisms were
recorded in the population by dividing them according to their fre-
quency into 50 equal-width frequency bins, and then adding them to an
ongoing binned tabulation. The SLiM configuration script used for
these simulations is provided on asymptoticMK’s GitHub repository.

The “baseline” parameterization of this model utilized parameter
values of L = 107,m = 1029, rb = 0.0005, sb = 0.1, sd =20.02, andT = 2 ·
105. The other 12 parameterizations involved either a “high” or a “low”
value of one of the six parameters, replacing the “central” value used in
the baseline scenario: L = 108 or 106, m = 1028 or 10210, rb = 0.001 or
0.0001, sb = 0.2 or 0.02, sd =20.2 or20.002, and T = 2 · 106 or 2 · 104.
At the end of each model run, we obtained binned values for p(x)
and p0(x), where p0 was estimated from all polymorphisms involv-
ing mutations of type m1, while p was estimated from the combined
mutations of types m2 and m3. Values for d and d0 were obtained
from the set of mutations fixed during the simulation; as with p0
and p, d0 was estimated from all mutations of type m1, while d was
estimated from the combined mutations of types m2 and m3. These
values, output by the model, were used in asymptoticMK with the
default x cutoff interval of [0.1, 0.9] to calculate an a estimate. The a
estimate from the original MK test was also calculated using the data
within the same interval. Finally, the true value of a was estimated from
the simulation run as the fraction d3 / (d2 + d3), where d2 is the number of
m2 mutations fixed and d3 is the number of m3 mutations fixed. This
value provides a metric for the accuracy of the a estimates– a benefit of
using simulated data, where the true a can be calculated.

From this rawdata provided by each set of 20 replicates for a given
parameterization, summary statistics for that parameterization were
computed. In particular, we calculated (i) the mean and SD of the
true a values, (ii) the mean and SD of the asymptoticMK a esti-
mates, (iii) the mean of the absolute differences between the true a
and the asymptoticMK estimate (i.e., the mean estimation error for
asymptoticMK), (iv) the mean and SD of the estimates of a using the
original nonasymptoticMK test, (v) themean of the absolute differences

n Table 1 Results from asymptoticMK for simulation runs conducted with SLiM 2

Model atrue aasymptotic aoriginal Dasymptotic Doriginal rexp

Baseline 0.329 6 0.015 0.307 6 0.058 0.164 6 0.035 0.045 0.165 0.75
L = 108 0.327 6 0.008 0.301 6 0.013 0.174 6 0.012 0.025 0.152 1.00
L = 106 0.321 6 0.067 0.246 6 0.134 0.142 6 0.141 0.120 0.191 0.15
m = 1028 0.306 6 0.005 0.287 6 0.016 0.173 6 0.009 0.019 0.132 1.00
m = 10210 0.317 6 0.057 0.288 6 0.169 0.145 6 0.074 0.134 0.173 0.05
rb = 0.0010 0.493 6 0.018 0.481 6 0.045 0.378 6 0.025 0.041 0.114 0.70
rb = 0.0001 0.091 6 0.014 0.115 6 0.080 20.103 6 0.053 0.071 0.194 0.55
sb = 0.20 0.477 6 0.016 0.451 6 0.032 0.366 6 0.025 0.029 0.111 0.70
sb = 0.02 0.096 6 0.011 0.090 6 0.068 20.119 6 0.047 0.057 0.215 0.50
sd = 20.200 0.424 6 0.024 0.422 6 0.042 0.289 6 0.036 0.032 0.135 0.60
sd = 20.002 0.233 6 0.011 0.234 6 0.057 0.104 6 0.039 0.045 0.129 0.50
T = 2 · 106 0.324 6 0.006 0.302 6 0.014 0.173 6 0.012 0.022 0.151 1.00
T = 2 · 104 0.345 6 0.063 0.369 6 0.183 0.225 6 0.113 0.126 0.120 0.05

The first row shows the averaged results from 20 replicate runs of the baseline SLiM model supplied on GitHub (see text). These runs used parameter values of
mutation rate m = 1029 per base position per generation, chromosome length L = 107 base positions, beneficial mutation rate rb = 0.0005, beneficial mutation
selection coefficient sb = 0.1, deleterious mutation selection coefficient sd = 20.02, and time after burn-in T = 2 · 105 generations. Each subsequent row shows the
results from 20 replicate runs using the nonbaseline parameter value shown. atrue specifies the true value of a averaged across the 20 replicates in each row; aasymptotic

and aoriginal specify the asymptoticMK estimate and the estimate from the original test, respectively. SDs across the 20 replicates of each row are shown as 6 values.
Dasymptotic = |aasymptotic 2 atrue| and Doriginal = |aoriginal 2 atrue| specify the mean absolute errors between true a values and the estimates from asymptoticMK and the
original test, respectively, in each run, averaged over the 20 replicates. rexp specifies the fraction of runs in which the exponential fit was chosen.
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between the true a and the original MK test estimate (i.e., the mean
estimation error for the original MK test), and (vi) the fraction of the
20 replicates for which asymptoticMK chose an exponential (as opposed
to linear) fit (Table 1).

Data availability
TheasymptoticMKwebservice canbeusedonlineathttp://benhaller.com/
messerlab/asymptoticMK.html. TheR source code for asymptoticMK, the
SLiM model for the simulations conducted, the Drosophila data set
analyzed, and other related files are available on GitHub at https://
github.com/MesserLab/asymptoticMK.

RESULTS AND DISCUSSION
Results from our test of asymptoticMK with the empirical D. mela-
nogaster data set are shown in Figure 2, A and B. The fitted exponential

function is: afit(x) = 0.585 2 0.622 exp(23.80x). The asymptotic MK
estimate provided by this model is aasymptotic = 0.571. These results
match those obtained byMesser and Petrov (2013) using the same data
set (their Figure 3C), as expected. The estimate provided by the original
MK test is aoriginal = 0.407, by comparison (shown in Figure 2B).

The results from the analysis of the SLiM simulations are shown in
Table 1. In 12 of the 13 parameterizations, the mean estimation error of
asymptoticMKwasmarkedly lower than that of the originalMK test; in
the other parameterization (T = 2 · 104) the tests performed similarly
(mean estimation errors of 0.126 and 0.120). For three of the 13 param-
eterizations (L = 106, m = 10210, and T = 2 · 104), however, the mean
estimation error of asymptoticMK was . 0.1, indicating that a esti-
mates were relatively inaccurate for those simulations. These three
parameterizations involved a shorter chromosome, a lower mutation
rate, or a shorter duration, and thus all provided �10 times less

Figure 2 Results from asymptoticMK for three test
data sets. (A) Normalized site frequency spectrum
(SFS) for the Drosophila data set used in Messer and
Petrov (2013). Points show normalized binned poly-
morphism frequencies for the neutral region (black)
and the test region (red). (B) Result of asympto-
ticMK’s analysis of that data set. The two vertical
blue lines show the limits of the frequency cutoff
interval used for fitting. Points indicate binned val-
ues of a(x), estimated according to Equation 2;
points are gray if they are outside the cutoff interval
(and thus not used in fitting). The solid red curve
shows the fitted afit(x) (here, exponential). The
dashed red line shows the estimate of aasymptotic,
obtained from the fitted function according to Equa-
tion 3. The gray band indicates the 95% C.I. around
this aasymptotic estimate. The dotted gray line shows
the estimate of aoriginal, obtained from the original
(nonasymptotic) McDonald–Kreitman (MK) test, for
comparison (also calculated using only the data
within the cutoff interval). (C) and (D) show corre-
sponding results from one SLiM simulation run,
and (E) and (F) show results from another SLiM sim-
ulation run; in each case, the first panel shows the
result of an automated fit using asymptoticMK,
whereas the second shows the improvement after
hand tailoring of the fit (see Results and Discussion).
Note that in all four cases, the linear fit was deemed
more appropriate by asymptoticMK. The solid green
horizontal lines, finally, show the true value of a in
the simulation runs for comparison.
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polymorphism data upon which to base estimations than our baseline
scenario. Accordingly, parameterizations that provided more polymor-
phism data (L = 108,m = 1028, and T = 2 · 106) providedmore accurate
a estimates (mean estimation errors below 0.03). This pattern was weak
or absent for the original MK test; even for the high-data parame-
terizations the original MK test always showed a mean estimation
error. 0.1, and its mean estimation error for the high-data L = 108

case was actually substantially higher than for the low-data L = 106

case (0.151 vs. 0.120). This is consistent with the fact that the orig-
inal MK test systematically underestimates a in the presence of
deleterious mutations (as discussed in the opening paragraphs).
The asymptotic MK test may still have a tendency toward underes-
timation as well, but errors are much smaller.

Another noteworthy observation is that in the high-data parame-
terizations the exponential fit was chosen by asymptoticMK in 100% of
cases,whereas inthe low-dataparameterizationsthe linearfitwaschosen
a majority of the time (Table 1). It is not the case that the linear model
always produces a poor a estimate; we observed many runs where the
linear fit performed well. However, it may indicate that a poor cutoff
interval was chosen, that the binning of the polymorphism data ought
to be done differently, or that the data are simply too noisy. We suggest
that the result of the asymptotic MK test should always be inspected
visually to verify that the fit is reasonable and that appropriate cutoff
intervals and bin sizes were used.

To illustrate how such manual inspection can help improve esti-
mates, we examine two of the simulation runs from Table 1 in more
detail. Figure 2C shows the automated fit for one of the simulations in
the low-data L = 106 scenario. A linear fit function produced an as-
ymptotica estimate of 0.0313, which is quite distant from the true value
of 0.3462. The binned polymorphism data within the cutoff interval of
[0.1, 0.9] is rather flat, but the data appears reasonable across the whole
frequency spectrum in this case, and the upward trend of the data is
much more visible outside of the cutoff interval used. Changing the
cutoff interval to [0.0, 1.0] produces the fit shown in Figure 2D with an
asymptotic a estimate of 0.2829, much closer to the true value. Figure
2E shows the automated fit for another L = 106 scenario run. This fit
also used a linear fit function, producing an asymptotic a estimate of
0.0103 compared to the true value of 0.2462. Here, the data are very
noisy, which could be an indication that more bins have been used than
can be robustly supported by the data. Rebinning the polymorphism
data into half as many bins provides a less noisy data set that results in a
much better fit (Figure 2F), with an a estimate of 0.1813– again, a
substantial improvement. These examples illustrate that automated fits
can be particularly problematic in low-data situations such as the L =
106 scenario, but that hand inspection and tailoring of the fitting pro-
cess can sometimes improve the result noticeably.

Conclusions
In this paper, we presented asymptoticMK, a new web-based tool for
executing the asymptotic MK test. To demonstrate its functionality, we
analyzed both empirical and simulation-generated data sets. Our results
illustrate the greaterpowerof the asymptoticMKtest to estimate the true
value of a, compared to the original nonasymptotic test. However, our
results also underline the need for a large data set to obtain reasonably
accurate results from the asymptotic test; estimates of a from a single
gene, or from a systemwith a very short divergence time, are unlikely to
be meaningful. In addition, visual inspection of the quality of the fit
used to estimate a is necessary for accuracy. With attention to these
caveats, the asymptoticMK service presented here allows the user to
obtain a estimates quickly and easily through any web browser, or
using R on any machine.
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