
RNA localization

Yaron Shav-Tal and Robert H. Singer*

Department of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of 
Medicine, Bronx, NY 10461, USA

Abstract

Messenger RNA (mRNA) molecules are transcribed in the nucleus and then undergo export into 

the cytoplasm, where they are translated to produce proteins. Some mRNA transcripts do not 

immediately undergo translation but, instead, are directed to specific areas for local translation or 

distribution. This produces an asymmetric distribution of cytoplasmic proteins, providing localized 

activities in polarized cells or developing embryos. Studies of the localization process in various 

eukaryotic systems have unearthed numerous nuclear RNA-binding proteins (RBPs) involved. We 

present here some representative examples from different organisms.

General features of mRNA localization systems

mRNA transcripts are coated by a variety of RBPs. Some of these are essential for mRNA 

localization and can be detected even when the mRNA is still nuclear. In many cases, 

specific sequence elements, ‘zipcodes’, in the untranslated region (UTR) form a secondary 

structure that serves as a docking site for the RBPs and thus promotes the localization 

process.

Localizing mRNAs are shuttled to specific areas of the cell or the organism along 

cytoskeletal elements such as microtubules or actin filaments. They seem to be actively 

translocated by motor proteins of the myosin, kinesin and dynein families. Although our 

knowledge of the components of the mRNP complexes is growing, the list we give here is by 

no means comprehensive and merely a general impression of the multitude of interactions 

necessary for the localization process.

Mammalian cells

mRNA localization in fibroblasts—β-actin mRNA localization has been identified in 

several mammalian systems (Lawrence and Singer, 1986). In migrating fibroblasts, β-actin 

mRNA is localized to the leading edge of the cells (Lawrence and Singer, 1986). This 

correlates with the elevated levels of β-actin protein required in lamellipodia, which depend 

on the rapid polymerization of actin for cell movement (Condeelis and Singer, 2005). 

Zipcode sequences (Kislauskis and Singer, 1992) immediately downstream of the stop 

codon (Kislauskis et al., 1993) recruit the zipcode-binding protein ZBP1 by interacting with 

its KH domains (Ross et al., 1997;Farina et al., 2003). ZBP1 and β-actin mRNA associate in 
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the nucleus (Oleynikov and Singer, 2003) and travel in cytoplasmic granules to the leading 

edge. ZBP2, a predominantly nuclear protein, also binds the zipcode and affects localization 

(Gu et al., 2002). Translation is thought to be inhibited, perhaps by ZBP1, until the mRNA 

reaches the lamellipodia. β-actin-containing granules are transported on actin filaments 

(Sundell and Singer, 1991) and might anchor at specific sites through interactions with 

EF1α (Liu et al., 2002). The responsible motor is unidentified, although inhibition of 

myosin activity does disrupt the process (Latham et al., 2001).

The formation of the branched actin cytoskeleton at the protruding edge of migrating 

fibroblasts requires the Arp2/3 complex (Machesky et al., 1994). This seven-subunit 

complex (Machesky et al., 1997; Mullins et al., 1997; Welch et al., 1997), caps the slow-

growing ends of actin filaments, while stabilizing the fast-growing polymerizing ends. The 

seven mRNAs that encode Arp2/3 subunits are all localized to the leading edge of 

fibroblasts, which supports the idea that localized translation of functionally-related mRNAs 

is coupled to the assembly of complexes (Mingle et al., 2005).

mRNA localization in the neuronal system—mRNA localization mechanisms also 

allow local translation in the extremities (dendrites and axons) of cells from the neuronal 

system (Job and Eberwine, 2001). The mRNAs typically travel from the cell body in 

granules that contain several copies of the mRNA or several types of mRNA. Myelin basic 

protein (MBP) mRNAs, for example, are targeted to the myelin membranes of 

oligodendrocyte cell processes (Ainger et al., 1993). They probably associate with 

microtubules through a kinesin motor (Carson et al., 1997) and are bound by the RNA-

binding protein hnRNP A2 (Hoek et al., 1998). Other examples are localization of CamKIIα 
mRNA by kinesin in hippocampal dendrites (Kanai et al., 2004; Rook et al., 2000) and 

translocation of tau mRNA on microtubules in axons, in which a relative of ZBP1, IMP-1, is 

involved (Atlas et al., 2004). β-actin mRNA is localized to neuronal growth cones and 

hippocampal dendrites through similar association with ZBP1 (Bassell et al., 1998; Eom et 

al., 2003). Long-distance translocation occurs along microtubules (Zhang et al., 2001), using 

an unidentified motor protein, probably kinesin (our unpublished data). Since the distance 

between dendrites or axons and the cell nucleus can be extremely large, this localization 

mechanism allows rapid translational responses that are independent of the ongoing 

transcription in the nucleus.

Budding yeast

Actin-based translocation of localized mRNAs also occurs in yeast (Darzacq et al., 2003; 

Gonsalvez et al., 2005). In budding yeast, many RNAs translocate from the mother cell into 

the budding daughter cell and concentrate at the bud tip (Shepard et al., 2003). One of the 

best studied examples is ASH1 mRNA (Long et al., 1997; Takizawa et al., 1997). Ash1p is a 

nuclear DNA-binding protein required for control of mating-type switching, and its 

asymmetric distribution causes the repression of HO endonuclease expression only in the 

daughter cell (Bobola et al., 1996; Sil and Herskowitz, 1996). ASH1 RNA is moved along 

actin filaments by a type V myosin, She1p/Myo4p, as part of an RNP complex termed the 

locasome (Beach et al., 1999; Bertrand et al., 1998). She2p is an RBP that binds to the 

ASH1 mRNA zipcode sequences in the nucleus, accompanies the mRNA in the cytoplasm 
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(Bohl et al., 2000; Long et al., 2000; Niessing et al., 2004) and bridges the connection to the 

motor via She3p (Takizawa and Vale, 2000). Once at the bud tip, ASH1 mRNA might be 

anchored to cortical actin. The Puf6p protein interacts directly with the ASH1 mRNA and 

represses its translation during translocation to the daughter cell (Gu et al., 2004). Because 

Puf6p is nuclear, it might associate with ASH1 mRNA in the nucleus. Khd1p is a component 

of the locasome and localizes with ASH1 mRNA at the bud tip and also inhibits translation 

(Irie et al., 2002). Loc1p is another nuclear protein that associates with ASH1 mRNA and 

might be important for mRNP assembly (Long et al., 2001).

Xenopus

Several mRNAs are localized to the different poles of Xenopus oocytes (Kloc and Etkin, 

2005). The unequal distribution of specific mRNAs results in the development of unique 

daughter cells, providing a means by which germ cell lineages are defined and the primary 

axis for development is established. Vg1 protein is a member of the transforming growth 

factor β (TGFβ) superfamily and has roles in mesoderm and endoderm development. Vg1 

mRNA is localized to a tight region in the vegetal cortex of frog oocytes during oogenesis 

(Melton, 1987). It harbors a zipcode (Mowry and Melton, 1992) that interacts with the 

protein Vg1-RBP/Vera (Deshler et al., 1998; Havin et al., 1998; Schwartz et al., 1992) 

through its KH domains (Git and Standart, 2002) and mediates association with 

microtubules (Elisha et al., 1995).Xenopus Vg1-RBP/Vera is highly related to mammalian 

ZBP1, and both are part of a family of closely related RBPs involved in RNA regulation 

(Yisraeli, 2005). Movement of Vg1 mRNA along microtubules (Yisraeli et al., 1990) could 

involve kinesin motors and the Staufen RBP (see below) (Allison et al., 2004;Betley et al., 

2004; Yoon and Mowry, 2004). Interestingly, during these stages of Xenopus development 

most of the microtubules have their plus ends pointed towards the nucleus (Pfeiffer and 

Gard, 1999), and therefore it remains unclear how mRNAs localize in the opposite direction 

(Kloc and Etkin, 2005). Other transport mechanisms might exist – for instance, the 

association of Vg1 mRNA with ER-membrane vesicles (Deshler et al., 1997). Several other 

proteins have also been implicated as being part of the zipcode-binding localization 

complex: VgRBP60/PTB/hnRNP I (Cote et al., 1999); Prrp (Zhao et al., 2001); xStau (Yoon 

and Mowry, 2004); VgRBP71 (Kroll et al., 2002); 40LoVe (Czaplinski et al., 2005). Some of 

these, like ZBP2, are predominantly nuclear, which suggests a nuclear connection for 

cytoplasmic localization (Farina and Singer, 2002; Kress et al., 2004).

Drosophila

Localization of nanos, oskar, bicoid and gurken mRNAs during oogenesis—
Localized translation is controlled spatially and temporally in specified areas in Drosophila 
oocytes and embryos. In the oocyte, nanos mRNA is localized to the posterior during 

development, and Nanos protein is required for the formation of the anterior-posterior body 

axis (Gavis and Lehmann, 1992;Tautz, 1988). Most nanos mRNA does not localize and is 

translationally repressed (Bergsten and Gavis, 1999) or degraded (Bashirullah et al., 1999). 

Posterior-localized nanos mRNA, however, is stable and translated. The localization of 

nanos mRNA occurs late in oogenesis when the nurse cells release their cytoplasmic 

contents and the mRNA moves into the oocyte. In contrast to other systems, nanos mRNA 

seems to move by diffusion, enhanced by microtubule-dependent cytoplasmic streaming, to 
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the posterior region, where it is anchored to the actin cytoskeleton (Forrest and Gavis, 2003). 

nanos mRNA contains several regions in its 3′ UTR that are required for its localization 

(Dahanukar and Wharton, 1996; Gavis et al., 1996). One stem-loop element is bound by the 

Smaug protein (Smg), which acts in translational repression of Nanos (Crucs et al., 2000; 

Dahanukar et al., 1999; Smibert et al., 1996).

The localization of nanos mRNA requires the Oskar protein (Ephrussi et al., 1991). oskar 
mRNA is also localized to the posterior of the embryo and is one of the first molecules to be 

recruited – probably by a kinesin-I-based mechanism (Brendza et al., 2000). Although oskar 
mRNA has a 3′ UTR that is required for its localization (Kim-Ha et al., 1993), protein 

components of the exon-junction-complex (EJC) accompany the mRNA from the nucleus to 

its destination (Hachet and Ephrussi, 2001; Mohr et al., 2001), and the splicing reaction 

itself may be necessary for oskar mRNA localization (Hachet and Ephrussi, 2004). Several 

other trans-acting factors required have been identified. Staufen, for example, is an RBP that 

colocalizes with oskar mRNA at the posterior pole and is required for its localization and 

translation (Micklem et al., 2000; Rongo et al., 1995; St Johnston et al., 1991). Staufen is 

necessary for the localization of another Drosophila mRNA, bicoid, to the anterior pole 

during late stages of oogenesis (St Johnston et al., 1991), interacting with stem-loop 

structures in the 3′ UTR of this mRNA (Ferrandon et al., 1994). Bicoid is a transcription 

factor that diffuses from the anterior pole to form a gradient throughout the embryo. During 

earlier stages of oogenesis, bicoid localization depends on the Exuperantia protein (St 

Johnston et al., 1989) and then on Swallow protein for anterior anchoring (Stephenson et al., 

1988). bicoid mRNA is transcribed in the oocyte nurse cells and then translocates into the 

oocyte, where it moves along microtubules (Cha et al., 2001), connecting through Swallow 

to a dynein motor (Duncan and Warrior, 2002; Januschke et al., 2002; Schnorrer et al., 

2000).

Dynein also moves gurken mRNA along microtubules to the anterior; there it changes 

direction moving towards the oocyte nucleus, where it localizes (MacDougall et al., 2003). 

The localization of Gurken, the Drosophila homologue of transforming growth factor α 
(TGFα), is important for the establishment of both the anteroposterior and the dorso-ventral 

axes.

Localization in the embryo—Later stages of Drosophila development also require RNA 

localization events, which occur after the setting of anteriorposterior protein gradients in the 

oocyte. In the blastoderm embryo, gap genes are located in broad segments along the 

anterior-posterior axis, yielding local mRNA expression and protein translation.

The differences in concentrations of gap gene products such as Krüppel, Hunchback and 

Giant give rise to embryo segmentation in conjunction with localized expression of pair-rule 

genes. The pair-rule genes ftz, hairy and runt are expressed in a segmental seven-stripe 

pattern in the syncytial embryo (Davis and Ish-Horowicz, 1991). When transcribed, these 

transcripts diffuse into the cytoplasm in all directions and later localize to their correct 

positions in RNA particles, moving on microtubules by dynein motors (Wilkie and Davis, 

2001). Two other proteins, Bicaudal-D (BicD) and Egalitarian (Egl), are important for 

dynein-mediated transport of localized mRNAs both in the oocyte and the embryo (Bullock 
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and Ish-Horowicz, 2001). Egl binds to dynein light chain and to BicD and might bridge the 

connection between the motor and RNA cargo (Mach and Lehmann, 1997; Navarro et al., 

2004).

Outlook

The list of mRNAs known to be localized now stands at well over 100. In neurons alone, the 

number is probably even higher. Many questions remain: what are the complex motor 

systems that transport mRNAs and how do they ‘choose’ their respective cargos and 

cytoskeletal tracks, do mRNAs commit to localization in the nucleus, which proteins 

cooperate in the assembly of localization granules, which mRNAs are co-transported in the 

same granules and how is the translation of these mRNAs regulated? The combination of 

molecular and protein strategies in conjunction with live-cell imaging techniques should 

bring us closer to understanding the different mechanisms of mRNA localization and how 

they evolved in various species. For instance, following single, localizing mRNAs indicates 

that events involving RNA diffusion, assembly of motor complexes and interaction with 

cytoskeletal filaments are all probabilistic. Having a zipcode increases the probability of 

each of those events that lead to localization (Fusco et al., 2003). Further analysis of these 

factors at the molecular level will be an important next step in decoding the localization 

process.
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Figure 1. 
RNA Localization
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