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Abstract

Rationale: The receptor for advanced glycation end products
(RAGE) is underexpressed in idiopathic pulmonary fibrosis (IPF)
lung, but the role of RAGE in human lung fibrosis remains uncertain.

Objectives: To examine (1) the association between IPF risk and
variation at rs2070600, a functional missense variant in AGER (the
gene that codes for RAGE), and (2) the associations between plasma-
soluble RAGE (sRAGE) levels with disease severity and time to death
or lung transplant in IPF.

Methods:We genotyped the rs2070600 single-nucleotide
polymorphism in 108 adults with IPF and 324 race-/ethnicity-
matched control subjects. We measured plasma sRAGE by ELISA in
103 adults with IPF. We used generalized linear and additive models
as well as Cox models to control for potential confounders. We
repeated our analyses in 168 (genetic analyses) and 177 (sRAGE
analyses) adults with other forms of interstitial lung disease (ILD).

Results: There was no association between rs2070600 variation
among adults with IPF (P = 0.31). Plasma sRAGE levels were lower
among adultswith IPF andother formsof ILD than in control subjects
(P, 0.001). The rs2070600 allele A was associated with a 49% lower
sRAGE level (95% confidence interval [CI], 11 to 71%; P = 0.02)
among adults with IPF. In adjusted analyses, lower sRAGE levels were
associated with greater disease severity (14% sRAGE decrement per
10% FVC decrement; 95% CI, 5 to 22%) and a higher rate of death or
lung transplant at 1 year (adjusted hazard ratio, 1.9 per logarithmic
unit of sRAGE decrement; 95% CI, 1.2–3.3) in IPF. Similar findings
were observed in a heterogeneous group of adults with other forms of
ILD.

Conclusions: Lower plasma sRAGE levels may be a biological
measure of disease severity in IPF. Variation at the rs2070600 single-
nucleotide polymorphism was not associated with IPF risk.
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The receptor for advanced glycosylated
end products (RAGE) is a cell surface
protein that has been implicated in a wide
number of disease processes, including
atherosclerosis, Alzheimer’s disease, and
diabetic nephropathy (1–4). RAGE ligand
binding promotes nuclear factor-kB–
mediated inflammation and generation of
reactive oxidative species. RAGE can also
exist in a soluble form (sRAGE) lacking the
transmembrane and cytoplasmic domain
(5), which acts as a decoy receptor that
binds RAGE ligands, thereby attenuating
RAGE-mediated inflammation.

RAGE is expressed primarily on
alveolar epithelial cells (AECs), prompting
great interest in its role in pulmonary
diseases. For example, circulating sRAGE
levels are lower and correlate with disease
severity in chronic obstructive pulmonary
disease (COPD) (6), and RAGE stimulation
in the lung contributes to primary graft
dysfunction after lung transplant (7).
Because RAGE ligand binding promotes
inflammation and injury, RAGE has also
been studied in interstitial lung disease
(ILD), with contradictory findings.
RAGE-knockout mice are more susceptible
to spontaneous and asbestos-induced
pulmonary fibrosis (8), but other studies
have suggested that RAGE knockouts are
protected from bleomycin-induced lung
injury (9, 10). In humans, a number of
studies have shown that RAGE expression
is decreased in the alveolar and bronchial
epithelia in idiopathic pulmonary fibrosis
(IPF) (8, 11).

A nonsynonymous single-nucleotide
polymorphism (SNP) (rs2070600) located
in exon 3 of AGER, the gene that codes
for RAGE, has a missense allele (Gly82Ser,
allele A) that promotes inflammation
by both increasing signal transduction
following ligand binding due to altered
RAGE glycosylation (12–14) and lowering
circulating levels of sRAGE in both healthy
adults and individuals with COPD (6, 15).
We have reported nearby SNPs in

association with reduced percentage of
emphysema on computed tomographic
scans (16), but no studies have examined
AGER variation or sRAGE in IPF.

In light of the potential role of RAGE
in promoting inflammation and injury as
well as the proinflammatory phenotype of
the AGER SNP rs2070600 A allele, we
hypothesized that the AGER SNP
rs2070600 A allele would be associated with
both IPF risk and lower plasma sRAGE
levels in IPF. We also hypothesized that
lower sRAGE levels would be associated
with more severe disease and a higher
mortality rate in IPF.

Methods

All participants provided informed consent,
and the study was approved by the
Columbia University Medical Center
Institutional Review Board. Additional
methods are presented in the online
supplement.

Study Participants and Data Sources
We prospectively enrolled 364 adults with
ILD at Columbia University Medical Center
who agreed to participate in genetic
studies of ILD between 2007 and 2011 (17).
We excluded 15 with poor genotype quality
control, 27 outliers in race-/ethnicity-
specific principal components of ancestry,
and an additional 6 for whom a matching
control subject was not available, leaving
316 cases for genetic analyses: 108 with
IPF and 208 with other ILDs. Of these, 291
had available plasma. We further excluded
6 with unreliable sRAGE measurements
and 5 with missing covariate data, leaving
280 with sRAGE measurements. Twenty-
one healthy control subjects were also
recruited.

Control subjects for genetic analyses
were sampled from the Multi-Ethnic Study
of Atherosclerosis (MESA), a National
Heart, Lung, and Blood Institute–funded

prospective cohort study of 6,814
community-dwelling adults aged 45–84
years old at enrollment in 2000–2002 and
from the MESA Air and MESA Family
studies (see online supplement) (18–20).
We restricted selection of control subjects
to those MESA participants free of
self-reported chronic lung diseases other
than asthma. Each adult with ILD was
then matched to three eligible MESA
control subjects of the same race/ethnicity.

We also examined non-Hispanic
white participants with fibrotic idiopathic
interstitial pneumonia (IIP) (n = 1,616) in a
previously published Columbia University
genome-wide association study and a
group of control subjects (n = 4,683) (21).
Fibrotic IIPs included IPF (77%; sporadic
and familial), unclassified fibrosis, and
some nonspecific interstitial pneumonia.

Genotyping
rs2070600 was among the genotyped SNPs
passing quality control in patients with ILD
(Axiom Biobank chip; Affymetrix, Santa
Clara, CA), MESA (HumanExome
BeadChip version 1.0; Illumina, San Diego,
CA), and the Colorado-based genome-wide
association study (Illumina 600 Quad
BeadChip).

sRAGE Measurement and AGER
Expression in Lung Tissue
Using commercially available ELISA kits
(R&D Systems, Minneapolis, MN), we
measured plasma levels of sRAGE in
participants with ILD. The intraassay
coefficient of variation for this assay is
less than or equal to 6.2%, and the
interassay coefficient of variation is less
than or equal to 8.2%. We also measured
sRAGE in 21 healthy control subjects.
mRNA expression of AGER was measured
by quantitative reverse transcription–
polymerase chain reaction in anonymized
optimal cutting temperature compound–
embedded lung tissue from 15 adults with
IPF (and a confirmed usual interstitial

The views expressed in this document are solely those of the authors. The EPA and the Pulmonary Fibrosis Foundation do not endorse any products or
commercial services mentioned in this publication.

Author Contributions: Study design: A.M., G.R., S.M.K., T.E.F., D.A.S., S.S.R., R.G.B., and D.J.L.; phenotype data acquisition and quality control: A.M.,
E.A.F., J.D.K., K.D.H.-S., S.M.K., S.J., D.A.S., R.G.B., and D.J.L.; genotype data acquisition and quality control: A.M., L.S., S.O.-G., E.A.F., T.E.F., D.A.S.,
and S.S.R.; tissue acquisition and staining, biomarker measurement, pathology review and interpretation, and gene expression analysis: L.S., A.C.B., and
W.L.; data analysis: A.M., L.S., S.K.M., W.Z., T.E.F., J.L.S., S.S.R., R.G.B., and D.J.L.; and critical revision of the manuscript: all authors.

Correspondence and requests for reprints should be addressed to David J. Lederer, M.D., M.S., Departments of Medicine and Epidemiology, Columbia
University Medical Center, 161 Fort Washington Avenue, Room 3-321A, New York, NY 10032. E-mail: davidlederer@columbia.edu

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org

ORIGINAL RESEARCH

Manichaikul, Sun, Borczuk, et al.: sRAGE and IPF 629

mailto:davidlederer@columbia.edu
http://www.atsjournals.org


pneumonia pattern on biopsy) and from
15 adults without lung disease undergoing
lung resection for reasons other than ILD
obtained from the Columbia University
Pathology Shared Resource Tissue Bank.

Statistical Analyses
We performed a case–control study to
examine the association of the rs2070600
A allele with IPF in 108 adults with IPF
and 324 race-/ethnicity-matched control
subjects using logistic regression. We
repeated this analysis in 168 adults with
other forms of ILD and 504 control
subjects. We used Spearman correlation
coefficients, Wilcoxon rank-sum tests,
Kruskal-Wallis tests, and Dunn’s post hoc
comparisons with Hochberg’s method
with a two-sided a of 0.05 when
appropriate. We used linear regression to
test the association between sRAGE levels
and AGER rs2070600 genotype with
adjustment for age, sex, body mass
index (BMI), and FVC percent predicted
(FVC%), and we used logistic regression
to generate receiver operating characteristic
curves. We used generalized additive
models with locally weighted smoothing
terms for FVC% to examine associations
between FVC% and sRAGE, adjusting for
age, sex, BMI, and AGER genotype. We
used Cox proportional hazards models to
examine associations between sRAGE
level and time to the combined event of
death or lung transplant, adjusted for age,
sex, smoking status, and BMI.

Results

Baseline Characteristics
Study participants with IPF had a mean age
of 65 years, 28% were women, 86% were
of non-Hispanic white race, 5% were of
non-Hispanic black race, and 5% were
Hispanic (Table 1; see also Table E1 in the
online supplement). The mean FVC% was
62%, and the mean diffusing capacity of the
lung for carbon monoxide (DLCO) was
36% of the predicted value. Sixty-seven
percent were former smokers, 19%
had coronary artery disease, 40% had
gastroesophageal disease, 43% had
gastroesophageal reflux disease, 37% were
prescribed corticosteroids, 10% were
prescribed an immunosuppressive or
immunomodulatory therapy (in
combination with a corticosteroid in all
but one case), and 30% were prescribed

oral N-acetylcysteine. The characteristics of
participants with other ILDs are in shown
in Table 1.

Associations between AGER
Genotype and IPF Risk
The prevalence of the rs2070600 A allele was
4.2% among IPF cases and 2.8% among
control subjects. We did not detect an
association between the A allele and IPF
risk (conditional odds ratio, 1.51; 95%
confidence interval [CI], 0.68–3.36;
P = 0.31) (Table E2). Findings were similar
among those with other forms of ILD
(conditional odds ratio, 1.71; 95% CI, 0.90–
3.29; P = 0.10). In an analysis restricted to
non-Hispanic white subjects, the rs2070600
A allele was associated with non-IPF
forms of ILD (conditional odds ratio, 2.18;
95% CI, 1.07–4.43; P = 0.03) but not with
IPF (P = 0.34). We did not identify a
statistically significant association of
rs2070600 with fibrotic IIP in the Colorado
genome-wide association study (P = 0.54).

sRAGE Levels in IPF and Other Forms
of ILD
The mean (SD) sRAGE level was 487.1
pg/ml (451.3 pg/ml) among those with

IPF and 855.9 pg/ml (410.5 pg/ml) among
21 healthy control subjects (P, 0.001)
(Figure 1A). Plasma sRAGE levels were
lower among those receiving
immunosuppressive therapy (P = 0.001),
but they did not appear to differ by
smoking status, presence of
gastroesophageal reflux, or between those
with IPF versus combined pulmonary
fibrosis and emphysema (Figure E1).
Compared with control subjects, mean
plasma sRAGE levels were consistently
lower among those with other IIPs,
connective tissue disease–related ILD,
hypersensitivity pneumonitis, and a
heterogeneous group of other ILDs
(P, 0.01 compared with control subjects
for each comparison) (Figure 1A). The
range of sRAGE levels was qualitatively
similar across ILD categories (Figure 1A).

Lower plasma sRAGE levels
moderately discriminated IPF cases from
control subjects (area under the receiver
operating characteristic curve [AUC],
0.82; 95% CI, 0.75–0.87) (Figure 1B).
Plasma sRAGE levels below 534.3 pg/ml
(the value maximizing sensitivity and
specificity) had a 67% sensitivity and a
95% specificity for IPF. The AUC was

Table 1. Baseline characteristics of participants with plasma soluble receptor for
advanced glycation end products measurements

Characteristic IPF Other ILD

Age, yr 64.86 8.2 56.76 11.2
Female sex 28% 91%
Race/ethnicity
White 86% 72%
Black 5% 27%
Hispanic 5% 7%
Other 7% 6%

Diagnosis
Connective tissue disease/ILD — 27%
Other idiopathic interstitial pneumonia* — 42%
Chronic hypersensitivity pneumonitis — 15%
Combined pulmonary fibrosis and emphysema — 7%
Other† — 9%

FVC, % predicted 62.46 18.7 53.96 18.4
Diffusing capacity of the lung for carbon

monoxide, % predicted
35.56 11.1 32.56 11.3

Body mass index, kg/m2 27.86 4.6 28.96 5.8

Definition of abbreviations: ILD = interstitital lung disease; IPF = idiopathic pulmonary fibrosis.
Data are mean 6 SD and percentage. Diffusing capacity of the lung for carbon monoxide data were
available for 175 participants. FVC and body mass index data were available for 270 participants.
*Idiopathic nonspecific interstitial pneumonia (n = 32), desquamative interstitial pneumonia (n = 1),
cryptogenic organizing pneumonia (n = 5), idiopathic pleuroparenchymal fibroelastosis (n = 2), and
unclassifiable idiopathic interstitial pneumonia (n = 34).
†Two cases each of pulmonary asbestosis, pulmonary berylliosis, and pulmonary Langerhans cell
histiocytosis; one case each of drug-induced ILD, radiation-induced ILD, pulmonary sarcoidosis,
pulmonary hyalinizing granulomatosis, idiopathic pulmonary hemosiderosis, microscopic polyangiitis
with pulmonary fibrosis, Hermansky-Pudlak syndrome, and ILD attributed to Cogan’s syndrome.
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0.83 for non-IPF ILD cases compared with
control subjects (95% CI, 0.77–0.89). The
cutoff of 534.3 pg/ml had a 75% sensitivity
and a 95% specificity for non-IPF ILD
compared with control subjects.

Associations between Plasma RAGE
Levels and AGER Genotype
Among those with IPF, plasma sRAGE levels
were 49% lower among those with
the rs2070600 A allele (95% CI, 11 to 71%;
P = 0.02) (Figure 2). After adjustment for
age, sex, BMI, diagnosis, and FVC%, this
difference persisted (49% reduction; 95% CI,
15 to 69%; P = 0.01). Among those with other
forms of ILD, sRAGE levels were also lower
in those with the A allele in unadjusted (33%
reduction; 95% CI, 6 to 53%; P = 0.02)

(Figure 2) and adjusted (29% reduction;
95% CI, 4 to 47%; P = 0.03) analyses.

Associations between Plasma RAGE
Levels, FVC, and Time to Death or
Lung Transplant
The Spearman correlation coefficient for
plasma sRAGE and FVC%was 0.46 among
those with IPF (P, 0.001) and 0.27
(P, 0.001) among those with non-IPF
forms of ILD, respectively. Correlations
between plasma sRAGE and other
measurements are shown in Table E3.
After adjustment for age, sex, BMI, and
AGER rs2070600 genotype, each absolute
10% decrement in FVC% was associated
with a 14% decrement in sRAGE among
those with IPF (95% CI, 5 to 22%; P = 0.001)

and a 12% decrement in sRAGE
among those with non-IPF forms of
ILD (95% CI, 6 to 20%; P = 0.001)
(Figure 3).

The median follow-up time was 1.6
years (interquartile range, 6.2 mo to 3.8 yr)
among those with IPF, and it was 1.3 years
(interquartile range, 4.8 mo to 3.6 yr)
among those with other ILDs. In an
unadjusted analysis, there was a twofold
increased rate of death or lung transplant
at 1 year per natural logarithmic
decrement in sRAGE (hazard ratio
[HR], 2.0 per doubling; 95% CI, 1.2–3.4;
P = 0.005) (Table 2). After adjustment for
age, sex, BMI, and smoking status, this
association persisted (HR, 1.9 per
doubling; 95% CI, 1.2–3.3; P = 0.01).
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pulmonary fibrosis; sRAGE= soluble receptor for advanced glycation end products.

ORIGINAL RESEARCH

Manichaikul, Sun, Borczuk, et al.: sRAGE and IPF 631



Among those with other forms of ILD,
this adjusted association was similar
(HR, 1.9 per doubling; 95% CI, 1.2–3.0;
P = 0.009). Additional adjustment for
FVC% greatly attenuated these
associations (data not shown), suggesting
that the association between sRAGE
level and mortality is explained largely
by the ability of sRAGE to capture
disease severity. The associations
between sRAGE levels and the time to
death or lung transplant at 3 years were
somewhat attenuated compared with
1-year outcomes, but the adjusted
associations remained significant
(Table 2).

AGER Expression in IPF Lung Tissue
AGER mRNA expression in lung tissue was
lower among IPF cases than among control
subjects (mean fold change in expression
among cases compared with control
subjects, 0.16; 95% CI, 0.07–0.39; P = 0.001)
(Figure E2). There were no appreciable
qualitative differences in the intensity or
distribution of RAGE immunostaining
between IPF and control lung: sRAGE
protein was uniformly present to a mild to
moderate degree in bronchiolar epithelium,
club cells, type 1 AECs, type 2 AECs,
endothelial cells, smooth muscle cells, and
alveolar macrophages, and there was little
to no expression in fibroblasts.

Discussion

We found that plasma sRAGE levels are
reduced in adults with IPF and other forms
of ILD, and that lower plasma sRAGE
levels are strongly associated with greater
disease severity in IPF. Among adults with
IPF, circulating sRAGE levels were lower
among those with the rs2070600 missense
A allele, a finding also reported in COPD
and in healthy adults (6, 15). Consistent
with a previous report (11), we also found
reduced expression of AGER mRNA in
usual interstitial pneumonia lung. There
was no association between rs2070600
variation and IPF risk. We found similar
results among a heterogeneous group of
patients with ILD.

Our findings as a whole indicate that
lower sRAGE levels track closely with
disease severity in IPF. Indeed, lower sRAGE
levels were associated with a higher rate of
death or lung transplant in our study, a
finding confounded by FVC%. Although
this result may at first appear to negate the
importance of sRAGE in IPF, we believe a
more nuanced relationship underlies this
observation, namely that reductions in
circulating sRAGE levels may be a biological
measure of abnormal lung structure
(through loss of RAGE-expressing AECs)
and therefore may be a biomarker of FVC%,
reflecting the loss AECs (the source of
sRAGE) that accompanies lung fibrosis. The
consistency of the association between
disease severity and sRAGE levels in IPF, in
various forms of ILD, and in COPD suggest
that this relationship may hold true across
disease states and be specific to AECs rather
than to a particular disease. For example,
lower sRAGE levels are associated with
lower FEV1/FVC ratio, lower DLCO,
increased emphysema, and higher Global
Initiative for Chronic Obstructive Lung
Disease stage in COPD (6). Although
sRAGE levels should not replace FVC and
FEV1 as the gold standard measures of
disease severity in IPF and COPD,
respectively, the availability of a biological
measure of the burden of pathological
changes in the lung may be of use in the
research setting as a measure of response to
treatments aimed at ameliorating (or even
reversing) attrition of healthy alveolar
tissue in these disease states.

Although our data do not support a role
for the RAGE pathway in promoting lung
injury and inflammation in ILD, it is
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intriguing to postulate mechanisms by
which sRAGEmight play a protective role in
IPF or other ILDs by sequestering RAGE
ligands. In contrast to membrane-bound
RAGE, sRAGE exerts an antiinflammatory
effect by acting as a decoy receptor that
sequesters RAGE ligands, thereby
attenuating membrane-bound RAGE
stimulation (15). sRAGE expression is
decreased in IPF lung (8, 22, 23), and
stimulation of RAGE by its ligands leads to

proinflammatory signaling via the mitogen-
activated protein kinase pathway, which has
been implicated in IPF pathogenesis (24,
25). In addition, lysophosphatidic acid, a
candidate therapeutic target in IPF (26), has
been shown to bind to RAGE (27).
Nevertheless, targeting the RAGE pathway
in IPF should be approached cautiously. A
recent phase II clinical trial failed to
identify a beneficial effect of a RAGE
ligand–binding inhibitor in Alzheimer’s

disease (28), despite strong preclinical
evidence (29). Furthermore, sRAGE
administration has been shown not to
attenuate lung fibrosis in the bleomycin
model (9). Nevertheless, sRAGE analogues,
RAGE antagonists, and interventions
that block RAGE signal transduction may
hold promise to attenuate disease
progression in IPF.

Allelic variation at the rs2070600 SNP
has previously been shown to have
functional significance, which may be
relevant in IPF. The A allele enhances
downstream signaling following RAGE
ligand binding, perhaps due to increased
N-glycosylation of the RAGE protein (4,
13), which could facilitate lung
inflammation and fibrosis. RAGE signaling
through this pathway has been shown to
promote fibroblast activation (30). Data
from the Encyclopedia of DNA Elements
(ENCODE) project predict enhancer
histone marks, DNase hypersensitivity sites,
and multiple regulatory motifs altered at
the site of rs2070600 (31). Although we
were unable to identify an association
between rs2070600 SNP variation and IPF
risk, the rs2070600 A allele was associated
with reduced sRAGE levels, which could
attenuate lung injury, perhaps by binding
RAGE ligands, such as S100A12 (32), that
might contribute to lung inflammation or
injury.

Our study was subject to a number
of limitations. First, our results should not
be interpreted to indicate that sRAGE levels
are a clinically useful diagnostic or
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Figure 3. Continuous association between FVC percent predicted (FVC%) and plasma soluble receptor for advanced glycation end products (sRAGE)
level among (A) adults with idiopathic pulmonary fibrosis (IPF) and (B) adults with other forms of interstitial lung disease (ILD). The dotted lines are
smoothed regression lines adjusted for age, sex, AGER genotype, and body mass index. The thin dashed lines are 95% confidence intervals. The P values
for the associations between FVC% and sRAGE were 0.001 for IPF and less than 0.001 for other ILDs.

Table 2. Association between plasma soluble receptor for advanced glycation end
products level and time to death or lung transplant at 1 year

IPF Other ILDs

1-yr outcomes
Number of decedents 14 27
Number of transplant events 26 23
Person-years 75.3 135.7
Event rate (95% CI)* 53.1 (38.5–71.6) 36.9 (27.6–48.1)
Hazard ratio (95% CI) per natural logarithmic

decrement in sRAGE
Unadjusted 2.0 (1.2–3.4) 1.5 (0.98–2.3)
Adjusted† 1.9 (1.2–3.3) 1.9 (1.2–3.0)

3-yr outcomes
Number of decedents 35 54
Number of transplant events 26 32
Person-years 157.9 298.5
Event rate (95% CI)* 38.6 (29.8–49.3) 28.8 (23.2–35.4)
Hazard ratio (95% CI) per natural logarithmic

decrement in sRAGE
Unadjusted 1.6 (1.1–2.5) 1.2 (0.9–1.7)
Adjusted† 1.6 (1.03–2.4) 1.5 (1.04–2.1)

Definition of abbreviations: CI = confidence interval; ILD = interstitital lung disease; IPF = idiopathic
pulmonary fibrosis; sRAGE= soluble receptor for advanced glycation end products.
*Rate of death or lung transplant per 100 person-years.
†Adjusted for age, sex, body mass index, and smoking status.
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prognostic biomarker in IPF, particularly
because sRAGE is not associated with
survival after accounting for disease severity.
The high AUC and specificity for a low
plasma sRAGE level to discriminate
individuals with IPF from control subjects
should not be applied clinically, because
these results likely overestimate the true
ability of sRAGE to identify IPF or ILD in a
more heterogeneous clinical population.
Second, the observational nature of
our study limits the inferences we can
make about the role of sRAGE in IPF
progression. Interventional studies designed

to attenuate RAGE signaling in the lung (or
to increase sRAGE levels) might shed light
on whether the RAGE pathway is involved
in IPF progression. Finally, we lacked
longitudinal measurement of sRAGE, which
might provide additional prognostic
information.

In summary, adults with IPF have
reduced sRAGE levels compared with
healthy control subjects, and lower sRAGE
levels are associated with greater disease
severity and higher mortality in IPF. Our
data suggest that sRAGE may be a biological
measure of AEC mass in IPF. Future studies

should investigate whether circulating
sRAGE may be responsive to therapies
aimed at preserving the alveolar epithelium
in IPF. In addition, consideration should
be given to determining whether
interventions that specifically raise
sRAGE levels help slow IPF progression. n
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