Correlation between the levels of SpO₂ and PaO₂

Sir,

Sarkar *et al.* in 2017, in their recent article,^[1] have very nicely elucidated various mechanisms of hypoxemia, and I would like to congratulate them for this endeavor.

In continuation, I would like to offer the following hypothesis which correlates well between the levels of hemoglobin saturation (SpO_2) and partial pressure of oxygen in the arterial blood (PaO₂).

We keep on looking arterial blood gas (ABG) reports and keenly watch multi-monitors in Intensive Care Units (ICUs) and wards. As standard teaching, we have a certain image and interpretation of high and low SpO₂ and PaO₂ reports.^[2]

The sigmoid shape of the oxy–hemoglobin (Hb) dissociation curve reflects the cooperative interaction between Hb and oxygen (O_2) molecules. The oxy–Hb dissociation curve is initially steep and then flattens out (sigmoid shape). The most important aspect of the curve is that as the oximeter reading falls below 90%, the PaO₂ drops very rapidly and O₂ delivery to the tissues is reduced and leads to irreversible brain damage and cardiac arrest.

The understanding of sigmoidal-shaped oxy–Hb dissociation curve comes very handy in these situations [Figure 1]. O_2 saturation varies with the PaO₂ in a nonlinear relationship and is affected by temperature, pH, 2,3 diphosphoglycerate, and PaCO₂ (partial pressure of carbon dioxide in the arterial blood).^[3] Above 90 mmHg of PaO₂, the curve becomes almost flat, and there is a small rise in SpO₂ in spite of big increments in PaO₂. The flat upper part acts as a buffer in the sense that the PaO₂ can drop to about 60 mmHg and yet the Hb will still remain highly saturated (90%) with O₂. The steep lower part also has big advantage in that if the tissues require more O₂, substantial amounts of O₂ can be removed from Hb without greater drops in PaO₂.^[4] For example, Hb would be still 50% saturated although PaO₂ has dropped to 26.6 mmHg (P50).

From last 30 years, while working in critical care wards, I always used to wonder if any formula can be devised which, while waiting for ABG results, can rapidly help a clinician to reach to a PaO_2 level just by looking at SpO_2 values, and I have come up with certain observations/calculations. For the first 10% reduction in SpO_2 from 100% to 90%, decrease PaO_2 by 4 mmHg for every single percent reduction in SpO_2 with a resultant PaO_2 falling from 100 to 60 mmHg [Table 1]. For the next

Figure 1: Oxy-hemoglobin dissociation curve

Table 1: Calculation for PaO, asse	ssment
------------------------------------	--------

SpO ₂ (on monitor)	Calculation for PaO ₂	Resultant PaO ₂ range	
100%-90%	Decrease PaO_2 by 4 mmHg for every single percent reduction in SpO ₂	100-60 mmHg	
90%-80%	Decrease PaO ₂ by 1.5 mmHg for every single percent reduction in SpO ₂	60-45 mmHg	
<80%	Divide SpO_2 by 2 to reach to a PaO ₂ level	40 mmHg and downward	

10% reduction in SpO₂ from 90% to 80%, decrease PaO₂ by 1.5 mmHg for each percent reduction in SpO₂ which will result in PaO₂ falling from 60 to 45 mmHg. Finally, for SpO₂ levels below 80%, divide it by 2, that is half the value of SpO₂, and we get the requisite PaO₂ level.

This hypothesis can have some pitfalls, for example, cyanide poisoning and certain hemoglobinopathies, but still, a fair and working assessment may be drawn from this calculation. Two proven measurements further support this hypothesis:

- i. As per classical teaching, at mixed venous point, the SpO_2 of deoxygenated blood returning to the heart is taken as 75% with a saturation of 40 mmHg.^[1,3] With the present calculation, O_2 saturation would come out to be 75/2 = 37.5 mmHg, which, in clinical parlance, is not much further away from 40 mmHg
- ii. The hypothesis is further supported by the value of P50, which is 26.6 mmHg, and again, which is almost half of 50%.

This formula, which is not an exact mathematically proven entity, can be of extreme help to ICU residents and consultants. For example, if the monitor is showing a SpO₂ of 70%, we can almost consider a value of PaO_2 to be around 35 mmHg and take appropriate measures for the patient.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

Arun Madan

Department of Pulmonary Medicine, NDMC Medical College, Hindu Rao Hospital, New Delhi, India E-mail: drarunmadan@gmail.com

REFERENCES

- 1. Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India 2017;34:47-60.
- Leitch AG. Functions of the lung. In: Seaton A, Seaton D, Leitch AG, editors. Crofton & Douglas's Respiratory Diseases. 5th ed., Vol. 1, Ch. 2. Oxford: Blackwell Science; 2000. p. 26-62.
- 3. West JB. Gas transport by the blood. In: Respiratory Physiology-The

Essentials. 9th ed., Ch. 6. Baltimore: Lippincott Williams & Wilkins; 2012. p. 77-94.

 Wagner PD, Powell FL, West JB. Ventilation, blood flow and gas exchange. In: Mason RJ, Broaddus VC, Martin TR, King TE Jr., Schraufnagel DE, Murray JF, et al., editors. Textbook of Respiratory Medicine. 5th ed., Vol. 1, Ch. 4. Philadelphia: Saunders Elsevier, 2010. p. 53-88.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Access this article online			
Quick Response Code:	Website: www.lungindia.com		
	DOI: 10.4103/lungindia.lungindia_106_17		

How to cite this article: Madan A. Correlation between the levels of SpO_2 and PaO_2 . Lung India 2017;34:307-8.

© 2017 Indian Chest Society | Published by Wolters Kluwer - Medknow