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Galactose and its Metabolites 
Deteriorate Metaphase II Mouse 
Oocyte Quality and Subsequent 
Embryo Development by 
Disrupting the Spindle Structure
Mili Thakur1,2, Faten Shaeib1, Sana N. Khan1, Hamid-Reza Kohan-Ghadr1, Roohi Jeelani1, 
Sarah R. Aldhaheri1, Bernard Gonik1 & Husam M. Abu-Soud1,3

Premature ovarian insufficiency (POI) is a frequent long-term complication of classic galactosemia. The 
majority of women with this disorder develop POI, however rare spontaneous pregnancies have been 
reported. Here, we evaluate the effect of D-galactose and its metabolites, galactitol and galactose 
1-phosphate, on oocyte quality as well as embryo development to elucidate the mechanism through 
which these compounds mediate oocyte deterioration. Metaphase II mouse oocytes (n = 240), with 
and without cumulus cells (CCs), were exposed for 4 hours to D-galactose (2 μM), galactitol (11 μM) and 
galactose 1-phosphate (0.1 mM), (corresponding to plasma concentrations in patients on galactose-
restricted diet) and compared to controls. The treated oocytes showed decreased quality as a function 
of significant enhancement in production of reactive oxygen species (ROS) when compared to controls. 
The presence of CCs offered no protection, as elevated ROS was accompanied by increased apoptosis 
of CCs. Our results suggested that D-galactose and its metabolites disturbed the spindle structure 
and chromosomal alignment, which was associated with significant decline in oocyte cleavage and 
blastocyst development after in-vitro fertilization. The results provide insight into prevention and 
treatment strategies that may be used to extend the window of fertility in these patients.

Classic galactosemia is an inborn error of metabolism caused by deficiency of the enzyme galactose 1-phosphate 
uridyl transferase (GALT) in the Leloir pathway of galactose metabolism (Fig. 1), which includes three enzymes: 
galactokinase (GALK), galactose 1-phosphate uridyltransferase (GALT) and UDP-galactose 4-epimerase 
(GALE). Deficiency of GALT results in accumulation of galactose and its metabolites, galactose 1-phosphate and 
galactitol (generated when galactose is reduced by aldose reductase).

A majority of women with this disorder develop premature ovarian insufficiency (POI) despite adequate die-
tary restrictions1, 2. It has been believed that the predominant cause of POI in classic galactosemia is premature 
depletion of ovarian follicles (follicle depletion type of POI), resulting from insult to the ovary occurring early 
in life or even prenatally3, 4. Several mechanisms have been postulated to explain POI in these patients, includ-
ing toxic effects of galactose and its metabolites on the ovary through the generation of reactive oxygen species 
(ROS)5, 6, aberrant function of follicle stimulating hormone (FSH) and FSH receptor due to glycosylation abnor-
malities7, deficiency of GALT leading to ovarian dysfunction8 and epigenetic mechanisms9, however an exact 
pathophysiology for this complication has not been elucidated.

Despite a galactose restricted diet, galactosemic patients have ambient plasma galactose ranging from 0.58–
11.71 μmol/l (mean 2.72 μmol/l) versus 0.38–1.48 μmol/l in controls without galactosemia, plasma galactitol 
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ranging from 9.28–15.9 μmol/l (mean 11.6 μmol/l) versus undetectable in normal controls, and red blood cell 
galactose 1-phosphate level ranging from 72–425 μmol/l (mean 161 μmol/l) equivalent to 1–4 mg/dl as compared 
to <1 mg/dl in non galactosemics10. This persistent elevation of galactose metabolites is explained by endogenous 
production of galactose which can range from 0.53–1.05 mg/kg/h11. Importantly, concentrations of galactose in 
pre-ovulatory follicular fluid have been shown to mirror plasma concentration in women without galactosemia12. 
In animal models, rats fed with a dietary excess of galactose had reduction in the number of spontaneous ovula-
tions, diminished ovarian response to gonadotropin stimulation, and decreased litter size. In addition, female off-
spring of these rats demonstrated significant reduction in the number of oocytes4, 13. Therefore, research suggests 
that elevated plasma and thus follicular fluid levels of galactose and its metabolites is related to adverse reproduc-
tive outcomes such as alterations in embryo development and demonstration of epigenetic modifications passed 
on to subsequent generations3, 4, 9, 13.

Classic galactosemia, like other metabolic disorders such as diabetes14 and reproductive diseases includ-
ing polycystic ovary syndrome, endometriosis, recurrent pregnancy loss and infertility15, has been associated 
with oxidative stress mediated by ROS16. In mouse17–19 and fly20, 21 models, exposure to high levels of dietary 
D-galactose was associated with negative long-term outcomes including neurodegeneration, cognitive disabil-
ity, diminished immune response, and decreased lifespan that appear to be mediated by oxidative stress22–26. 
Furthermore, in galactosemic animal models lower than expected antioxidant activity was observed in tissues 
revealing that the insult caused by elevated levels of ROS are compounded by decreased protective machinery21. 
In fact, anecdotal reports demonstrated that galactosemic patients with poor dietary control displayed lower 
antioxidant activity and increased markers of oxidative stress27, 28. Interestingly, administration of antioxidants 
has shown potential to reverse the damages of galactose-dependent free radical generation in rat brain homogen-
ates29. Oxidative stress mediated damaging effects have also been shown to alter reproductive function and ability 
in homozygous GALT gene-trapped mice pups30.

In the current study, we hypothesize that in some women with classic galactosemia POI results from follicle 
dysfunction due to toxic effects of D-galactose and its metabolites on oocyte quality mediated by oxidative stress. 
We choose to study the metaphase II spindle structure and chromosome alignment as markers of oocyte quality, 
as these are sensitive to alterations in the oocyte microenvironment31–35. However, as human oocytes are not 
readily available for research from patients with this rare disorder, we investigated the effects of D-galactose and 
its metabolites, galactose 1-phosphate and galactitol on mouse oocyte quality allowing for a close approximation 
to human response. We also examined the mechanisms through which D-galactose and its metabolites mediate 
follicle dysfunction in classic galactosemia including the ability of the oocytes exposed to these metabolites to 
fertilize, cleave and develop into blastocysts after in-vitro fertilization (IVF). Classic galactosemia patients in 
whom spontaneous pregnancies are reported, highlight the fact that the damage may not be absolute and that 
these women may stand to benefit from research that could protect or improve oocyte quality.

Results
D-galactose and its metabolites altered the oocyte spindle structure and chromosomal align-
ment.  To test whether D-galactose and its metabolites deteriorate mouse metaphase II oocyte quality, we 
investigated their effects on oocyte microtubule (MT) structure and chromosome alignment (CH) based on a 
well-established 1–4 scoring system33, 34 (see methods section for more details) and compared them to controls. 
To justify the desired time of incubation, we first investigated the time dependent effect by incubating oocytes 
with and without cumulus cells with D-galactose (2 µM), galactitol (11 µM) and galactose 1-phosphate (0.1 mM), 

Figure 1.  The Leloir pathway of galactose metabolism. GALT, Galactose 1-phosphate uridyltransferase; GALE, 
UDP-galactose 4′-epimerase; GALK, Galactokinase; UDPGal, UDP-galactose; UDPG, UDP-glucose; Gal-1-P, 
Galactose 1-phosphate; Glucose-1-P, Glucose-1-phosphate; Glucose-6-P, Glucose-6-phosphate.
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levels corresponding to plasma concentrations of the metabolites present in classic galactosemia patients strictly 
compliant with diet, for 1, 2, 4, and 6 hours (n = 10 for each time interval); and the percentages of oocyte with 
poor scores were plotted as a function of time and compared to control oocytes receiving no treatment and incu-
bated for 6 hours (n = 10) in the medium. The spindle morphology for the control oocytes remained almost the 
same over the 6-hour incubation period. In all treatments, the maximum degree of MT and CH alterations (60–
85%) were reached at 4 hours and remained unaltered at longer time of incubation. Representative sample of the 
time dependent increase in the percentage of poor scores for MT and CH for exposure to galactose 1-phosphate 
is shown in Fig. 2. Based on these results, for all subsequent investigations an incubation time of 4 hours was cho-
sen. We next investigated the effect of D-galactose and its metabolites in deteriorating oocyte quality by following 
the disruption of the MT structure and CH alignment. Figure 3A shows the representative confocal images of 
spindle morphology and chromosomal alignment from oocytes exposed to D-galactose and its metabolites com-
pared to controls. Untreated oocytes without and with cumulus cells showed a symmetrical well-organized barrel 
shaped spindle structure (green) with chromosomes aligned along the spindle equatorial plate (blue) (Fig. 3A 
1 & 5 respectively). Various abnormal configurations in MT and CH were noted after exposure to D-galactose, 
galactitol and galactose 1-phosphate (Fig. 3A 2–4 and 6–8). With exposure to D-galactose, the spindle poles are 
noted to pivot around the spindle-chromosomal attachments producing a “C” or “V” shape, whereas galactitol 
exposure produced a dilated “balloon” shaped spindle, and exposure to Gal-1-P produced a stellate configuration. 
Figure 3B shows the percentage of poor scores for MT (upper panel) and CH (lower panel) for oocytes without 
and with cumulus cells treated with galactose and its metabolites compared to controls. Oocytes without cumu-
lus cells exposed to D-galactose and its metabolites had significantly increased poor scores (50–70%) compared 
with controls in both MT and CH (p = 0.032 for MT and p = 0.05 for CH). Comparison between controls and 
exposure groups in oocytes with cumulus cells also demonstrated increased poor scores with treatment with the 
three compounds for both MT and CH (p = 0.04, and 0.029 respectively) (Fig. 3B). Poor scores were similar in 
the oocytes with and without cumulus cells exposed to the three metabolites.

In parallel, exposure of fresh oocytes without (n = 120) and with (n = 120) cumulus cells to galactose and 
its metabolites led to similar damage to the spindle as seen with frozen oocytes. Experiments were repeated in 
triplicate (n = 10 per group) under identical conditions as above by incubating each group with D-galactose 
(2 µM), galactitol (11 µM) and galactose 1-phosphate (0.1 mM) and compared to untreated oocytes incubated 
for 4 hours. Representative confocal images of spindle morphology and chromosomal alignment from fresh 
oocytes without cumulus cells exposed to D-galactose and its metabolites compared to controls are presented in 
Supplementary Figure 1. The percentage of poor scores for MT and CH for oocytes exposed to galactose and its 

Figure 2.  Time dependent effect of galactose 1-phosphate on oocyte quality. Percentage of oocytes with poor 
outcomes in MT structure and CH alignment at different incubation times (1, 2, 4 and 6 hours) when the 
oocytes without cumulus cells (n = 10 for each concentration) were incubated with fixed concentration of 
galactose 1-phosphate (0.1 mM) compared to control oocytes receiving no treatment and incubated for 6 hours 
(0 point on the Y axis) followed by indirect immunofluorescence staining. The table at the bottom presents the 
mean of percentage of oocytes with poor scores for each exposure time with the standard error of mean.
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metabolites showed similar percentage of increased poor scores (55–70%) compared with controls in both MT 
and CH (p < 0.001 for both MT and CH). Collectively, exposure to galactose and its metabolites induced damage 
to the spindle to a similar degree in both fresh versus frozen oocytes, and this damage occurred independently of 
cumulus cells presence. Therefore, for all subsequent experiments only frozen oocytes were used.

To determine the effect of the concentration range that covers the levels of red blood cell galactose 1-phosphate 
in patients with classic galactosemia, we investigated the effects of increasing concentration of galactose 
1-phosphate (0.025 mM to 1 mM), on oocyte quality after exposure for 4 hours (n = 10 for each concentration). 
As shown in Fig. 4A, poor oocyte quality was increased in a concentration dependent and saturable manner. 
Figure 4B summarizes the scores for MT structure and CH alignment.

To investigate whether the observed spindle damage was reversible, experiments were performed in two sets. 
In both sets, oocytes were exposed to 2 μM D-galactose, 11 μM galactitol or 0.1 mM galactose 1-phosphate (n = 10 
for each metabolite) for four hours. Sibling control oocytes were incubated in medium without any treatment. 
In set 1, spindle and chromosomal morphology (MT and CH) were determined in exposed and control oocytes; 
while in set 2, control and exposed oocytes were thoroughly washed three times and incubated for 1 addition 
hour in HTF medium, followed by spindle evaluation. Oocytes washed after exposure to galactose and its metab-
olites were statistically compared to the controls (untreated oocytes and oocytes exposed to galactose and its 
metabolites). Untreated control oocytes washed three times and incubated additional hour in HTF media showed 
no significant alteration in oocyte quality. Collectively, the damage induced to the exposed oocyte spindles was 
irreversible, under our experimental condition, with similar damage observed in the two sets.

D-galactose and its metabolites adversely affected oocyte cleavage and blastocyst develop-
ment in embryos produced by in-vitro fertilization.  The effects of D-galactose, galactitol and galac-
tose 1-phosphate were then investigated on the cleavage and blastocyst rates after IVF (Fig. 5). At 24 hours post 
insemination, the majority of the oocytes exposed to galactose and its metabolites appeared granular and failed 
to fertilize, however the cleavage rate 24 hours post-fertilization was not statistically significant in the different 
exposure groups. The rates of embryo development at 48 hours were significantly lower in oocytes exposed to 
galactitol (5%) and galactose 1-phosphate (5%) as compared to control (37.5%). A similar trend was also observed 
in oocytes exposed to D-Galactose (17.5%) but did not reach statistical significance. Most treated zygotes exhib-
ited fragmentation and a large perivitelline space. After 96 hours post-insemination, the rates of expanded blas-
tocysts were significantly lower in all three treatment groups; D-galactose (2.5%), galactitol (0) and galactose 
1-phosphate (2.5%) in comparison to controls (45%). The arrested embryos were highly fragmented and atretic.

Figure 3.  The effect of galactose and its metabolites on Metaphase II mouse oocyte spindles and chromosomes. 
(A) Representative confocal images of non-cumulus and cumulus metaphase II mouse spindles stained with 
β-tubulin antibody to visualize the microtubules (MT) (green) and counterstained with DAPI to visualize 
chromosomes (CH) (blue). After 4 hours of incubation, various abnormal configurations of spindles were 
observed when oocytes were exposed to D-galactose (B,F), galactitol (C,G) or Gal 1-P (galactose 1-phosphate) 
(D,H) compared to normal spindle shapes in untreated group (A,E) (n = 30/group). Scale bars: 1 pixel, 3 mm. 
Images shown are from a typical triplicated experiment. (B) The percentage of oocytes with poor scores in MT 
structure (upper panel) and CH alignment (lower panel) (120 cumulus and 120 without cumulus) in untreated 
oocytes compared to oocytes treated with galactose, galactitol and Gal 1-P (galactose 1-phosphate). Poor scores 
were significantly increased in oocytes exposed to galactose and its metabolites compared with controls in both 
MT and CH, indicated by *for oocytes without cumulus cells (p = 0.032 for MT and p = 0.05 for CH) and **for 
oocytes with cumulus cells (p = 0.04 for MT and p = 0.029 for CH). The experiment was conducted in triplicate.
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Figure 4.  Concentration dependent effect of galactose 1-phosphate on oocyte quality. Percentage of oocytes 
with poor outcomes in MT structure and CH alignment, at 4 hours of incubation, when the oocytes without 
cumulus cells were incubated with increasing concentrations of galactose 1-phosphate (0.025 mM to 1 mM) 
{n = 10 for each concentration}, followed by indirect immunofluorescence staining. The table at the bottom 
presents the mean of percentage of oocytes with poor scores for each concentration with the standard error of 
mean.

Figure 5.  The effect of galactose and its metabolites on developmental competence of embryos generated by in-
vitro fertilization. Images (A–L) represent images of embryo morphology at 24 hours (2-cell stage), 48 hours (8 
cell stage) and 96 hours (blastocyst stage) after exposure to D-galactose (Images D–F), galactitol (Images G–I), 
and Gal 1-P (galactose 1-phosphate) (Images J–L), and untreated control (Images A–C). (M) The trends of 
changes in percentages of developed embryos at each stage compared to untreated controls.
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D-Galactose and its metabolites increased ROS generation in cumulus oocyte complex.  To 
further understand the mechanism of action behind galactose-induced damage to oocyte MT and CH, we eval-
uated ROS generation in the COC (Fig. 6). Treatment with D-galactose (Panel D–F), galactitol (Panel G–I) and 
galactose 1-phosphate (Panel J–L) led to increase in ROS generation in both the oocyte and the surrounding 
CCs compared to controls (Panel A–C) as indicated by increased ROS-mediated deep red fluorescence. Images 
of nuclear staining with DAPI (Panels B, E, H, K) and merged images of deep red fluorescence of ROS and DAPI 
staining (Panels C, F, I, L) were obtained to assess cell density. Treated oocytes demonstrated fluorescence in both 
the oocyte and CCs indicating that the ROS generation was higher in treated oocytes as compared to controls.

D-Galactose and its metabolites increased apoptosis in the cumulus cells.  We next observed the 
effect of D-galactose and its metabolites on oocyte and cumulus cell apoptosis by TUNEL staining, an indicator 
of the degree of DNA fragmentation (Fig. 7 upper panel). Nuclei were stained with DAPI (blue; Fig. 7B,E,H,K) 
and apoptotic cells were assessed (10x) with fluorescein-12-dUTP (green; Fig. 7A,D,G,J). Collectively, TUNEL 
index of COCs, calculated as percentage of apoptotic cells (TUNEL-positive nuclei) relative to the total number 
of the cells (DAPI-positive nuclei), showed a significant increase in mean percentage of TUNEL stained CCs 
(Fig. 7 lower panel) exposed to D-galactose (15.9% ± 3.9), galactitol (16.2% ± 1.7) and galactose 1-phosphate 
(21.8% ± 1.8) as compared to control (0.9% ± 0.7). Furthermore, our results indicated that D-galactose and its 
metabolites only mediated cumulus cell and not oocyte apoptosis.

L-Galactose did not alter oocyte spindle structure, lead to generation of ROS, or cause apopto-
sis of cumulus cells.  To exclude the possibility of an osmotic mechanism, experiments were performed with 
L-galactose. No significant increase in poor scores was observed in both MT and CH compared with controls in 
oocytes with and without cumulus exposed to L-galactose. Furthermore, exposure to L-galactose did not lead 

Figure 6.  Evaluation of ROS generation. Images (A–L) represent images of intracellular ROS generation, 
4′,6-diamidino-2-phenylindole (DAPI) fluorescence and merged images of ROS generation and DAPI of 
cumulus oocyte complex exposed to D-galactose (Images D–F), galactitol (Images G–I), and Gal 1-P (galactose 
1-phosphate) (Images J–L), and untreated control (Images A–C). Scale bars: 100 μm. Images shown are from a 
typical experiment performed at least three times.
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Figure 7.  Detection of apoptosis by TUNEL in the cumulus-oocyte complex. Images (A–L) represent images 
of TUNEL assay (dUTP) (green), DAPI fluorescence (blue) and merged images of dUTP and DAPI in oocyte 
cumulus complex exposed to galactose (Images D–F), galactitol (Images G–I), and galactose 1-phosphate 
(Images J–L), compared to untreated control (Images A–C). Scale bars: 100 μm. Images shown are from a 
typical experiment performed at least three times. The number of TUNEL-positive cumulus cells were increased 
by D-galactose, galactitol and galactose 1-phosphate compared to no-treatment control. TUNEL Index was 
determined as the ratio of TUNEL-positive cells to total counted cell nuclei and presented as mean ± SEM 
(standard error of mean). *p < 0.05 compared to control.
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to significantly increased ROS generation. Similarly, L-Galactose had no effect on apoptosis of cumulus-oocyte 
complex cells as the TUNEL index did not differ significantly in L-Galactose treatment (6.1 ± 1.4) compared to 
control (0.9 ± 0.7; p = 0.88).

Discussion
Here, we explore the effects of D-galactose and its metabolites on oocyte quality and function at plasma concen-
trations of patients compliant with a galactose restricted diet. The damage appears to be effected through ROS 
overproduction that mediates abnormalities in the spindle shape and therefore oocyte quality, and deterioration 
of the COC through the loss of the oocyte’s support. Our results suggested that D-galactose and its metabolites 
disturbed the parameters of oocyte quality, which were associated with significant decline in oocyte cleavage and 
blastocyst development after IVF. Treated oocytes showed increased ROS production that mediated the afore-
mentioned damage. Furthermore, ROS mediated damage occurred independently of CCs, and in fact elevated 
ROS was related to loss of cumulus cell viability. This study provides the first direct evidence of the ROS mediated 
mechanism between classic galactosemia and oocyte quality and through an understanding of this mechanism 
provides the first platform to develop therapeutic interventions.

The mechanism of ROS mediated deterioration of oocyte quality could be through the generation of ROS 
through multiple pathways including abnormal galactose metabolism, mitochondrial damage, and decreased 
antioxidant machinery, or a combination of these processes. Our results show that damage to the oocyte was 
through a ROS mediated process but not through osmotic induced damage. Relatively very low concentration of 
D-galactose and its metabolites were used for our studies (Figs 3 and 5–7). In addition, exposure to L-galactose, a 
structural enantiomer of D-galactose that is not metabolized by living organisms, yet generates the same osmotic 
pressure in a solution, did not lead to any adverse effects on oocyte quality. Therefore, it is unlikely that deterio-
ration in oocyte quality and CCs by D-galactose and its metabolites occurred through an osmotic activity based 
mechanism. In a small cohort of patients with galactosemia, elevated levels of free radicals caused increased 
activity of superoxide dismutase, an enzyme, which catalyzes the conversion of the toxic oxidant superoxide 
into hydrogen peroxide36. There is a growing body of evidence suggesting that accumulated D-galactose and its 
metabolites may lead to energy strain on cells by inhibiting key glycolytic enzymes, thus leading to mitochon-
drial stress, which independently creates ROS37, 38. Similarly, galactitol has also been shown to decrease antioxi-
dants such as glutathione and ascorbic acid, strongly contributing to the oxidative stress in the cell39. This stress 
may make the oocyte more susceptible to ROS accumulation. The cellular antioxidant machinery provided from 
the surrounding CCs or intrinsically from the oocyte may be overcome by elevated ROS. Enhancement of ROS 
generation resulted in apoptosis of CCs, which was consistent with studies in animal models where galactose 
dose-dependently increased generation of ROS and caspase 3 in ovarian follicles5. Our results show that ROS 
mediated oocyte deterioration occurs independently of CCs, suggesting that the mechanism of CC apoptosis is 
highly likely to be the same process that ultimately compromises oocyte function.

Accumulation of ROS such as superoxide radical (O2
·−), hydrogen peroxide (H2O2), singlet oxygen, and 

hydroxyl radicals (·OH) causes lipid and protein oxidation and subsequent cell damage40. Recent work in several 
laboratories has convincingly shown that ROS such as O2

·−, H2O2, ·OH, HOCl, and peroxinitrite (ONOO−) can 
alter the oocyte quality in dose dependent fashion manifested by hypergranulated cytoplasm, absence of perivi-
telline space, and abnormal spindle dynamics31, 35, 41–43. Apparently, exposure to galactose and its metabolites, led 
to ROS mediated distortion of the spindle morphology resulting in deviation of the pole-to-pole axis and even-
tually breakage of the microtubule fibers and loss of chromosomal alignment. The process of the spindle damage 
is consistent with data from our lab and others that demonstrates that the process of spindle damage is likely 
through the disassembly of the spindle force balance and scaffolding proteins and that the process is irreversible44. 
Recent in vitro investigations have shown that H2O2 like ·OH, decreased the viability of cumulus cells at higher 
concentrations whereas other oxidants such as HOCl, and ONOO−, stripped the cumulus cells from the oocyte 
as well as dissolved the zona pellucida at low concentrations31, 32. Exposure to galactose metabolites demonstrated 
recognizable patterns of spindle morphologic change, which was noted in other inflammatory conditions such as 
diabetes, and exposure to oxidants such as ONOO− and toxins such as nicotine and bisphenol-A44–46. Therefore, 
oocyte damage in classic galactosemia, similarly to other inflammatory disease, may be mitigated by therapies 
aimed at elimination of galactose metabolites, thus decreasing ROS or increasing antioxidant activity.

In our study, elevated galactose 1-phosphate showed concentration dependent damage to the oocyte spindle, 
and even levels that are considered acceptable in patients on dietary restriction were damaging. Consistent with 
our study, it has been proposed that elevated galactose 1-phosphate may be a major pathogenic factor in this 
disorder47, 48. However, elimination of galactose 1-phosphate cannot be achieved by dietary restriction alone. 
Endogenous production of galactose and subsequent conversion to galactose 1-phosphate is not amenable to 
dietary therapy11, 49. In addition, galactose 1-phosphate can be derived from non-dairy sources50. Therefore, in 
addition to dietary therapy, elimination of galactose 1-phosphate levels by inhibition of GALK may be a potential 
therapeutic target for classic galactosemia51, 52. Quantitative high-throughput screening is being utilized to search 
for compounds with selective GALK inhibitor activity51–53. Another therapeutic approach is reduction in galacti-
tol levels by aldose reductase inhibitors, which have been used successfully in diabetic patients39, 54. Similarly, the 
role of enzymatic and non-enzymatic antioxidant defense strategies by medication and/or nutrition in mitigat-
ing multiple other long term complications from galactosemia including cataracts, retinopathy, decreased bone 
mass and brain abnormalities need to be explored55, 56. In the D. melanogaster model of classic galactosemia, free 
radical scavengers, which mimic the action of superoxide dismutase, have been shown to modify both acute and 
long-term outcome survival and development56. These manganese-containing porphyrin compounds showed 
little toxicity, and thus have considerable potential as therapeutic compounds56. Similarly, purple sweet potato 
color, a plant extract rich in acetylated anthocyanins, which have been shown to quench free radical production, 
has also been suggested as a potential therapeutic option57.
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Our results indicate that exposure to galactose and its metabolites induces a cellular state where ROS pro-
duction exceeds the oocyte and surrounding cumulus cells ability to neutralize their harmful effects. Excessive 
accumulation of ROS overwhelms cellular defense machinery and not only induces cellular toxicity through lipid 
peroxidation, DNA and RNA damage, but also regulate altered gene expression through both genetic and epige-
netic cascades in patients with classic galactosemia58, 59. Indeed, previous studies have noted that exposure to high 
levels of galactose may lead to a transgenerational effects on follicle development4, 13. Epigenetic modification of 
two genes, aplysia ras homolog I (ARH1) and growth differentiation factor-9 (GDF9) have been considered as 
plausible targets of galactose toxicity3, 9. We observed that exposure to galactose and its metabolites led to disrup-
tion of the functional capacity of oocytes to develop into embryos. Whether this effect is mediated through ROS, 
affectation of the metabolic processes in the oocytes, through genetic and epigenetic modification or a combina-
tion of all, needs to be explored.

In conclusion, our results demonstrate that galactose exposure mediated by ROS is the major cause of adverse 
reproductive outcomes in patients with classic galactosemia. These studies are important as they provide a devi-
ation and likely a correction to the previous ideology on the pathophysiology of classic galactosemia in which 
follicular depletion is an unwavering end. The concept of ROS mediated follicular dysfunction, opens the door to 
potential therapeutic options in the form of further reducing the plasma level of galactose and its metabolites and/
or administering antioxidants, which may provide potential ways to extend the window of fertility for women 
with classic galactosemia.

Materials and Methods
The experimental procedures used for live animal care and handling were approved by Institutional Animal 
Care and Use Committee at Wayne State University (Protocol #A 11-01-15) and Embryotech Laboratories Inc., 
Haverhill, MA, USA. The methods were carried out in accordance with the approved guidelines.

Materials.  All the materials used were of the highest grade of purity. No further purification was necessary. 
D-galactose (G5388), L-galactose (G7134), galactose 1-phosphate (G0380), galactitol (D0256), human tubu-
lar fluid (HTF) medium, M2 medium, anti-α tubulin antibody, fluorescein isothiocyanate (FITC) conjugate 
anti-goat antibody, 4′,6′-diamino-2-phenylindole (DAPI), 1% Bovine Serum Albumin (BSA), 0.1% M Glycine, 
and 0.1% Triton X- 100 were obtained from Sigma–Aldrich (St. Louis, MO, USA). Normal Goat Serum (2%) was 
from Invitrogen (Grand Island, NY), 0.2% Powder Milk (Nestle) from grocery and anti-fade agent was obtained 
from Biomedia, CA. Cellular reactive oxygen species (ROS) detection assay kit (ab186029, Abcam, Cambridge, 
United Kingdom) and In Situ Cell Death Detection kit, AP (11684795910, Roche Applied Science, Penzberg, 
Germany) were procured from respective commercial sources.

Methods.  Superovulation and oocyte retrieval was performed as previously described with modifications60–62. 
Briefly, three-week-old B6C3F1 mice (6101F, Envigo, Indianapolis, IN, USA) were superovulated. Three week old 
mice are generally selected for superovulation as the number and quality of oocytes from these animals is higher 
as compared to females past puberty63. Pregnant mare’s serum gonadotropin (PMSG) and hCG (Sigma, Saint 
Louis, MO) (7.5 IU each) was administered intraperitoneally 48–52 hours apart. Metaphase II oocytes were 
retrieved from oviductal ampullae 18 hours after hCG injection. The cumuli were incubated with 0.1% hyalu-
ronidase (w/v) in M2 medium for 2–3 min at 37 °C to release oocytes. The denudation process was facilitated 
by removing all cumulus-corona cells with a narrow bore pulled glass Pasteur pipet. Oocytes were rinsed in M2 
medium, graded to confirm normal morphology and divided into two groups. For experiments with fresh oocytes 
(n = 120), oocytes were transferred to HTF medium pre-equilibrated with 5% CO2 in air at 37 °C and were sub-
sequently randomly assigned to test (treatment with galactose, galactose 1-phosphate, galactitol) and control 
groups. Rest of the metaphase II oocytes (with and without cumulus cells) (n = 300) were cryopreserved in straws 
using ethylene glycol-based slow freeze cryopreservation protocol (Embryotech Laboratories, Inc. Haverhill, 
MA, USA). We choose to use frozen-thawed oocytes as large numbers of oocytes were used for the different 
experiments requiring multiple time consuming steps and use of frozen oocytes was more convenient. We have 
demonstrated that fresh and frozen oocytes yield similar and reproducible results, specifically when incubated 
in media for at least 60 minutes allowing the spindles to repolymerize to normal architecture and cumulus cells 
maintain viability31, 35, 42, 60, 61, 64. Our conclusion is also supported by previous studies and confirmed by current 
experiments that demonstrate that incubating thawed oocytes in media for at least 60 minutes repolymerizes the 
spindle and frozen cumulus cells maintain their viability and DNA integrity after thawing65, 66 and showed similar 
damage to the spindle after exposure to galactose and its metabolites.

Exposure of metaphase II mouse oocytes to D-galactose and its metabolites.  The study con-
sisted of the following two experimental sets: 1) the effect of D-galactose and its metabolites on metaphase II 
mouse oocytes without cumulus cells (n = 120); 2) the effect of D-galactose and its metabolites on metaphase II 
mouse oocytes with cumulus cells (n = 120). Oocytes with cumulus cells were used to investigate whether cumu-
lus cells provided any protection from the effects of D-galactose and its metabolites on oocyte quality. Oocytes 
with and without cumulus cells were thawed and transferred from straws to phosphate buffer saline (Dulbecco 
PBS) and washed for 3 minutes to remove cryoprotectant. Oocytes were then transferred to HTF media and incu-
bated at 37 °C and 5% carbon dioxide (CO2) for 60 minutes to allow spindle repolymerization and attainment of 
normal oocyte architecture. The oocytes were then screened for the presence of the polar body confirming their 
Metaphase II stage. Immature oocytes or those that displayed disrupted zona pellucida were discarded.

In triplicate experiments, oocytes with and without cumulus cells (n = 10 oocytes in each group) were exposed 
to 2 μM D-galactose, 11 μM galactitol or 0.1 mM galactose 1-phosphate for four hours where maximum effects on 
the oocyte spindle were observed. The concentrations of the metabolites were selected based on plasma levels of 
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patients with classic galactosemia, strictly compliant with a galactose restricted diet10. Untreated oocytes with and 
without cumulus cells served as controls.

To confirm that the damage to the spindle after exposure to galactose and its metabolites was similar between 
fresh versus frozen oocytes, some of the above experiments were repeated utilizing fresh oocytes under identical 
conditions. More details (number of oocytes and the experiments performed) are presented in the result section.

Immunofluorescence staining and fluorescence microscopy.  All the exposed and control oocytes 
were fixed in a solution prepared from 2% formaldehyde and 0.2% Triton X-100 for 30 minutes. The fixed oocytes 
were treated with blocking solution (PBS, 0.2% Powdered Milk, 2% Normal Goat Serum, 1% Bovine Serum 
Albumin (BSA), 0.1 M Glycine and 0.1% Triton X-100) for 30 minutes, and then washed with PBS for 3 min-
utes. Indirect immunofluorescence staining was then performed by incubating oocytes in mouse primary (anti-α 
tubulin) antibody for 60 minutes and secondary (FITC) conjugated anti-goat antibody for 30 minutes. The chro-
mosomes were stained using DAPI and incubated for 15 minutes. Stained oocytes were loaded into anti-fade 
agent (Biomedia, CA, USA) on slides with two etched rings and cover slips placed using transparent nail varnish. 
Slides were stored at −20 °C and protected from light until they were evaluated for more details by confocal 
microscopy.

Confocal microscopy, assessment of microtubules and chromosomal alignment.  Slides were 
examined with the Axiovert 25 inverted microscope (Zeiss, Thornwood, NY) using DAPI (blue) and FITC (green) 
fluorescent filters with excitation and emission wavelengths of 358 and 461 nm, and 596 and 613 nm, respectively. 
Confocal images were obtained utilizing a Zeiss LSM 510 META NLO (Zeiss, Germany) microscope. Oocytes 
were localized using a 10x magnification lens and spindle alterations assessed using 40x oil immersion lens. The 
MT was stained fluorescent green, which was distinct from the fluorescent blue staining of the chromosomes. 
Following completion of the experiments each oocyte was closely examined for spindle status. Three blinded 
observers scored alterations in the microtubule structure (MTs) and chromosomal alignment (CH) compared 
with controls based on a previously published scoring system using comprehensive evaluation of spindle images 
obtained by immunofluorescence and confocal 3-dimensional reconstruction33, 34. Scores of 1–4 were assigned 
for both MT and CH alterations, with scores 1 and 2 representing good scores meaning microtubules were organ-
ized in a barrel-shape, formed by organized microtubules traversing from one pole to another and chromosomes 
were arranged in a compact metaphase plate at the equator of the spindle. Scores of 3 and 4 signified poor scores 
and consisted of spindle length reduction, disorganization and/or complete spindle absence, and chromosome 
dispersion or aberrant condensation appearance.

In-vitro fertilization and evaluation of embryo development.  Next, oocytes exposed to galactose 
and its metabolites as well as untreated controls were subjected to IVF (Embryotech Laboratories, Inc. Haverhill, 
MA, USA) and embryo development was examined. In total, 160 oocytes were used {n = 40, for each of the 
4-groups; untreated oocytes, oocytes exposed to galactose (2 μM), galactitol (11 μM), and galactose 1-phosphate 
(0.1 mM)}. Metaphase II mouse oocytes were harvested from 3 weeks (21–24 day) old super ovulated hybrid 
B6C3F1 female mice (6101 F, Envigo, Indianapolis, IN, USA)62. The cumulus oocyte complexes were placed in a 
0.5 ml drop of 0.1% hyaluronidase (w/v) to remove cumulus cells, washed three times and gradually equilibrated 
with HTF medium and exposed to galactose (2 μM), galactitol (11 μM) and galactose 1-phosphate (0.1 mM) and 
untreated controls. After incubation for four hours, the oocytes were washed twice with HTF (500 μL) and placed 
in global medium (LGGG-100, LifeGlobal, Guilford, CT, USA). Oocytes were then incubated for 2-hours with 
capacitated mouse sperm (one million sperms/ml) obtained by epididymal extraction from B6D2F1 male mice 
(6301 M, Envigo, Indianapolis, IN, USA) (40 oocytes per fertilization drop) as previously reported62. The insemi-
nated oocytes were removed and rinsed in global medium and placed in 12 µl droplets (10 gametes per drop) cov-
ered with prewarmed mineral oil in a labeled well of the 60-well mini-tray Terasaki plate (163118, Nunc, Thermo 
Scientific, Waltham, MA, USA) and then cultured at 37 °C, in a humidified atmosphere of 5% CO2, for 3 days. 
The embryos were evaluated under an Olympus SZ61 dissecting microscope at up to 45x magnification at 24, 48 
and 96 hours. Fertilization was assessed at 48-hours after IVF. The embryos were counted at the end of the culture 
period; 96–100 hours post fertilization, in order to determine blastocyst development62. The cleavage stage and 
blastocyst embryo quality was graded by embryologists, based on subjective assessment as previously described67, 

68. The cleavage stage embryos were graded based on blastomere number, symmetry, and the presence of nuclear 
fragments. For the blastocysts, degree of expansion of blastocoel, the quality inner cell mass and the quality of 
trophectoderm was taken into account.

Detection of ROS generation in situ.  Generation of ROS was evaluated using the Cellular Reactive 
Oxygen Species Detection Assay Kit (ab186029, Abcam, Cambridge, United Kingdom). Briefly, the COCs 
exposed to D-galactose, galactitol and galactose 1-phosphate for 4 hours and controls (n = 30 in each group) 
were incubated with 100 µl of ROS Deep Red working solution in 5% CO2, 37 °C incubator for 60 minutes. The 
cells were fixed and with 2% formaldehyde and permeabilization with 0.2% Triton X-100 for 30 minutes and the 
nuclei of these cells were stained with DAPI. Appropriate positive controls were included in the test. The oocytes 
were subsequently mounted in anti-fade agent and images of ROS-mediated deep red fluorescence were taken by 
an independent examiner using a Nikon Eclipse 90i epifluorescence microscope and analyzed by NIS-Element 
(Nikon, Shinagawa-Ku, Tokyo, Japan).

Detection of apoptosis in cumulus-oocyte complex.  DNA fragmentation was assessed by the in situ 
Terminal Deoxynucleotidyl Transferase-mediated dUTP-biotin nick end labeling (TUNEL) technique per the In 
Situ Cell Death Detection kit, AP (11684795910, Roche Applied Science, Penzberg, Germany) manual. Briefly, 
the COCs exposed to D-Galactose, Galactitol and Galactose 1-phosphate for 4 hours and control oocytes were 
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fixed with 2% formaldehyde and permeabilized using 0.2% Triton X-100 for 30 minutes. Next, COCs were labeled 
with the TUNEL reaction mixture for 60 min at 37 °C. The nuclei of these cells were stained with DAPI and the 
COCs were mounted on slides in anti-fade agent. Fluorescein-labeled DNA, an indication of DNA fragmenta-
tion, was evaluated for n = 10 COCs per treatment group by fluorescence microscopy by an independent exam-
iner blinded to the exposure groups. The TUNEL index of COCs was calculated as percentage of apoptotic cells 
(TUNEL-positive nuclei) relative to the total number of the cells (DAPI-positive nuclei).

Experiments with L-galactose as osmotic control.  Oocytes with and without cumulus cells (n = 10), 
in triplicates, were exposed to L-galactose (2 μM) and microtubule and chromosomal alignment was assessed as 
described above. Similarly, ROS generation was evaluated using the Cellular Reactive Oxygen Species Detection 
Assay Kit (ab186029, Abcam, Cambridge, United Kingdom) and apoptosis of both cumulus cells and oocytes 
were performed using the TUNEL assay per the In Situ Cell Death Detection kit, AP (11684795910, Roche 
Applied Science, Penzberg, Germany) using the same methodology as for the other metabolites.

Statistical Analysis.  Statistical analyses were performed using Statistical Package for the Social Sciences 
(SPSS) version 22.0. Comparisons of percentage of oocytes with poor scores (scores 3 and 4) for MT and CH 
between control and treatment groups as well as the effect of different treatment on TUNEL indices were made 
using One-Way ANOVA with Tukey post hoc testing, and comparisons between oocytes without and with 
cumulus cells for each treatment were performed with Student t-test. The statistical significance of treatments on 
development capacity of fertilized oocytes was assessed by two-tailed Fisher exact test. P < 0.05 was considered 
significant for all statistical tests.

References
	 1.	 Rubio-Gozalbo, M. E. et al. Gonadal function in male and female patients with classic galactosemia. Human reproduction update 16, 

177–188, doi:10.1093/humupd/dmp038 (2010).
	 2.	 Forges, T., Monnier-Barbarino, P., Leheup, B. & Jouvet, P. Pathophysiology of impaired ovarian function in galactosaemia. Human 

reproduction update 12, 573–584, doi:10.1093/humupd/dml031 (2006).
	 3.	 Liu, G. et al. Dietary galactose inhibits GDF-9 mediated follicular development in the rat ovary. Reproductive toxicology (Elmsford, 

N.Y.) 21, 26–33, doi:10.1016/j.reprotox.2005.07.001 (2006).
	 4.	 Chen, Y. T., Mattison, D. R., Feigenbaum, L., Fukui, H. & Schulman, J. D. Reduction in oocyte number following prenatal exposure 

to a diet high in galactose. Science (New York, N.Y.) 214, 1145–1147 (1981).
	 5.	 Banerjee, S. et al. Ovotoxic effects of galactose involve attenuation of follicle-stimulating hormone bioactivity and up-regulation of 

granulosa cell p53 expression. PloS one 7, e30709, doi:10.1371/journal.pone.0030709 (2012).
	 6.	 Bandyopadhyay, S. et al. Galactose toxicity in the rat as a model for premature ovarian failure: an experimental approach 

readdressed. Human reproduction (Oxford, England) 18, 2031–2038 (2003).
	 7.	 Gubbels, C. S. et al. FSH isoform pattern in classic galactosemia. Journal of inherited metabolic disease 34, 387–390, doi:10.1007/

s10545-010-9180-9 (2011).
	 8.	 Berry, G. T. Galactosemia and amenorrhea in the adolescent. Ann N Y Acad Sci 1135, 112–117, doi:10.1196/annals.1429.038 (2008).
	 9.	 Lai, K. et al. ARHI: A new target of galactose toxicity in Classic Galactosemia. Bioscience hypotheses 1, 263–271, doi:10.1016/j.

bihy.2008.06.011 (2008).
	10.	 Ning, C. & Segal, S. Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase 

deficiency galactosemia: determination by gas chromatography/mass spectrometry. Metabolism: clinical and experimental 49, 
1460–1466, doi:10.1053/meta.2000.9512 (2000).

	11.	 Berry, G. T. et al. Endogenous synthesis of galactose in normal men and patients with hereditary galactosaemia. Lancet (London, 
England) 346, 1073–1074 (1995).

	12.	 Jozwik, M., Jozwik, M., Teng, C. & Battaglia, F. C. Concentrations of monosaccharides and their amino and alcohol derivatives in 
human preovulatory follicular fluid. Molecular human reproduction 13, 791–796, doi:10.1093/molehr/gam060 (2007).

	13.	 Swartz, W. J. & Mattison, D. R. Galactose inhibition of ovulation in mice. Fertility and sterility 49, 522–526 (1988).
	14.	 Wang, Q. et al. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Molecular endocrinology 

(Baltimore, Md.) 23, 1603–1612, doi:10.1210/me.2009-0033 (2009).
	15.	 Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A. & Gupta, S. The effects of oxidative stress on female reproduction: 

a review. Reproductive biology and endocrinology: RB&E 10, 49, doi:10.1186/1477-7827-10-49 (2012).
	16.	 Al-Essa, M., Dhaunsi, G. S., Al-Qabandi, W. & Khan, I. Impaired NADPH oxidase activity in peripheral blood lymphocytes of 

galactosemia patients. Experimental biology and medicine (Maywood, N.J.) 238, 779–786, doi:10.1177/1535370213480692 (2013).
	17.	 Wei, H. et al. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behavioural brain research 157, 245–251, 

doi:10.1016/j.bbr.2004.07.003 (2005).
	18.	 Cui, X. et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: 

protective effects of R-alpha-lipoic acid. Journal of neuroscience research 83, 1584–1590, doi:10.1002/jnr.20845 (2006).
	19.	 Long, J. et al. D-galactose toxicity in mice is associated with mitochondrial dysfunction: protecting effects of mitochondrial nutrient 

R-alpha-lipoic acid. Biogerontology 8, 373–381, doi:10.1007/s10522-007-9081-y (2007).
	20.	 Jordens, R. G., Berry, M. D., Gillott, C. & Boulton, A. A. Prolongation of life in an experimental model of aging in Drosophila 

melanogaster. Neurochemical research 24, 227–233 (1999).
	21.	 Cui, X. et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. 

Biogerontology 5, 317–325, doi:10.1007/s10522-004-2570-3 (2004).
	22.	 Shang, Y. Z., Gong, M. Y., Zhou, X. X., Li, S. T. & Wang, B. Y. Improving effects of SSF on memory deficits and pathological changes 

of neural and immunological systems in senescent mice. Acta pharmacologica Sinica 22, 1078–1083 (2001).
	23.	 Shen, Y. X. et al. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. Journal of pineal 

research 32, 173–178 (2002).
	24.	 Song, X., Bao, M., Li, D. & Li, Y. M. Advanced glycation in D-galactose induced mouse aging model. Mechanisms of ageing and 

development 108, 239–251 (1999).
	25.	 Yelinova, V. et al. Studies of human and rat blood under oxidative stress: changes in plasma thiol level, antioxidant enzyme activity, 

protein carbonyl content, and fluidity of erythrocyte membrane. Biochemical and biophysical research communications 221, 300–303, 
doi:10.1006/bbrc.1996.0590 (1996).

	26.	 Kowluru, R. A., Kern, T. S., Engerman, R. L. & Armstrong, D. Abnormalities of retinal metabolism in diabetes or experimental 
galactosemia. III. Effects of antioxidants. Diabetes 45, 1233–1237 (1996).

http://dx.doi.org/10.1093/humupd/dmp038
http://dx.doi.org/10.1093/humupd/dml031
http://dx.doi.org/10.1016/j.reprotox.2005.07.001
http://dx.doi.org/10.1371/journal.pone.0030709
http://dx.doi.org/10.1007/s10545-010-9180-9
http://dx.doi.org/10.1007/s10545-010-9180-9
http://dx.doi.org/10.1196/annals.1429.038
http://dx.doi.org/10.1016/j.bihy.2008.06.011
http://dx.doi.org/10.1016/j.bihy.2008.06.011
http://dx.doi.org/10.1053/meta.2000.9512
http://dx.doi.org/10.1093/molehr/gam060
http://dx.doi.org/10.1210/me.2009-0033
http://dx.doi.org/10.1186/1477-7827-10-49
http://dx.doi.org/10.1177/1535370213480692
http://dx.doi.org/10.1016/j.bbr.2004.07.003
http://dx.doi.org/10.1002/jnr.20845
http://dx.doi.org/10.1007/s10522-007-9081-y
http://dx.doi.org/10.1007/s10522-004-2570-3
http://dx.doi.org/10.1006/bbrc.1996.0590


www.nature.com/scientificreports/

1 2Scientific Reports | 7: 231  | DOI:10.1038/s41598-017-00159-y

	27.	 Schulpis, K. H., Michelakakis, H., Tsakiris, T. & Tsakiris, S. The effect of diet on total antioxidant status, erythrocyte membrane Na+, 
K+-ATPase and Mg2+-ATPase activities in patients with classical galactosaemia. Clinical nutrition (Edinburgh, Scotland) 24, 
151–157, doi:10.1016/j.clnu.2004.09.001 (2005).

	28.	 Schulpis, K. H., Papassotiriou, I. & Tsakiris, S. 8-hydroxy-2-desoxyguanosine serum concentrations as a marker of DNA damage in 
patients with classical galactosaemia. Acta paediatrica (Oslo, Norway: 1992) 95, 164–169, doi:10.1080/08035250500297810 (2006).

	29.	 Tsakiris, S., Carageorgiou, H. & Schulpis, K. H. The protective effect of L-cysteine and glutathione on the adult and aged rat brain 
(Na+, K+)-ATPase and Mg2+-ATPase activities in galactosemia in vitro. Metabolic brain disease 20, 87–95 (2005).

	30.	 Tang, M. et al. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) - deficient mouse 
model. European journal of human genetics: EJHG 22, 1172–1179, doi:10.1038/ejhg.2014.12 (2014).

	31.	 Banerjee, J. et al. Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle 
structure in vitro. Fertility and sterility 100, 578–584.e571, doi:10.1016/j.fertnstert.2013.04.030 (2013).

	32.	 Banerjee, J., Maitra, D., Diamond, M. P. & Abu-Soud, H. M. Melatonin prevents hypochlorous acid-induced alterations in 
microtubule and chromosomal structure in metaphase-II mouse oocytes. Journal of pineal research 53, 122–128, 
doi:10.1111/j.1600-079X.2012.00977.x (2012).

	33.	 Choi, W. J. et al. Oxidative stress and tumor necrosis factor-alpha-induced alterations in metaphase II mouse oocyte spindle 
structure. Fertility and sterility 88, 1220–1231, doi:10.1016/j.fertnstert.2007.02.067 (2007).

	34.	 Banerjee, J. et al. IL-6 and mouse oocyte spindle. PloS one 7, e35535, doi:10.1371/journal.pone.0035535 (2012).
	35.	 Goud, A. P., Goud, P. T., Diamond, M. P., Gonik, B. & Abu-Soud, H. M. Reactive oxygen species and oocyte aging: role of superoxide, 

hydrogen peroxide, and hypochlorous acid. Free radical biology & medicine 44, 1295–1304, doi:10.1016/j.freeradbiomed.2007.11.014 
(2008).

	36.	 Vilaseca-Busca, M. A. et al. [Abnormal antioxidant system in inborn errors of intermediary metabolism]. Revista de neurologia 34, 
1021–1024 (2002).

	37.	 Aguer, C. et al. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. 
PloS one 6, e28536, doi:10.1371/journal.pone.0028536 (2011).

	38.	 Liu, G., Hale, G. E. & Hughes, C. L. Galactose metabolism and ovarian toxicity. Reproductive toxicology (Elmsford, N.Y.) 14, 377–384 
(2000).

	39.	 Meyer, W. R. et al. Aldose reductase inhibition prevents galactose-induced ovarian dysfunction in the Sprague-Dawley rat. Am J 
Obstet Gynecol 167, 1837–1843 (1992).

	40.	 Halliwell B, G. J. Free radicals in biology and medicine. 1–20 (Clarendon Press, Oxford, 1989).
	41.	 Goud, P. T. et al. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. 

Fertility and sterility 102, 151–159.e155, doi:10.1016/j.fertnstert.2014.03.053 (2014).
	42.	 Shaeib, F., Banerjee, J., Maitra, D., Diamond, M. P. & Abu-Soud, H. M. Impact of hydrogen peroxide-driven Fenton reaction on 

mouse oocyte quality. Free radical biology & medicine 58, 154–159, doi:10.1016/j.freeradbiomed.2012.12.007 (2013).
	43.	 Khan, S. N. et al. Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality. PloS one 

10, e0132388, doi:10.1371/journal.pone.0132388 (2015).
	44.	 Khan, S. N. et al. Peroxynitrite deteriorates oocyte quality through disassembly of microtubule organizing centers. Free radical 

biology & medicine 91, 275–280, doi:10.1016/j.freeradbiomed.2015.12.033 (2016).
	45.	 Wang, Q. & Moley, K. H. Maternal diabetes and oocyte quality. Mitochondrion 10, 403–410, doi:10.1016/j.mito.2010.03.002 (2010).
	46.	 Zenzes, M. T. & Bielecki, R. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of 

Spindle Integrity and Chromosome Alignment. Tobacco induced diseases 2, 151–161, doi:10.1186/1617-9625-2-3-151 (2004).
	47.	 Robertson, A., Singh, R. H., Guerrero, N. V., Hundley, M. & Elsas, L. J. Outcomes analysis of verbal dyspraxia in classic galactosemia. 

Genetics in medicine: official journal of the American College of Medical Genetics 2, 142–148, doi:10.109700125817-200003000-00005 
(2000).

	48.	 Berry, G. T. In GeneReviews(R) (eds Pagon, R. A. et al.) (University of Washington, Seattle. All rights reserved., 1993).
	49.	 Berry, G. T. et al. The rate of de novo galactose synthesis in patients with galactose-1-phosphate uridyltransferase deficiency. 

Molecular genetics and metabolism 81, 22–30 (2004).
	50.	 Acosta, P. B. & Gross, K. C. Hidden sources of galactose in the environment. European journal of pediatrics 154, S87–92 (1995).
	51.	 Lai, K., Boxer, M. B. & Marabotti, A. GALK inhibitors for classic galactosemia. Future medicinal chemistry 6, 1003–1015, 

doi:10.4155/fmc.14.43 (2014).
	52.	 Tang, M., Odejinmi, S. I., Vankayalapati, H., Wierenga, K. J. & Lai, K. Innovative therapy for Classic Galactosemia - tale of two HTS. 

Molecular genetics and metabolism 105, 44–55, doi:10.1016/j.ymgme.2011.09.028 (2012).
	53.	 Wierenga, K. J., Lai, K., Buchwald, P. & Tang, M. High-throughput screening for human galactokinase inhibitors. Journal of 

biomolecular screening 13, 415–423, doi:10.1177/1087057108318331 (2008).
	54.	 Oka, M. & Kato, N. Aldose reductase inhibitors. Journal of enzyme inhibition 16, 465–473 (2001).
	55.	 Ramana, B. V., Raju, T. N., Kumar, V. V. & Reddy, P. U. Defensive role of quercetin against imbalances of calcium, sodium, and 

potassium in galactosemic cataract. Biological trace element research 119, 35–41, doi:10.1007/s12011-007-0045-5 (2007).
	56.	 Jumbo-Lucioni, P. P. et al. Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a 

Drosophila melanogaster model of classic galactosemia. Antioxidants & redox signaling 20, 2361–2371, doi:10.1089/ars.2012.5122 
(2014).

	57.	 Timson, D. J. Purple sweet potato colour–a potential therapy for galactosemia? International journal of food sciences and nutrition 
65, 391–393, doi:10.3109/09637486.2013.860586 (2014).

	58.	 Coss, K. P. et al. Systemic gene dysregulation in classical Galactosaemia: Is there a central mechanism? Molecular genetics and 
metabolism 113, 177–187, doi:10.1016/j.ymgme.2014.08.004 (2014).

	59.	 Coman, D. J. et al. Galactosemia, a single gene disorder with epigenetic consequences. Pediatric research 67, 286–292, doi:10.1203/
PDR.0b013e3181cbd542 (2010).

	60.	 Goud, P. T., Goud, A. P., Diamond, M. P., Gonik, B. & Abu-Soud, H. M. Nitric oxide extends the oocyte temporal window for optimal 
fertilization. Free radical biology & medicine 45, 453–459, doi:10.1016/j.freeradbiomed.2008.04.035 (2008).

	61.	 Goud, A. P., Goud, P. T., Diamond, M. P. & Abu-Soud, H. M. Nitric oxide delays oocyte aging. Biochemistry 44, 11361–11368, 
doi:10.1021/bi050711f (2005).

	62.	 Behringer, R., Gertsenstein, M., Nagy, K. N., Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual Fourth edn (Cold 
Spring Harbor Laboratory Press, 2014).

	63.	 Hoogenkamp, H. & Lewing, P. Superovulation in mice in relation to their age. The Veterinary quarterly 4(44), 47–48, doi:10.1080/0
1652176.1982.9693838 (1982).

	64.	 Goud, A. P., Goud, P. T., Diamond, M. P., Gonik, B. & Abu-Soud, H. M. Activation of the cGMP signaling pathway is essential in 
delaying oocyte aging in diabetes mellitus. Biochemistry 45, 11366–11378, doi:10.1021/bi060910e (2006).

	65.	 Eroglu, A., Toth, T. L. & Toner, M. Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II 
mouse oocytes. Fertility and sterility 69, 944–957 (1998).

	66.	 Lindley, E. M., Jacobson, J. D., Corselli, J., King, A. & Chan, P. J. Cryopreservation of human cumulus cells for co-cultures and 
assessment of DNA damage after thawing using the comet assay. Journal of assisted reproduction and genetics 18, 534–538 (2001).

	67.	 Veeck, L. Atlas of the human oocyte and early conceptus. Vol. 2, 121–49 (Williams and Wilkins, 1991).
	68.	 Veeck, L. & Zaninovic, N. An Atlas of Human Blastocysts. 99–112 (Parthenon Publishing, 2003).

http://dx.doi.org/10.1016/j.clnu.2004.09.001
http://dx.doi.org/10.1080/08035250500297810
http://dx.doi.org/10.1038/ejhg.2014.12
http://dx.doi.org/10.1016/j.fertnstert.2013.04.030
http://dx.doi.org/10.1111/j.1600-079X.2012.00977.x
http://dx.doi.org/10.1016/j.fertnstert.2007.02.067
http://dx.doi.org/10.1371/journal.pone.0035535
http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.014
http://dx.doi.org/10.1371/journal.pone.0028536
http://dx.doi.org/10.1016/j.fertnstert.2014.03.053
http://dx.doi.org/10.1016/j.freeradbiomed.2012.12.007
http://dx.doi.org/10.1371/journal.pone.0132388
http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.033
http://dx.doi.org/10.1016/j.mito.2010.03.002
http://dx.doi.org/10.1186/1617-9625-2-3-151
http://dx.doi.org/10.4155/fmc.14.43
http://dx.doi.org/10.1016/j.ymgme.2011.09.028
http://dx.doi.org/10.1177/1087057108318331
http://dx.doi.org/10.1007/s12011-007-0045-5
http://dx.doi.org/10.1089/ars.2012.5122
http://dx.doi.org/10.3109/09637486.2013.860586
http://dx.doi.org/10.1016/j.ymgme.2014.08.004
http://dx.doi.org/10.1203/PDR.0b013e3181cbd542
http://dx.doi.org/10.1203/PDR.0b013e3181cbd542
http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.035
http://dx.doi.org/10.1021/bi050711f
http://dx.doi.org/10.1080/01652176.1982.9693838
http://dx.doi.org/10.1080/01652176.1982.9693838
http://dx.doi.org/10.1021/bi060910e


www.nature.com/scientificreports/

13Scientific Reports | 7: 231  | DOI:10.1038/s41598-017-00159-y

Acknowledgements
This work was supported by the National Institute of Health (RO1 HL066367), a grant from Children’s Hospital 
of Michigan and partially supported through funds from the Fann Srere Endowed Chair of Perinatal Medicine 
and Wayne State Research and Development Funds. The authors thank Joshua W. Dorman and Mindie Howard 
(Embryotech Laboratories, Inc. Haverhill, MA, USA) and Dr. Narendra J. Joshi, Ph.D., HCLD (ABB), laboratory 
director, Wayne State University Physician Group, Southfield, MI, USA) for kindly providing technical assistance.

Author Contributions
H.M.A.-S. and M.T. conceived and designed the experiments; M.T., F.S., S.N.K., R.J., S.R.A. and B.G. conducted 
the experiments. M.T., S.N.K. and H.-R.K.-G. analyzed the data; and M.T. and H.M.A.-S. wrote the manuscript. 
All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-00159-y
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-00159-y
http://creativecommons.org/licenses/by/4.0/

	Galactose and its Metabolites Deteriorate Metaphase II Mouse Oocyte Quality and Subsequent Embryo Development by Disrupting ...
	Results

	D-galactose and its metabolites altered the oocyte spindle structure and chromosomal alignment. 
	D-galactose and its metabolites adversely affected oocyte cleavage and blastocyst development in embryos produced by in-vit ...
	D-Galactose and its metabolites increased ROS generation in cumulus oocyte complex. 
	D-Galactose and its metabolites increased apoptosis in the cumulus cells. 
	L-Galactose did not alter oocyte spindle structure, lead to generation of ROS, or cause apoptosis of cumulus cells. 

	Discussion

	Materials and Methods

	Materials. 
	Methods. 
	Exposure of metaphase II mouse oocytes to D-galactose and its metabolites. 
	Immunofluorescence staining and fluorescence microscopy. 
	Confocal microscopy, assessment of microtubules and chromosomal alignment. 
	In-vitro fertilization and evaluation of embryo development. 
	Detection of ROS generation in situ. 
	Detection of apoptosis in cumulus-oocyte complex. 
	Experiments with L-galactose as osmotic control. 
	Statistical Analysis. 

	Acknowledgements

	Figure 1 The Leloir pathway of galactose metabolism.
	Figure 2 Time dependent effect of galactose 1-phosphate on oocyte quality.
	Figure 3 The effect of galactose and its metabolites on Metaphase II mouse oocyte spindles and chromosomes.
	Figure 4 Concentration dependent effect of galactose 1-phosphate on oocyte quality.
	Figure 5 The effect of galactose and its metabolites on developmental competence of embryos generated by in-vitro fertilization.
	Figure 6 Evaluation of ROS generation.
	Figure 7 Detection of apoptosis by TUNEL in the cumulus-oocyte complex.




