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Modeling Nosocomial Infections 
of Methicillin-Resistant 
Staphylococcus aureus with 
Environment Contamination*

Lei Wang & Shigui Ruan

In this work, we investigate the role of environmental contamination on the clinical epidemiology 
of antibiotic-resistant bacteria in hospitals. Methicillin-resistant Staphylococcus aureus (MRSA) is a 
bacterium that causes infections in different parts of the body. It is tougher to treat than most strains 
of Staphylococcus aureus or staph, because it is resistant to some commonly used antibiotics. Both 
deterministic and stochastic models are constructed to describe the transmission characteristics of 
MRSA in hospital setting. The deterministic epidemic model includes five compartments: colonized and 
uncolonized patients, contaminated and uncontaminated health care workers (HCWs), and bacterial 
load in environment. The basic reproduction number R0 is calculated, and its numerical and sensitivity 
analysis has been performed to study the asymptotic behavior of the model, and to help identify 
factors responsible for observed patterns of infections. A stochastic epidemic model with stochastic 
simulations is also presented to supply a comprehensive analysis of its behavior. Data collected from 
Beijing Tongren Hospital will be used in the numerical simulations of our model. The results can be used 
to provide theoretical guidance for designing efficient control measures, such as increasing the hand 
hygiene compliance of HCWs and disinfection rate of environment, and decreasing the transmission 
rate between environment and patients and HCWs.

The emergence and spread of antimicrobial-resistant bacteria (ARB) is one of the most serious public health 
threats. Bacteria such as vancomycin-resistant enterococci (VRE) and glycopeptide-intermediate sensitive 
Staphylococcus aureus present hospitals with the prospect of a postantibiotic era, in which few if any therapeutic 
antimicrobial agents remain effective (Weinstein et al.1). Compared to infections caused by susceptible strains, 
infections caused by antibiotic-resistant organisms are more likely to prolong hospitalization, to increase the 
risk of death, and to require treatment with more toxic or more expensive antibiotics (Flaherty and Weinstein2). 
Patients admitted to healthcare institutions are the main reservoirs of ARB. It is estimated that 5–10% of patients 
develop an infection directly related to their hospitalization, resulting in over 90,000 deaths per year in the US. 
Infections that are acquired in hospitals, and are favored by a hospital environment, referred to by the technical 
term ‘nosocomial’ have been a big threat to the public health. This situation is even more severe in China. A high 
percentage of hospital-acquired infections are caused by highly resistant bacteria such as methicillin-resistant 
Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. In particular, methicillin-resistant 
Staphylococcus aureus (MRSA) is associated with considerable morbidity and mortality among inpatients 
(Cosgrove et al.3, 4) and accounts for 35–80% of total staphylococcal infection in China (Wang et al.5). Patients 
colonized with MRSA are more likely to develop infection (Niven et al.6, Reilly et al.7).

Considerable quantitative research has been dedicated into the study of infection control strategies. In order 
to determine the numerous interrelated factors that contribute to the spread of various infectious diseases, many 
mathematical models have proposed to study the epidemiology of infectious diseases. This is especially true for 
the description of the transmission dynamics of infectious diseases ranging from measles and pertussis to gon-
orrhea and in the prediction of the effects of public health interventions such as treatment and vaccination on 
these dynamics (Anderson and May8, Keeling and Rohani9). In the last two decades, mathematical modeling has 
provided a very useful means to study the transmission dynamics of nosocomial pathogens in hospitals, including 
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investigations of patient and health care worker (HCW) contact patterns, and HCW- and patient-mediated trans-
mission, we refer to Austin and Anderson10, Bergstrom et al.11, Bonten et al.12, Chamchod and Ruan13, Cooper 
et al.14, D’Agata et al.15–17, Grundmann and Hellriegel18, Kribs-Zaleta et al.19, Plipat et al.20, Smith et al.21, Webb 
et al.22, 23, Lipsitch et al.24, and the references cited therein.

Pathogens such as MRSA are capable of surviving for days, weeks or even months on environmental sur-
faces in healthcare facilities computer keyboards to equipment packaging to patients gowns (Dancer25). Much 
evidence has been proposed to show that environmental contamination is an important factor in the transmis-
sion of MRSA (Boyce et al.26). Environmental contamination may contribute to transmission of pathogens when 
health care workers contaminate their hands or gloves by touching contaminated surfaces, or when patients come 
into direct contact with contaminated surfaces. Transmission of MRSA from environmental surfaces to gloves 
or hands of HCWs has been documented by several investigators (Boyce27). Though there are some studies in 
modeling the impact of environmental contaminations in nosocomial infections (see, for example, McBryde and 
McElwain28, Hall et al.29, Wang30, Wang et al.31, Browne and Webb32), little is known about the role of environ-
mental infection in the transmission dynamics of MRSA, and this provides the motivation of our research.

To investigate the transmission pattern of nosocomial infection, we first introduce a deterministic com-
partmental model of the transmission dynamics of MRSA in hospital with patients, HCWs and bacteria in the 
environment. Numerical and sensitivity analyses will be carried out to analyze the deterministic model, which 
concentrates on the interactions between environmental infection and patients and HCWs. A stochastic epidemic 
model and its simulations are also introduced to check the essential features that are not well described in the 
deterministic model. Data collected from Beijing Tongren Hospital (Wang et al.33) will be used in the numerical 
simulations of our model.

Methods
We introduce two nosocomial infection models with environment contamination in hospital, one is deterministic 
and the other is stochastic.

Deterministic Models.  Patients in the hospital unit are classified by compartment as either uncolonized 
Pu(t), or colonized Pc(t); health-care workers are classified as either uncontaminated Hu(t), or contaminated Hc(t). 
The bacterial load in the environment is the compartment Be(t). The relation between different compartments 
inside hospital unit is depicted in the compartmental scheme of Fig. 1. Patients are admitted at a total rate of Λ 
per day with the fraction of colonized patients θ. Since the total number of beds in hospital unit is a fixed num-
ber, we assume that the inflow of patients is Λ = γuPu + γcPc, based on the assumption of full occupation of the 
unit, where γu and γc are discharge rates of uncolonized patients and colonized patients per day from hospital, 
respectively. Hence, the total number of patients in the unit remains constant at Np. Note that the total number 
of HCWs is also assumed to be a constant, Nh. It is assumed that there is no cross-infection between patients, 
so that patients can only be colonized with antibiotic-resistant bacteria by contacting contaminated health-care 
workers αpβp(1 − η)Pu(t)Hc(t) or the contaminated environment kpPu(t)Be(t), where αp is the contact rate, βp is 
the probability of colonization per contact, η is the compliance rate with the hand hygiene, and kp is the coloni-
zation rate from the environment. Health-care workers can be contaminated with antibiotic-resistant bacteria 
by contacting colonized patients αpβh(1 − η)Pc(t)Hc(t) and the contaminated environment khHu(t)Be(t), where 
βh is the probability of contamination per contact, and kh is the contamination rate from the environment. μc is 
the decontamination rate for the HCWs, νp and νh are the rate that colonized patients and contaminated HCWs 
contaminate the environment, respectively, and γb is the cleaning/disinfection rate of the environment. Details for 
parameters in this model can be found in Table 1.

Figure 1.  A compartmental model of transmission dynamics of meticillin-resistant Staphylococcus aureus 
among patients and healthcare workers (HCWs) with environmental contamination.
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The equations of the basic model are
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with initial conditions = = = = =P P P P H H H H B B(0) , (0) , (0) , (0) , (0)u u c c u u c c e e
0 0 0 0 0 specified at time 0.

We would like to make some comparisons and comments about model (1) and the model in our previous arti-
cle (Wang et al.33). Indeed, data on HCW, volunteers, patients, and environmental contamination were obtained 
in the original study. The aim of Wang et al.33 was to determine to role of volunteers in the prevalence and per-
sistence of MRSA in Beijing Tongren Hospital, so the environmental contamination factor was not included in 
the model of Wang et al.33. Interestingly, the results in ref. 33 indicate that the involvement of volunteers helps to 
reduce the spread of MRSA in the hospital, since the interaction between volunteers and patients was one-to-one. 
The purpose of this article is to study the effect of environmental contamination, for the sake of simplicity, the 
compartments for volunteers are not included in model (1).

Disease-free steady state and basic reproduction number.  We obtain the basic reproduction 
number R0 by using the definition notations and technique of Diekmann et al.34 and van den Driessche and 
Watmough35. When θ = 0, that is no colonized patients are admitted into hospital, the disease-free equilibrium 
(DFE) is defined to be

= =E P P H H B N N( , , , , ) ( , 0, , 0, 0),u c u c e p h0

Parameter Symbol
Parameter 
Estimate Source

Proportion of colonized patients

  Admitted in hospital (1/
day) θ 0.067 33

  Number of patients Np 23 33

  Number of HCWs Nh 23 33

  Contact rate (1/day) αp 0.0435 33

Probability of colonization (1/day)

  By colonized patients βp 0.72 33

  By contaminated HCWs βh 0.20 estimated

Discharge rate (1/day)

  Uncolonized patients γu 0.067 33

  Colonized patients γc 0.046 33

Cleaning / disinfection (1/day)

  rate of environment γb 0.7 31

Colonization rate from environment (CFUs/day)

  Of uncolonized patients kp 0.000004 31

  Of uncontaminated 
HCWs kh 0.00001 31

  Hand hygiene compliance 
of HCWs η 0.4 33

  Decontamination rate of 
HCWs (1/day) μc 24 33

Contamination rate to environment (CFUs/day)

  By colonized patients νp 235 estimated

  By contaminated HCWs νh 235 estimated

Table 1.  Baseline parameters values and estimates for the transmission MRSA in the Emergency Ward (EW) in 
Beijing Tongren Hospital (Wang et al.33). The unit of time is one day.
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where Np, Nh are total number of patients and HCWs, respectively. The basic reproduction number is defined as 
follows (see the details in the Supplementary Material):
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where γ = θγu + (1 − θ)γc.
When θ = 0, following a result of van den Driessche and Watmough35, we know that if R0 < 1, the disease-free 

steady state (Np, 0, Nh, 0, 0) is locally asymptotically stable; if R0 > 1, the disease-free steady state is unstable.
There is a general limitation on using R0. If there is an external source that introduces infection into the sys-

tem, R0 can be still regarded as a threshold, but it is impossible to use R0 to get information about how the system 
will behave (Brauer and van den Driessche36).

Estimation of parameters.  Some parameters are adopted from31, 33 and some others are estimated using 
the data obtained in the original study in Beijing Tongren Hospital as reported in ref. 33.

Based on the assumption that the total number of HCWs remains fixed and bed occupancy is 100%, we have 
Np = 23 and Nh = 23. The proportion of colonized patients admitted to hospital is θ = 0.067. The daily discharge 
rates of uncolonized patients and colonized patients are γu = 0.067 and γc = 0.046, respectively. The hand hygiene 
compliance of HCWs is η = 0.4. The decontamination rate of HCWs is μc = 24. The probability of colonization 
from colonized patients to uncontaminated HCWs is βp = 0.72.

It is assumed that each patient has one contact from one HCW per day, so that the contact rate between patients 
and HCWs is α =p N

1

h
. In Wang et al.33, it is assumed that a contaminated HCW has the same ability of transmission 

as a contaminated volunteer, so the probability of colonization from contaminated HCW to uncolonized patient is 
βh = 0.20. We assume that Beijing Tongren Hospital maintains the same standard for the clearance of the environment, 
so that the cleaning/disinfection rate of the environment is γb = 0.7 in the EW unit. In a similar way, the colonization 
rate from the environment to uncolonized patients and uncontaminated HCWs are kp = 0.000004 and kh = 0.00001, 
respectively, in the EW unit. Note that the units of kp and kh is CFUs/day. In microbiology, colony-forming unit (CFU) 
is a measure of viable bacterial or fungal numbers. Unlike direct microscopic counts where all cells, dead and live, are 
counted, CFU measures viable cells. It is assumed that a colonized patient and a contaminated HCW have the same 
effect of contamination of the environment; then the contamination rate to the environment of colonized patients νp 
is equal to the contamination rate to environment of contaminated HCWs νh, and it is half the value of the shedding 
rate of patients (Wang et al.31), which is 235. The units of νp and νh is also CFUs/day.

We notice that γb, kp and kh are small, νp and νh are large. This is because Be is in units that make it come out 
to be a large number.

Stochastic Models.  Now we consider the stochastic version of the nosocomial infection model with envi-
ronmental contamination. The inspiration for introducing the stochastic model comes from Wang et al.33. It 
seems that the number of colonized and uncolonized patients fluctuates randomly due to the small number of 
patients and HCWs. Meanwhile, simulations using the stochastic model appeared to provide a better explanation 
of the transmission dynamics for small populations.

There are lots differences between stochastic epidemic models and deterministic ones. For instance, the basic repro-
duction number can be expressed analytically only in deterministic models. On the other hand, when the sample size 
is very small, the stochastic simulations can describe the variability of the actual data, which numerical simulations 
from deterministic models cannot do. The traditional way of obtaining a stochastic epidemic model is based on its 
deterministic epidemic model (Allen [ref. 37, Chp. 3]). Basically, there are three types of stochastic model formulations: 
discrete time Markov chain (DTMC), continuous time Markov chain (CTMC) and stochastic differential equations 
(SDE). These models differ in the underlying assumptions regarding the time and the state variables. We will consider 
a continuous time Markov chain (CTMC) model for our system, that is to say, the time is continuous, but the state is 
discrete and embedded in 5. In order to construct a stochastic epidemic model, we need to consider the probability of 
changes in variables, the infinitesimal mean and variance, and the drift and diffusion terms of stochastic equation.

It is assumed that + = + = ∀ ≥P t P t N H t H t N t( ) ( ) , ( ) ( ) , 0u c p u c h , so the process is trivariate {Pc(t), Hc(t), 
Be(t)} in 3, with Pu(t) = Np − Pc(t) and Hu(t) = Nh − Hc(t). These three variables have a joint probability given by
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with s = 0, …, Np, j = 0, …, Nh and k ≥ 0. The process has Markov property and is time-homogeneous.
The transition probabilities are determined as follows. Assume that Δt can be chosen sufficiently small such 

that at most one change in state occurs during the time step Δt. In particular, there can only be either a new colo-
nization or decolonization on patients or HCWs, or a new unit of bacterial load (contamination) or a unit less of 
bacterial load (decontamination) in environment. The transition probabilities are written as follows:
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where ΔPc = Pc(t + Δt) − Pc(t), and i1, i2, i3 ∈ {−1, 0, 1}. Hence,
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We notice that the time step Δt must be chosen to be sufficiently small such that all of these probabilities could 
stay in the interval [0, 1]. The transition matrix is too complicated to express, however, we could still write out the 
probabilities p(s,j,k)(t + Δt) by using the Markov property:
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Results
Numerical simulations of the deterministic model.  First we perform numerical simulations for solu-
tions of the deterministic epidemic system. Once we obtain the estimates of parameters, it is the most efficient and 
direct way to check the result and its properties. We apply Euler’s method by using Matlab (Moehlis38). The step-
size is defined based on practical need. In general, smaller stepsizes will provide better simulations. However, it 
will increase the amount of calculation time of computer program. Thus, we have to choose an appropriate step 
size. Here, we define the step size h to be 0.01, and we have R0 = 0.7579 < 1. The initial values that we choose are 

=P P H H B( , , , , ) (10, 13, 17, 6, 1000)u c u c e
0 0 0 0 0 . The numerical solutions of the deterministic epidemic model are 

given in Fig. 2.
In general, there are two types of analysis for determining how influential parameter variation affects the 

final model output: uncertainty analysis and sensitivity analysis. The uncertainty analysis is to determine the 
uncertainty in the model output, given the uncertainties in the parameter values. And sensitivity analysis means 
to quantitatively decide which parameters are most influential in the model output. In this paper, we focus on 
the sensitivity analysis, because two references (Wang et al.33 and Wang et al.31) have provided good resources 
for quantitative analysis. In this section, we will perform sensitivity analysis of R0 in terms of model parameters. 
We consider inputs by pairs. First, we consider the hand hygiene compliance and the disinfection rate of the 
environment. That is because that hand hygiene and disinfection of the hospital are both significantly important 
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interventions. Figure 3 shows that if we increase the hand hygiene compliance of HCWs, R0 would be reduced 
substantially. Similarly, if we only consider to increase the disinfection rate of the environment, R0 would also be 
greatly decreased. Thus, it is necessary to check the output of combining these two control methods. The result 
has been shown in Fig. 4. When we increase both the hand hygiene compliance and disinfection rate, the basic 
reproduction number would drop dramatically. In numerical simulations, we assume that the contamination 
rate to environment of colonized patients νp is equal to the contamination rate to environment of contaminated 
HCWs νh. However, in the sensitivity analysis, we will change them to observe their influences separately. Figure 5 
gives a natural explanation of increasing contamination to the environment by colonized patients or contami-
nated HCWs. The basic reproduction number would increase in both cases. However, we notice that in Fig. 5(a), 
the increment of R0 is greater than that in Fig. 5(b), implying that it would be more effective to control the con-
tamination rate to the environment by colonized patients than that of contaminated HCWs. Figure 6 presents 
the consequence of controlling both of them at the same time. Similarly, we consider the colonization rate from 
environment of uncolonized patients and uncontaminated HCWs under the same scalar in Fig. 7. It is easy to see 
that R0 would increase much more significantly when the contamination rate from environment to uncolonized 
patients increases, than that to uncontaminated HCWs. Combining with Fig. 5, it can be seen that it would be 
more important to control the contamination rate related to patients than to HCWs. Figure 8 shows the trend of 
R0 if we adjust both of them.

Stochastic simulations.  We first construct a stochastic epidemic model from the deterministic epidemic 
model (1), then use data in Table 1 to run stochastic simulations of our model.

Figure 2.  Solutions of colonized (Pc(t)) and uncolonized (Pu(t)) patients of the deterministic epidemic model 
(1) with initial values =P P H H B( , , , , ) (10, 13, 17, 6, 1000)u c u c e

0 0 0 0 0 .

Figure 3.  (a) R0 vs hand hygiene compliance η, and (b) R0 vs disinfection rate γb.
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The system has three variables with a joint probability

= = = =p t P t s H t j B t k( ) Prob{ ( ) , ( ) , ( ) },s j k c c e( , , )
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mal mean matrix f(X(t), t) as following:
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and the infinitesimal variance matrix Σ(X(t), t) is given by:

∑
δ

δ
δ

∆ ∆ =




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
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T
p

h

b

ηγ

Figure 4.  R0 vs hand hygiene compliance η and disinfection rate γb, compared with the baseline plane of R0 = 1.

Figure 5.  (a) R0 vs contamination rate of the environment by colonized patients νp, and (b) R0 vs contamination 
rate of the environment by contaminated HCWs νh.
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Figure 6.  R0 vs contamination rate of the environment by colonized patients νp and contamination rate of the 
environment by contaminated HCWs νh, compared with the baseline plane of R0 = 1.

Figure 7.  (a) R0 vs contamination rate from the environment to uncolonized patients kp, and (b) R0 vs 
contamination rate from the environment to uncontaminated HCWs kh.

Figure 8.  R0 vs colonization rate from the environment to uncolonized patients kp and colonization rate from 
the environment to uncontaminated HCWs kh, compared with the baseline plane of R0 = 1.
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in which

δ θ γ γ α β η γ

δ η α β µ

δ ν ν γ

= − + + − − + − +

= − − + − +

= + + .

N P P N P H k N P B P
P N H k N H B H
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[ ( ) ] (1 )( ) ( ) ,
[(1 ) ( ) ( ) ] ,

p u h c c c p p p c c p h c e c c

h p h c h c h h c e c c

b p c h c b e

It is easy to see that δp, δh, δb are all nonnegative. Diffusion matrix G is the solution of GGT = Σ. There may 
be several solutions of this equation depending on the expression of Σ, however, we could always pick the most 
visible one as

δ

δ

δ

=








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Then the Itô SDE takes the following form:

= + .dX t f X t t dt G X t t dW t( ) ( ( ), ) ( ( ), ) ( ) (11)

More precisely,

δ

δ

δ


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(12)

c
p p

c
h h

e
b b

1

2

3

where W1, W2, W3 are three independent Wiener processes. If the terms associated with the Wiener processes are 
dropped, then we have the same ODE model as in (1).

Once we obtain the stochastic epidemic model, we are able to run stochastic simulations by using data in 
Table 1. Simulations are done by Matlab (Allen [ref. 37, chp. 3]). Consider variable Pc for a more specific expla-
nation of this process. For k from 1 to n, where n is the path number of simulation; let j be the state from 1, then

δ+ = + ⋅ + ⋅ ⋅P j k P j k e dt dt r( 1, ) ( , ) , (13)c c p p p

where dt = 0.01 is the time step, rp is a standard normal random variable, and
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δ θ γ γ

α β η

γ
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+ − ⋅ − ⋅
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[ max(( ( , )), 0) ( , )]
(1 ) max(( ( , )), 0) ( , )
max(( ( , )), 0) ( , ) ( , )

p u h c c c

p p h c c

p h c e c c

p u h c c c

p p h c c
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For each variable, we will present ten sample paths and compare them with the corresponding solution curves 
from the deterministic model. Usually, to verify whether a stochastic simulation is good or not, the mean and 
the variance of the difference between simulation and target value will be calculated. In this chapter, we will 
not check these means and variances due to the complexity of calculation. However, it is practicable to verify by 
observation: whether these sample paths are close to each other, and whether they have small noise according to 
the deterministic solution.

We provide three figures as results of stochastic simulations on the bacterial load in the environment Be(t), the 
number of colonized patients Pc(t), and the number of contaminated HCWs Hc(t), compared with deterministic 
solution curves, respectively. As shown in Figs 9,10 and 11, in each run, ten sample paths are close to each other, 
and oscillate around the black solid curve, which is the solution curve of the deterministic system. Noticed that 
in the last figure, the deterministic solution curve is almost close to zero. This is because that the sizes of popu-
lations of patients and HCWs are both very small. However, the noise of this run was controlled to under four. 
Thus, we have provided a good explanation of the transmission dynamics for small populations with environment 
infection.

Discussion
Traditional strategies of controlling nosocomial infection have been provided in many references (Wang et al.33, 
Yong39). These measures include reducing the transmission rate between HCWs and patients, and the transmis-
sion rate between volunteers and patients; as well as raising the hand hygiene compliance of HCWs and volun-
teers. In this study, we introduced the environmental infection in a nosocomial infection model. Our research is 
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devoted to suggesting more possibilities for determining the control intervention strategies, which are based on 
the sensitivity analysis of the basic reproduction number R0.

The first conclusion is that increasing the disinfection rate of environment will help to control the transmis-
sion dynamics of MRSA in the hospital. This includes 1) appropriate use of cleaners and disinfectants; 2) appro-
priate maintenance of medical equipment (e.g., automated endoscope reprocessors or hydrotherapy equipment); 
3) adherence to water-quality standards for hemodialysis, and to ventilation standards for specialized care envi-
ronments (e.g., airborne infection isolation rooms, protective environments, or operating rooms); and 4) prompt 
management of water intrusion into the facility (Sehulster and Chinn40). Meanwhile, it is essential to control 
the contamination rates between the environment and patients and HCWs. To be more specific, decreasing the 
contamination rate to the environment by colonized patients and contaminated HCWs, or decreasing the con-
tamination rate from the environment to uncolonized patients and uncontaminated HCWs, will be helpful for 
controlling the infection in hospital. Two basic recommendations are limiting the scope of activities of patients, 
especially, for those high-risk patients, to avoid non-essential contacts with the environment, and increasing 
hand hygiene compliance of HCWs, in particular, before contacting any patient. It would be ideal if we could 
reduce both contamination rates to the environment from colonized patients and contaminated HCWs, and both 
contamination rates from the environment to uncolonized patients and uncontaminated HCWs. However, from 

Figure 9.  Ten sample paths of the bacterial load in environment in nosocomial infection model with 
environment infection are graphed with the deterministic solution (black curve). The parameter values are 
Δt = 0.01, Np = 23, Nh = 23, θ = 0.067, αp = 0.0435, βp = 0.72, βh = 0.20, η = 0.4, γu = 0.067, γc = 0.046, γb = 0.7, 
kp = 0.000004, kh = 0.00001, (1 − η) = 0.6, μc = 24, vp = 235, vh = 235, time = 365, = = =P H B13, 6, 1000c c e

0 0 0 .

Figure 10.  Ten sample paths of the number of colonized patients in nosocomial infection model with 
environment infection are graphed with the deterministic solution (black curve). The parameter values are 
Δt = 0.01, Np = 23, Nh = 23, θ = 0.067, αp = 0.0435, βp = 0.72, βh = 0.20, η = 0.4, γu = 0.067, γc = 0.046, γb = 0.7, 
kp = 0.000004, kh = 0.00001, (1 − η) = 0.6, μc = 24, vp = 235, vh = 235, time = 365, = = =P H B13, 6, 1000c c e

0 0 0 .
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the practical point of view, for instance, because of the financial budget and the lack of supervision, it is possible 
that not all of these transmission rates could be controlled at the same time. Our research indicates that under 
such situations, we should give priority to controlling the contamination rates related between the environment 
and patients. The sensitivity analysis of νp (i.e., contamination rate to environment from colonized patients) has 
explained that an increase of νp would increase the value of R0 dramatically, compared with the influence of the 
same increment of νh (i.e., contamination rate to environment from contaminated HCWs). Similarly, the sensi-
tivity analysis of kp (i.e., contamination rate from environment to uncolonized patients) has shown that under the 
same scale, the increase of kp would result in huge jump of R0, compared with kh (i.e., contamination rate from 
environment to uncontaminated HCWs). Thus, to reduce unnecessary contacts between patients and environ-
ment would decrease the transmission of MRSA significantly.

During the process of numerical simulations and sensitivity analysis, we apply data from the unit of EW 
(Emergency Ward) of Beijing Tongren Hospital from 3 March 2009 to 28 February 2010 (Wang et al.33). There are 
both HCWs and volunteers working in the EW during the process of data collection. Since we do not consider the 
compartment of volunteers, it is not accurate to compare the patient data with solution of deterministic epidemic 
model or stochastic simulations. However, we still would able to estimate parameters from the original data.

In conclusion, decreasing the contamination rates between patients and environment, HCWs and environ-
ment, increasing the disinfection rate of environment, and increasing the hand hygiene compliance of HCWs 
would decrease MRSA transmission remarkably.
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