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Night and day variations of sleep 
in patients with disorders of 
consciousness
Malgorzata Wislowska   1, Renata del Giudice1, Julia Lechinger1, Tomasz Wielek1, Dominik 
P. J. Heib1, Alain Pitiot 2, Gerald Pichler3, Gabriele Michitsch4, Johann Donis4 & Manuel 
Schabus 1

Brain injuries substantially change the entire landscape of oscillatory dynamics and render detection of 
typical sleep patterns difficult. Yet, sleep is characterized not only by specific EEG waveforms, but also 
by its circadian organization. In the present study we investigated whether brain dynamics of patients 
with disorders of consciousness systematically change between day and night. We recorded ~24 h 
EEG at the bedside of 18 patients diagnosed to be vigilant but unaware (Unresponsive Wakefulness 
Syndrome) and 17 patients revealing signs of fluctuating consciousness (Minimally Conscious State). 
The day-to-night changes in (i) spectral power, (ii) sleep-specific oscillatory patterns and (iii) signal 
complexity were analyzed and compared to 26 healthy control subjects. Surprisingly, the prevalence of 
sleep spindles and slow waves did not systematically vary between day and night in patients, whereas 
day-night changes in EEG power spectra and signal complexity were revealed in minimally conscious 
but not unaware patients.

When it comes to classifying awareness it is particularly deceiving to rely on pure observation as an individuum 
can be well aware of his environment with closed eyes or completely unaware even though his eyes are open, as 
believed in some post-comatose states. Furthermore, it is well known that severe brain injuries deteriorate brain 
dynamics and can lead to impairment of consciousness. Survivors, who awake from coma and show periods of 
eye opening and closing, seem to exhibit fluctuations of arousal that resemble circadian sleep-wake cycling of 
healthy individuals. This putative manifestation of vigilance is also a hallmark for the clinical diagnosis of the 
Unresponsive Wakefulness Syndrome1 (UWS; cf. Fig. 1). When in addition to signs of regained arousal, also 
reproducible evidence of awareness is detected, a patient is diagnosed to be in a Minimally Conscious State (MCS; 
introduced by Giacino in 2002)2. In a clinical setting the assessment of subjects with Disorders of Consciousness 
(DOC) is based on the observation of overt behavior, a measure that is known to be problematic as behavioral 
signs are often ambiguous in this patient population3.

According to a prevalent theory consciousness is related to the brain’s ability to integrate information through 
efficient neural networks4–6. Inter-regional connectivity underlies also the generation of sleep-specific oscillatory 
patterns, like sleep spindles7. Consciousness levels usually also vary across day and night with conscious aware-
ness prevailing during the day and fading during sleep. Similarly, consciousness gradually changes during the 
course of DOC recovery. These states of altered awareness are characterized by systematic changes in oscillatory 
brain dynamics in the healthy and lesioned brain8,9. Interestingly, patients with capability of covert command 
following in the fMRI were found to have preserved electroencephalographic (EEG) organization across sleep and 
wakefulness including sleep spindling10. This intricate relationship between consciousness, circadian rhythmicity, 
neural connectivity and brain oscillations constitutes an intriguing and compelling puzzle which may help to 
shed some light on the biggest mystery in humans, their fluctuating conscious awareness of themselves and their 
surrounding world.

Interestingly the study of sleep-wake alterations and sleep architecture in DOC patients have hardly been 
investigated, yet constitute a promising way to better understand the association between behavioral and neural 
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signs of arousal, and most importantly, the structural and functional integrity of neural networks. Discoveries in 
this field therefore should have further relevance for diagnosis, prognosis11 and also the more general understand-
ing of the neural correlates of consciousness12.

Landsness and colleagues were among the first to describe sleep and especially the homeostatic regulation of 
slow wave activity in UWS and MCS patients13. Furthermore their results suggested that patients’ clinical state 
was associated to the clear-cut presence (i.e. MCS patients) or absence (i.e. UWS patients) of rapid/non-rapid 
eye movement sleep stage (REM/nonREM) cycles, and specific electrophysiological sleep features such as sleep 
spindles and slow waves. Yet it has to be mentioned that following research reports drew a less straightforward 
picture10,14–18.

We found sleep staging of DOC patients with their often highly altered EEG (as well as EMG and EOG) 
activity rather problematic and impossible to realize when applying accepted sleep staging criteria. Instead, 
we decided to opt for a more data-driven approach and investigated whether patients fluctuate systematically 
between light-on day and light-off night periods across 24 hours in their oscillatory EEG activity. We hypothe-
sised that the difference between the clinical entities UWS and MCS are reflected in variations of brain dynamics 
which can be observed at bedside across day and night. It was expected that light as one of the most potent 
“Zeitgebers” in humans, would systematically alter brain dynamics between day and night periods even in the 
absence of conscious awareness.

Results
For the purpose of assessing diurnal variations in oscillatory activity in different DOC states, we recorded con-
tinuous, long term (~24 h) polysomnography (PSG) in a sample of 35 patients. The recordings were then divided 
into periods of lightsomeness, which corresponds to circadian day (named day-time), and periods of dark-
ness, which corresponds to circadian night (named night-time). For comparison, overnight (~8 h) recordings 
of 26 healthy control subjects were sleep staged and divided into sleep (analogously named “night-time”) and 
wake periods (analogously termed “day-time” in the following). Day-night differences in (i) spectral power, (ii) 
sleep-specific oscillatory grapho-elements, and (iii) EEG signal complexity were investigated, with a special focus 
on interaction between diurnal changes in brain activity (DIURNAL TIME: day-time, night-time) and varying 
level of consciousness as reflected by the clinical diagnoses (DIAGNOSIS: UWS, MCS, control).

Power Spectral Density Estimation.  We observed that diurnal variations of EEG oscillatory power dis-
tribution differed across the investigated groups. We utilized two ratios (high 8–30 Hz to low 1–8 Hz; as well 
as alpha to theta), which were previously found to be robustly associated in the patient population with coma 
recovery scale-revised (CRS-R) scores19, a diagnostic tool where the higher score reflects better clinical condition. 
We found diurnal fluctuations of frequency power ratios to be associated with the behaviorally evaluated level of 
consciousness.

The analyses revealed significant DIURNAL TIME × DIAGNOSIS interaction in alpha-to-theta frequency 
ratio and in high-to-low frequency ratio over all three assessed cortical sites. Specifically, the alpha-to-theta ratio 
revealed highly significant interactions over frontal (F2,56 = 15.460, p < 0.001, η = .0 356p

2 ), central (F2,54 = 24.533, 
p < 0.001, η = .0 476p

2 ) and parietal (F2,54 = 29.634, p < 0.001, η = .0 523p
2 ) midline cortical sites. Similarly, the 

interaction term for high-to-low frequency ratio was significant for frontal (F2,56 = 17.898, p < 0.001, η = .0 390p
2 ), 

central (F2,54 = 31.839, p < 0.001, η = .0 541p
2 ) and parietal (F2,54 = 25.240, p < 0.001, η = .0 483p

2 ) midline cortical 
sites.

High-to-low and alpha-to-theta frequency power ratios were significantly higher during day compared to 
night-time for all recordings sites in the control group and (marginally) significant in the MCS group. In UWS, no 
significant results were observed (see Fig. 2). Specifically, MCS patients had larger high-to-low frequency power 
ratio during day-time than during night-time over parietal midline electrode (t15 = 2.066, p = 0.011, r = 0.662), 
and revealed a trend towards statistical significance over frontal (t15 = 2.274, p = 0.055, r = 0.506) and central 

Figure 1.  Recovery after severe brain injury. According to the clinical definition, transition from coma to 
Unresponsive Wakefulness Syndrome (UWS) is denoted by the eyes opening, which is interpreted as a sign of 
regained arousal. Reproducible evidence of recovered awareness is a hallmark of Minimally Conscious State 
(MCS), but is already assigned as soon as a patient can visually fixate (MCS−). A step further up, patients are 
termed MCS+ if they are sometimes able to communicate in some form with the environment.
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(t16 = 2.066, p = 0.055, r = 0.459) midline electrodes. In controls the difference was statistically signifianct for 
all three cortical sites (Fz: t25 = 9.035, p < 0.001, r = 0.875; Cz: t25 = 8.898, p < 0.001, r = 0.872; Pz: t25 = 9.437, 
p < 0.001, r = 0.884). The alpha-theta ratio was significantly larger during day-time compared to night-time 
in MCS over all three cortical sites (Fz: t15 = 2.248, p = 0.040, r = 0.502; Cz: t16 = 2.824, p = 0.012, r = 0.577; Pz: 
t15 = 3.335, p = 0.005, r = 0.653). Also in control subjects the difference was robust and statistically significant 
for all three cortical sites (Fz: t25 = 5.892, p < 0.001, r = 0.763; Cz: t25 = 8.373, p < 0.001, r = 0.859; Pz: t25 = 7.346, 
p = 0.002, r = 0.827).

Between-group comparison of effect sizes revealed significantly stronger day-to-night-time change in control 
compared to MCS sample for high-to-low ratio over all three cortical sites (Fz: zdiff = 2.29, p = 0.001, one-tailed; 
Cz: zdiff = 2.49, p = 0.006, one-tailed; Pz: zdiff = 1.71, p = 0.004, one-tailed) and for alpha-to-theta ratio over Cz 
(zdiff = 1.86, p = 0.031, one-tailed). Effect size was significantly higher for MCS compared to UWS for high-to-low 
ratio over Fz (zdiff = 1.46, p = 0.042, one-tailed) and Pz (zdiff = 2.02, p = 0.022, one-tailed), as well as by trend for 
alpha-to-theta ratio over Fz (zdiff = 1.63, p = 0.052, one-tailed). For a detailed description of diurnal changes of 
each of the frequency bands separately, please refer to the Supplementary Material (Suppl. Fig. 1).

Oscillatory Grapho-Elements During Sleep: Sleep Spindles and Slow Waves.  Further we explored 
diurnal changes in the frequency of occurrences of sleep specific oscillatory patterns: sleep spindles (over fron-
tal, central and parietal sites) and slow waves (over frontal regions). We modelled the relationships between 
the likelihood of occurrence of these oscillatory sleep patterns on the one hand, and DIAGNOSIS as well as 
DIURNAL TIME on the other hand. The negative binomial models were significant for sleep spindles in the 
frontal (χ2(5) = 19.152, p = 0.002; AIC = 1221), central (χ2(5) = 62.528, p < 0.001; AIC = 1115) and parietal 
(χ2(5) = 65.934, p < 0.001; AIC = 1190) poles, as well as for slow waves (χ2(5) = 39.253, p < 0.001; AIC = 2226). 
However, the DIAGNOSIS × DIURNAL TIME interaction turned out to be a significant predictor only for num-
ber of frontal slow waves (Wald χ2(2) = 17.900, p < 0.001) (Fig. 3). The number of predicted slow waves (Wald 

Figure 2.  Power spectra ratios across day and night. Both MCS and control subjects revealed statistically 
significant changes from day to night-time of high-to-low and of alpha-to-theta frequency power ratios, 
indicating a prevalence of higher frequencies during day-time. No diurnal variation in these measures was 
observed in UWS patients. High frequencies range from 8–30 Hz, low frequencies range from 2–8 Hz, alpha 
is defined as 8–12 Hz and theta as 4–8 Hz. Abbreviations: UWS = Unresponsive Wakefulness Syndrome; 
MCS = Minimally Conscious State.
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χ2(1) = 11.511, eβ = 2.38, p = 0.001) was significantly different for day and night-time only in the control group, 
suggesting the prevalence of this EEG sleep-specific pattern during the night in the sample of healthy subjects.

We also had a closer look at the morphology of the detected slow waves, and computed their peak-to-peak 
amplitude (measure of magnitude) and ratio of the positive to negative slow wave length (measure of asymmetry). 
We observed significant DIAGNOSIS × DIURNAL TIME interaction for the asymmetry ratio (F2,58 = 10.901, 
p < 0.001, η = .0 273p

2 ). Follow-up analysis revealed a significant difference between day and night-time solely in 
the healthy control group, with more symmetrical slow waves (t25 = 5.949, p < 0.001, r = 0.766, FDR-corrected) 
during the night-time (Fig. 4). The grand-average slow waves for both clinical entities and day-night can be seen 
in Suppl. Fig. S2.

Furthermore, we investigated the association between the behavioural patient’s state (CRS-R) and the density 
of sleep specific grapho-elements. We observed a statistically significant positive correlation (rs = 0.40, p = 0.020) 
between the CRS-R score and the density of parietal sleep spindles during night-time (Fig. 5). Interestingly, 

Figure 3.  Frequency of occurrence of slow waves across day and night. Note that although liberal detection 
criteria were applied, the number of detected slow waves was significantly larger during night than day-time in 
controls only. Abbreviations: UWS = Unresponsive Wakefulness Syndrome; MCS = Minimally Conscious State.

Figure 4.  Morphology of detected slow waves. Slow-waves were more symmetrical during night than day-time 
in controls only. A similar day to night-time change was observed in MCS patients; however the difference 
did not reach the level of statistical significance. Abbreviations: UWS = Unresponsive Wakefulness Syndrome; 
MCS = Minimally Conscious State.

Figure 5.  Correlations between density of parietal sleep spindles and total CRS-R scores. The more parietal 
spindles during night-time the higher CRS-R scores. Each dot on the graph corresponds to one patient (N = 34). 
Correlations were calculated for ranked values. Abbreviation: CRS-R = Coma Recovery Scale-Revised.

http://S2
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the CRS-R score was also negatively correlated with the amount of slow waves, but only during the night-time 
(rs = −0.33, p = 0.060).

Permutation Entropy.  The complexity of the EEG signal was investigated with permutation entropy (PE) 
measure, and revealed significant DIURNAL TIME × DIAGNOSIS interaction (F2,58 = 9.400, p < 0.001, 
η = .0 245p

2 ). Follow-up analyses revealed that PE significantly decreased from day to night-time in controls 
(t25 = 9.070, p < 0.001, r = 0.876), MCS (t16 = 2.497, p = 0.024, r = 0.530), as well as by trend in UWS (t17 = 1.958, 
p = 0.067, r = 0.430) (Fig. 6).

The size of the observed effect was statistically larger in controls than in MCS (zdiff = 2.26, p = 0.012, 
one-tailed), as well as the UWS (zdiff = 2.71, p = 0.003, one-tailed) sample.

Supplementary analysis also revealed higher PE for periods with eyes open compared to eyes closed in a 
subset of patients (n = 22 and n = 10 during day and night-time, respectively) (cf. Suppl. Fig. 3). Furthermore, 
single-subject analysis indicate that more than half of the patients show preserved day to night variations of oscil-
latory brain activity and signal complexity with this effect being rather independent of their diagnosis (UWS or 
MCS) (cf. Suppl. Fig. 4).

PE calculations for frontal, central and parietal brain regions separately can be found in the Supplementary 
Material (Suppl. Fig. 5).

Prognostic Value of Brain Dynamics.  Lastly, we exploratively evaluated prognostic values of oscillatory 
brain dynamics in a subset of patients (n = 24). As predictors we used density of sleep spindles, density of slow 
waves, PE, alpha-to-theta ratio and high-to-low frequencies ratio. The subsequent follow-up diagnosis categories 
were considered: (i) death, (ii) UWS or lower severe disability (SD-), (iii) MCS or emergence from MCS (eMCS).

Multinomial logistic regression analysis revealed significance of our model (χ2(10) = 32.849, p = 0.038, 
AIC = 56.849), which turned out to be a good fit to the data (deviance statistics not significant: χ2(36) = 32.849, 
p = 0.619). Density of sleep spindles (χ2(2) = 12.266, p = 0.002) and by trend also alpha-to-theta ratio 
(χ2(2) = 5.031, p = 0.081) had a significant main effect on the follow-up diagnosis. The individual parameter 
estimates indicated, that density of sleep spindles significantly predicted whether a patient passed away or became 
MCS/MCS + (Wald χ2(1) = 4.089, eβ = 9957818, p = 0.043), and revealed a trend towards a significant prediction 
of whether patient passed away or became UWS/SD− (Wald χ2(1) = 3.157, eβ = 2452164, p = 0.076). In par-
ticular, the expected risk of a patient to pass away rather than survive (and become UWS/SD− or MCS/MCS+) 
is lower for subjects with higher density of sleep spindles. On the other hand, whether patients became UWS/
SD− rather than MCS/eMCS was by trend predicted by permutation entropy (Wald χ2(1) = 2.791, eβ = 1.0114, 
p = 0.095); progressing to MCS/eMCS rather than to UWS/SD− is more likely for patients with more complex 
EEG signals.

Discussion
In the present study we systematically focused on day-night variations of oscillatory EEG activity and sleep pat-
terns in a large sample of UWS and MCS patients which were recorded over 24 hrs at bedside. We here explored 
diurnal day-night changes of brain dynamics with traditional measures used in sleep research, as well as a permu-
tation entropy which is quantifying signal complexity and is known to be more resistant to artifacts. Interestingly 
we found that the prevalence of faster frequencies over slower frequencies decreased from day to night-time 
in controls and MCS patients only. Applying entropy measures we observed higher signal complexity during 
light-on periods as compared to night-time only in controls and MCS patients. Interestingly, these day-night 
differences of brain dynamics seem to systematically increase from UWS to MCS to control participants which 
mirror their cognitive abilities or degree of conscious awareness. Focusing on the two sleep patterns most charac-
teristic for NREM sleep, namely sleep spindles and slow waves, we surprisingly did not find statistically significant 
differences between day and night in any of the patients groups. However we replicate earlier findings that (pari-
etal) sleep spindles are linearly related to diagnosis/CRS-R scores or even outcome14,15,17,18,20.

Figure 6.  EEG complexity change from day to night averaged across the whole brain. Note that signal 
complexity decreases significantly from day to night in control and MCS patients. In UWS patients we could 
observe a trend towards a significant change. Abbreviations: PE = Permutation Entropy, UWS = Unresponsive 
Wakefulness Syndrome, MCS = Minimally Conscious State.
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The dominance of slow oscillatory brain activity informs about the synchronicity of cortical neurons and is 
usually associated with lower signal complexity or information in the signal. They usually hallmark states like 
deep sleep or pathological states with associated absence of conscious awareness. Previous research suggested 
UWS and MCS patients to differ in terms of spectral power, with more pronounced lower or higher frequencies 
in UWS and MCS patients, respectively8,19,21–25. Our results add to these findings by indicating that the reactivity 
of these EEG frequencies to a circadian Zeitgeber, namely light, is also different across clinical entities. Similarly, 
earlier findings of lower signal complexity in UWS compared to MCS patients8,22,26,27 were here extended by the 
observation that UWS patients do not even exhibit robust signal complexity changes across such extreme shifts 
as day and night. Diurnal changes in entropy across day and night are to be expected as daytime usually goes in 
hand with increased awareness and sensory processing. Conversely, night-time or unresponsiveness as in our 
patients should result in restricted information flow and lower signal complexity. Revealed day-to-night changes 
in power spectra and EEG signal complexity might reflect circadian fluctuations of arousal but remain to be tested 
explicitly. An additional single-subject analysis (cf. Suppl. Fig. 4) revealed that more than half of the patients show 
preserved diurnal variation of oscillatory brain activity and signal complexity, independently of the diagnosis. 
This means that on occasion even UWS patients may show day-night differences in entropy or slower oscillations. 
Composed ratios of frequency bands, like alpha-to-theta or high-to-low, are distinguishing well between day 
and night-time periods in controls and MCS patients, but on a group level only. For individual assessment these 
measures might be of little value as they do not allow distinguishing UWS from MCS patients. If systematic day to 
night variations in oscillatory activity or entropy have predictive relevance for outcome is yet to be investigated.

In healthy individuals sleep spindles and slow waves serve as robust markers for sleep and seem to have 
a crucial role in offline information processing or sleep consolidation. Only in healthy subjects we observed 
state-dependent (sleep vs. wake) changes in the number and length ratio of the slow waves. It is interesting to see 
why sleep-specific EEG patterns like spindles and slow-waves do not seem to distinguish between day and night 
periods in our UWS and MCS patients. One reason certainly can be the pathological changes of these patterns 
in topography, power, frequency (Hz) or morphology. Also it has to be noted that the used data for controls 
was acquired over a single stretch of 8 hours during night-time and does not encompass the entire spectrum of 
wakeful brain activity over night and day-time. We thereby however capture the brain’s state of wakefulness in 
recumbent position as seen in our patient group. A sample of hospitalized and recumbent subjects (and without 
medication) over 24 hours would be clearly advantageous as control population yet is difficult to realize.

Given the extensive analysis of our sleep data we believe that classical approaches like sleep classification 
according to criteria established in healthy individuals (AASM) or also traditional sleep pattern classification with 
unchanged parameters may often be misleading and would need to be tailored to the unique patterns observed in 
DOC EEG. Even when trained sleep scoring experts attempted classification of the patients’ recordings into only 
three broad states (WAKE, NREM and REM stages) we decided to abandon this approach due to inconsistent 
stagings and an inevitable lack of agreement. Ubiquitous pathological eye movements, spasms, general dysregu-
lation of muscle tone, the much slower EEG spectrum and the usually absent alpha peaks, together with unusual 
topographies or simultaneous presence of hallmarks of different sleep stages in the same epoch rendered even a 
rough sleep-classification implausible in our opinion (cf. Suppl. Fig. 6).

A finding which is not straightforward to explain to-date is the change of symmetry of our detected 
slow-waves in controls and MCS patients. To our experience slow waves smaller than the 75 μV criterion are 
defined by longer down compared to up-states, and this asymmetry decreases with increasing peak-to-peak 
amplitude. Therefore we believe that the enhanced symmetry observed during light-off night periods (cf. Fig. 5) 
is related to the enhancement of slow-wave amplitudes and appears therefore under residual circadian control 
even in MCS patients. It should be noted that the attempt of introducing more strict criteria for slow wave detec-
tion (controlling for length and amplitude as for example in ref.28) rendered detections almost absent, even in 
healthy controls, which likely is related to the methodological limitation of using average-referencing (due to 
not correctable mastoid artifacts over 24 hrs periods) in the present study. It might also be of interest to further 
analyze morphological characteristics of spindles or slow-waves as well as cycling alternating patterns (CAPs) as 
parameters of this kind have been reported to be altered across various pathologies.

Preliminary evidence of circadian rhythmicity in DOC patients indicates deviations from the norm29–32. 
Our current protocol however precluded more fine-grained analysis than the diurnal day-night time variations 
reported herein. It is also possible that patients exhibit fluctuations with a shorter or longer periodicity22. This 
interesting issues regarding true circadian rhythmicity in DOC patients should be further explored with meas-
ures, which also can sample continuously across multiple days, such as core body temperature or melatonin 
assessments. Still, the present findings are the first of its kind and suggest that diurnal variations in brain activity 
can be identified using EEG in MCS (as well as some UWS patients). An important sanity check of such analyses 
can the actual state of the eyes, that is periods of eye opening vs. eye closure. Supplementary analysis performed 
on a subset of available patients suggests that EEG complexity is higher during eyes open versus eyes closed states 
in both clinical entities. Yet given the long periods of invisible eyes in our 24 hour recordings we can at present not 
reliably disentangle whether periods of eyes opening are indeed longer during the day as compared to the night 
in our patients (cf. Suppl. Fig. 3). Future studies addressing circadian questions in DOC patients should therefore 
verify that the state of the eyes can be recorded reliably over a full circadian cycle including bright day and dark 
night periods.

It is concluded that whereas traditional sleep staging and analysis seems hardly applicable using established 
criteria, we identified systematic day to night-time variations in spectral EEG and entropy measures. Interestingly, 
present data indicates that these diurnal day to night variations of brain dynamics are evident in healthy indi-
viduals and MCS patients with even UWS patients showing trends of similar direction. A good part of DOC 
patients therefore still seem to vary systematically across day-and-night and may thus indicate coupling to exter-
nal “Zeitgebers” such as light. Given this, it is suggested that assessing residual cognitive abilities experimentally 
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or the behavioural state of a DOC patient clinically, preferably occurs at times when the circadian system sends 
signals for waking or maximum arousal.

Materials and Methods
For the purpose of assessing diurnal variations in oscillatory activity in different DOC states, we recorded con-
tinuous, long term (~24 h) polysomnography (PSG) in a sample of 40 patients as well as full-night (~8 h) PSG in 
a control population of 26 healthy participants.

Informed consent was obtained beforehand from all the healthy controls as well as from relatives or legal 
representatives of all the patients. The study was carried out in accordance with the ethical principles of the 
World Medical Association33. The experimental protocol was approved by the Ethics Committees of the Medical 
University of Graz and of the University of Salzburg.

Participants.  Forty patients in DOC states were recruited from clinics in Austria (n = 18) and in Belgium 
(n = 22). Diagnoses of the patients were established using behavioural evaluation of auditory, visual, motor, oro-
motor, communication and arousal functions according to Coma Recovery Scale-Revised criteria (CRS-R)34,35. 
Informed consent was obtained from relatives or legal representatives. Two patients with varying diagnosis and 
three patients who were exposed to constant light for 24 h were excluded from further analysis. The final sample 
therefore consisted of 18 patients in UWS (mean age = 45.2 ± 18.1 years, 11 males) and 17 patients in MCS (mean 
age = 45.9 ± 15.6 years, 13 males). For detailed information about the patients please refer to Table 1.

Follow-up on patients’ development was obtained by families and clinics. Participants, on whom the informa-
tion was available, were assigned a follow-up diagnosis, according to the most recent CRS-R score or Extended 
Glasgow Outcome Scale score (GOSE)36: death, UWS (suitable CRS-R score or GOSE = 2), lower severe disability 
(SD-, GOSE = 3), MCS or eMCS.

In addition to the 35 patients we analysed data of 26 healthy controls (mean age = 35.0 ± 10.3 years, 13 males) 
which were previously recorded for a study investigating healthy and disturbed sleep in the general population 
(part of the data published here37).

Data Acquisition and Pre-Processing.  The PSGs of DOC patients were recorded with Brain Products 
amplifiers (Brain Products, Gilching, Germany). In the Austrian sample 18 EEG channels were distributed over 
the scalp according to the 10–20 system38: F3, Fz, F4, F7, F8, FC5, FC6, C3, Cz, C4, P3, Pz, P4, T3, T4, PO7, PO8 
and Oz, online referenced to FCz. In the Belgian sample 12 EEG channels were utilized: F3, Fz, F4, C3, Cz, C4, P3, 
Pz, P4, T3, T4 and Oz, online referenced to the nose. The PSGs of healthy controls were recorded with Synamps 
EEG amplifiers (NeuroScan Inc., El Paso, Texas) using 21 EEG channels, online referenced to FCz. In addition 
to EEG, also electrocardiography (ECG), electromyography (EMG), electrooculography (EOG) and respiratory 
signals were recorded in all subjects. All data were recorded with a sampling rate of 500 Hz. In addition, continu-
ous infrared video recordings could be obtained from 23 DOC patients. The average recording time in the DOC 
patients and healthy controls was 23.11 (±2.87), and 8.07 (±0.61), respectively.

PSG recordings in DOC patients, especially when performed over extended periods of time, are known to be 
affected by various artefacts. Dysregulation of the vegetative nervous system for example causes abnormal sweat-
ing, spasms result in huge muscle artefacts, and daily nursing activities as well as medical equipment introduce 
considerable amounts of noise. To account for those artefacts we introduced the following data pre-processing 
protocol, which was performed in Brain Vision Analyzer software (Brain Products GmbH, Gilching, Germany, 
version 2.0). The data was cut-off-filtered at 1 and 30 Hz with an infinite impulse response (IIR) butterworth filter 
(24 dB/oct slope). For the whole recording period the filtered data was then visually inspected for noisy channels 
(first data inspection) and re-referenced to the common reference composed of all noise-free scalp and mastoid 
channels. Conventional practise of re-referencing data to inactive mastoids channels had to be abandoned as 
the signal quality on these channels varied too much over our extended recording period of about 24 hours. 
Oculomotor artefacts were minimized using the regression-based technique of Gratton & Coles39, as on the basis 
of bipolar vertical and horizontal EOG channels. Lastly the data was visually inspected for remaining artefacts 
(second data inspection) and further processed.

If video recordings for the duration of the PSG recordings could be obtained, these were reviewed and all seg-
ments containing nursing behaviours (like cleaning, feeding, re-positioning, switching the lights on during the 
night), physiotherapy activities, family visits, or other disturbances in the patient’s room, were likewise removed 
during the first data inspection.

To explore day-night variations, we divided the long-term recordings into periods of lightsomeness, which 
corresponds to circadian day (named day-time), and periods of darkness, which corresponds to circadian night 
(named night-time). Day-time segments consisted of all artefact-free data between 8 am and 8 pm. Night-time 
segments included all clean data, when the lights in the room where switched off, between 11 pm and 5 am. Data 
between 8 pm and 11 pm was entirely excluded from the analysis to bypass periods at twilight. Furthermore, peri-
ods during night-time with lights turned on were rejected from further analysis. Data of three patients who were 
exposed to constant light for 24 h were altogether excluded from analyses.

On average, the length of day-time segments in UWS group was 6.9 h (±3.5 h) and in MCS group was 7.9 h 
(±3 h). Night-time segments lasted on average in UWS group for 5.1 h (±0.7 h) and in MCS group for 5.6 h 
(±0.4 h).

For comparison, overnight (~8 h) recordings of healthy control subjects were pre-processed in the same way 
and then were semi-automatically sleep staged according to criteria of American Academy of Sleep Medicine 
(AASM)9 by The Siesta Group© (Somnolyzer 24 × 7)40. Afterwards those nocturnal recordings of healthy subjects 
were divided into sleep period composed of N1, N2, N3 and REM sleep stages (analogously named “night-time”) 
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and into wake periods composed of all non-sleep periods during time in bed (analogously termed “day-time” in 
the following).

Oscillatory Brain Dynamics.  For extracting the spectral power density, day-time and night-time segments 
were divided into 60 sec (artifact free) windows and Fast Fourier Transformation (FFT) was applied with 10% 
Hanning window. Spectral power was calculated as the averaged area information (μV × Hz) for three midline 
electrodes: Fz, Cz and Pz, and for four frequency bins: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and beta 
(12–30 Hz). In order to obtain more robust interindividual power estimates we computed relative (divided by the 
total area information: 2–30 Hz) EEG power. We also utilized two ratios (high 8–30 Hz to low 1–8 Hz; as well as 
alpha to theta), which were previously found to be robustly associated with CRS-R scores in patients19.

With respect to characteristic graphoelements during sleep we analysed sleep spindles and slow waves, and 
compared their prevalence between the three groups (i.e. UWS, MCS and controls) and across the diurnal cycle 
(i.e. day-time and night-time).

Sleep spindles were detected on 6 scalp channels (F3, F4, C3, C4, P3, P4) using the following criteria: (i) 
frequency between 11 and 15 Hz, (ii) amplitude higher than 25 μV, (iii) duration longer than 0.5 second, (iv) 
controlled for muscle (30–40 Hz) and alpha (8–12 Hz) artefacts41. The automatic spindle-detection algorithm 

Nb
Age 
(years) Sex Aetiology

Time since 
injury (months)

Stage of 
disease

Clinical 
assessment

CRS-R 
Total score

Follow-up 
diagnosis

Time between 
recording and 
follow-up (months)

1 74 F TBI 1 sub-acute UWS 3 death 24

2 19 M SSPE 24 chronic UWS 3 — —

3 65 F anoxia 4 sub-acute UWS 4 UWS 18

4 52 M TBI 13 chronic UWS 4 MCS 14

5 58 F CVA 28 chronic UWS 4 death —

6 50 F CVA 45 chronic UWS 4 — —

7 62 M CVA 1 chronic UWS 4 death 1

8 61 M anoxia 32 chronic UWS 4 death —

9 46 M anoxia 108 chronic UWS 5 death 73

10 54 M anoxia 9 chronic UWS 5 death 10

11 37 M anoxia 9 chronic UWS 5 death —

12 21 M TBI 7 sub-acute UWS 6 UWS 150

13 16 M TBI 21 chronic UWS 6 — —

14 61 F CVA 1 sub-acute UWS 6 SD- 12

15 39 F TBI 152 chronic UWS 7 death —

16 16 F TBI 1 sub-acute UWS 7 SD- 12

17 50 M TBI 147 chronic UWS 8 death —

18 32 M TBI 6 sub-acute UWS 8 UWS 60

1 36 M TBI 6 sub-acute MCS 6 UWS 12

2 45 M TBI 12 sub-acute MCS 8 eMCS 24

3 62 M TBI 2 sub-acute MCS 8 — —

4 34 M anoxia 240 chronic MCS 8 — —

5 66 M CVA 3 sub-acute MCS 10 — —

6 61 M anoxia 2 sub-acute MCS 10 — —

7 48 M TBI 8 sub-acute MCS 11 death —

8 31 F CVA 1.5 sub-acute MCS 11 — —

9 57 M anoxia 135 chronic MCS 12 MCS 61

10 56 F anoxia 85 chronic MCS 12 MCS 67

11 21 M anoxia 28 chronic MCS 13 MCS 20

12 30 M TBI 120 chronic MCS 13 MCS 67

13 20 M TBI 36 chronic MCS 13 SD- 48

14 50 F TBI 113 chronic MCS 14 — —

15 73 M CVA 8 chronic MCS 17 MCS 21

16 48 M CVA 1.5 sub-acute MCS 18 — —

17 43 F TBI 6 sub-acute MCS 21 — —

Table 1.  Demographic patient data. The analyzed patient sample consisted of 18 UWS and 17 MCS subjects. 
Abbreviations: Sex: M = male, F = female; Aetiology: TBI = Traumatic Brain Injury, CVA-Cerebrovascular 
Accident, SSPE = Subacute Sclerosing Panencephalitis; Clinical assessment and follow-up diagnosis: 
UWS = Unresponsive Wakefulness Syndrome, SD- = lower severe disability (3 points on Extended Glasgow 
Outcome Scale), MCS = Minimally Conscious State, eMCS = emergence from MCS; CRC-R = Coma Recovery 
Scale-Revised.
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utilized was developed by The Siesta Group© (Somnolyzer 24 × 7) and is based on the features of 8124 spindle 
episodes visually identified by a group of experts (the ‘gold standard’) (for details see ref.40). Because often sleep 
spindles were detected only over one hemisphere, for each participant and each diurnal time separately we chose 
the hemisphere with highest total number of sleep spindle detections. Ultimately prevalence of sleep spindles was 
investigated for three cortical sites: frontal, central and parietal.

Slow waves were detected on 1–4 Hz filtered data recorded over frontal sites. For allowing robust slow waves 
detections (independent of eye artefacts and other artificial slow drifts) we pooled signals from those anterior 
channels (frontal and fronto-central electrodes), which were not excluded during the data inspections. Slow waves 
were then detected with in house-built Matlab routines (MathWorks®, Natick, MA) using criteria introduced by 
Riedner and colleagues42 requiring a negative zero crossing to precede a positive zero crossing in a time win-
dow between 0.25 to 1 seconds. To further investigate morphology of identified slow waves, we computed their 
peak-to-peak amplitude and ratio of the positive and negative lengths (measure of asymmetry).

Last but not least we computed PE of the EEG signal, which reflects its level of irregularity or unpredictabil-
ity43. PE achieves its maximal value for highly complex or random signals. The minimal value of PE is 0 and can 
be attained by a continuously increasing or decreasing signal. However, an effective minimum for an EEG signal 
is about 0.444 and indicates predominance of certain types of symbols or “low complexity” in the signal.

For analysis the pre-processed recordings were divided into 30 s-long epochs and PE was initially calculated 
for each epoch and across a set of electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, T3, T4 and Oz) separately. The 
embedding dimension was set to n = 344 and lag parameter to τ = 3. Finally, PE values were averaged across 
epochs and electrodes, separately for the day and night-time segments.

Statistical Analysis.  Statistical analysis was performed with IBM® SPSS® Statistics (Version 23; SPSS Inc., 
Chicago, Illinois). To correct for multiple comparisons, post-hoc tests were adjusted with the False Discovery 
Rate (FDR) procedure45. Results are considered significant at p < 0.05 and denoted as trend at p < 0.1. Two-tailed 
tests were performed unless explicitly indicated otherwise. The statistical models were compared in terms of the 
Akaike Information Criterion (AIC), which takes into the account both the quality of the fit and the complexity 
of the model46.

Diurnal changes in EEG power were investigated with a series of mixed-design ANOVAs, with relative oscilla-
tory band power as the dependent variable, DIURNAL TIME (day-time, night-time) as the within-subject factor 
and DIAGNOSIS (UWS, MCS, control) as the between-subject factor. Each cortical site (Fz, Cz and Pz) and each 
frequency band (delta, theta, alpha, beta) was considered separately. Significant day to night-time differences were 
post-hoc investigated with paired-sample tests.

Similarly, differences in entropy were evaluated with a mixed-design ANOVA, with DIURNAL TIME as 
within-subject factor, DIAGNOSIS as between-subject factor and averaged PE values as dependent variable.

Number of sleep spindles and slow waves were identified in day and night-time recordings. Firstly we mod-
elled the relationships between the likelihood of occurrence of these oscillatory sleep patterns on the one hand, 
and DIAGNOSIS as well as DIURNAL TIME on the other hand. Since the distributions of the number of sleep 
spindles and slow waves were overdispersed, we used negative binomial models rather than Poisson models47. We 
performed a series of negative binomial linear regressions with log link function and DIAGNOSIS, DIURNAL 
TIME, as well as an interaction between the two as the predictors. Duration of the recording was used as an 
offset variable. The two types of oscillatory patterns (sleep spindles, slow waves) were investigated separately. In 
addition, we investigated the morphology of the detected slow waves (amplitude and length ratio) with a series of 
factorial ANOVAs, with DIAGNOSIS as a between subject factor and DIURNAL TIME as a within-subject factor. 
Furthermore we calculated Spearman’s correlation coefficients between the CRS-R total score and the density 
(i.e. number of detections normalized by the recording length) of oscillatory sleep patterns, for the entire clinical 
sample pooled together (N = 35).

Lastly we adopted a procedure similar to Arnaldi48 to exploratively evaluate prognostic value of oscillatory 
brain dynamics. We analysed a subset of patients whose later development was known (n = 24) with multinomial 
logistic regression. For the simplicity of the model, we divided the follow-up diagnoses into three categories: 
death, UWS/SD− and MCS/eMCS. As predictors we used density of sleep spindles, density of slow waves, PE, 
alpha-to-theta ratio and high-to-low frequency ratio, computed as means of the day and night values, and aver-
aged over all cortical sites.
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