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Prognostic value of CA20, a score 
based on centrosome amplification-
associated genes, in breast tumors
Angela Ogden1, Padmashree C. G. Rida1,2 & Ritu Aneja1

Centrosome amplification (CA) is a hallmark of cancer, observable in ≥75% of breast tumors. CA 
drives aggressive cellular phenotypes such as chromosomal instability (CIN) and invasiveness. Thus, 
assessment of CA may offer insights into the prognosis of breast cancer and identify patients who might 
benefit from centrosome declustering agents. However, it remains unclear whether CA is correlated 
with clinical outcomes after adjusting for confounding factors. To gain insights, we developed a 
signature, “CA20”, comprising centrosome structural genes and genes whose dysregulation is 
implicated in inducing CA. We found that CA20 was a significant independent predictor of worse survival 
in two large independent datasets after adjusting for potentially confounding factors. In multivariable 
analyses including both CA20 and CIN25 (a gene expression-based score that correlates with aneuploidy 
and has prognostic value in many types of cancer), only CA20 was significant, suggesting CA20 captures 
the risk-predictive information of CIN25 and offers information beyond it. CA20 correlated strongly with 
CIN25, so a high CA20 score may reflect tumors with high CIN and potentially other aggressive features 
that may require more aggressive treatment. Finally, we identified processes and pathways differing 
between CA20-low and high groups that may be valuable therapeutic targets.

CA is a hallmark of cancer observable in ≥75% of breast tumors1 that promotes invasive behavior2 and enhanced 
migratory ability3 in cancer cells. In addition, the presence of supernumerary centrosomes results in a transient 
multipolar intermediate in mitosis that promotes merotelic microtubule-kinetochore attachments4. To resolve 
spindle multipolarity and thereby avoid mitotic catastrophe or multipolar mitosis, which could lead to cell death, 
the cell clusters centrosomes into two polar groups, allowing bipolar division to occur; however, attachment 
errors persist in the spindle and chromosome missegregation occurs. CIN allows the cell to sample the fitness 
landscape and acquire a more aggressive karyotype and also promotes intratumor heterogeneity, which fosters 
chemoresistance5. It was recently demonstrated that transient induction of CA in p53-deficient epidermis causes 
aneuploidy and spontaneous skin cancer development in mice6. Given that CA promotes tumorigenesis and 
aggressive phenotypes and is common among breast tumors, it may have value as a prognostic biomarker in 
breast cancer and could guide treatment decisions.

Although several groups have performed semi-quantitative assessments of CA in patient tumors using 
microscopy, few have correlated CA with clinical outcomes, and none of these data are in the public domain. It 
would thus be valuable to be able to assess CA in publicly available datasets, such as microarray datasets, many of 
which have clinicopathologic and outcome annotation for breast cancer patients. Our lab previously developed a 
four-gene signature, which includes two genes for centrosome structural proteins and two genes whose overex-
pression induces CA, called the Centrosome Amplification Index (CAI), which we found stratifies breast cancer 
patients into two groups with significantly different overall survival (OS) in Kaplan-Meier analysis3. Another 
group developed a Centrosome Index (CI), comprising four centrosome structural genes, that correlates with 
CA and is an independent predictor of poor OS in multiple myeloma patients in multivariable analysis7, 8. Given 
that CA can be caused by dysregulation of the expression of many different genes, there is a need to define a more 
comprehensive gene signature that may be able to identify a greater proportion of tumors with CA, which may 
arise through a variety of molecular pathways. Thus, in the present study, we define a gene expression signature, 
“CA20”, that includes 19 genes that have been experimentally demonstrated to induce CA when dysregulated, 
many of which also have known structural roles in the centrosome (such as SASS6, the primary component of the 
centriolar cartwheel structure9 and CEP152, a key pericentriolar material component10, both of which are among 
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the most abundant proteins in the centrosome in several cell lines11) (Supplementary Table 1), along with TUBG1, 
which encodes the most abundant centrosomal protein and is primarily responsible for microtubule nucleation, 
key to centrosomal function11. Our objective was to test the prognostic value of CA20 after adjusting for poten-
tially confounding factors in multiple breast cancer cohorts and to explore processes, pathways, and oncogenic 
signatures that are associated with a high CA20 score. Because CA causes CIN, we were also interested in com-
paring the prognostic value of CA20 with that of the CIN score “CIN25”, which correlates with total functional 
aneuploidy and predicts worse outcomes in a variety of cancers12, determining which of these two scores has the 
most significant impact on outcomes when included together in multivariable models of survival, and comparing 
processes, pathways, and oncogenic signatures that are enriched in tumors with high CA20 and CIN25 scores.

Results
We tested the ability of CA20 and CIN25 to risk-stratify breast cancer patients in two datasets, the METABRIC 
and TCGA datasets, comprising n = 1,969 primary breast cancers with breast cancer-specific survival (BCSS) 
annotation and n = 524 primary invasive breast cancers with OS annotation, respectively. The METABRIC data-
set was split into discovery and validation sets. The TCGA dataset was not split because power analysis suggested 
the subsets would potentially be too small, so bootstrapping was instead used to obtain more reliable estimates of 
population parameters.

METABRIC dataset.  Stratification was conducted according to average CA20 and CIN25 scores found in 
the discovery set as well as optimal cutpoints in CA20 and CIN25 scores found in the discovery set based on the 
log-rank test. In Kaplan-Meier plots, stratification into high- and low-BCSS groups based on the average and 
optimal cutpoints in CA20 and CIN25 scores was significant in both the discovery and validation sets (p < 10−6 
for all, Fig. 1; see Tables 1 and 2 for descriptive statistics of study datasets). When both CA20 and CIN25 (both 
stratified by the average score) were entered as covariates in full multivariable models using discovery set data, 
only CA20 (stratified by the average score) appeared in the final model, and it was a significant predictor of 
BCSS (Hazard Ratio [HR] = 2.88, p < 0.001; Table 3). In the validation set too, CA20 (stratified by the average 
score) remained a significant predictor in the final model (HR = 2.13, p < 0.001). Common significant covariates 
between discovery and validation set final models included tumor stage and chemotherapy. When both CA20 
and CIN25 (both stratified by the optimal cutpoint) were entered as covariates in full multivariable models using 
discovery set data, both covariates appeared in final models but only CA20 (stratified by the optimal cutpoint) 
significantly affected BCSS (HR = 2.13, p = 0.006; Table 4). In the validation set, CA20 (stratified by the optimal 
cutpoint) remained a significant predictor (HR = 1.82, p = 0.028), whereas CIN25 (stratified by the optimal cut-
point) did not significantly impact BCSS. Common significant covariates between discovery and validation final 
multivariable models of BCSS included tumor stage and chemotherapy, as was found when stratifying by average 
signature scores. Thus, CA20 (whether stratified by the average score or optimal cutpoint) is a significant predic-
tor of BCSS after adjusting for stage and chemotherapy, whereas CIN25 (whether stratified by the average score 
or optimal cutpoint) is not an independent predictor in these models.

Figure 1.  Plots of Kaplan-Meier product limit estimates of breast cancer-specific survival of patients in 
METABRIC discovery and validation sets stratified by (A,E) CA20 (average value), (B,F) CA20 (optimal 
threshold), (C,G) CIN25 (average value), and (D,H) CIN25 (optimal threshold), respectively. Average values 
and optimal thresholds were determined using the discovery set.
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Variable

Level (categorical 
variables) 
or Statistic 
(continuous 
variables) Discovery Validation

Nottingham grade

1 80 86

2 404 363

3 464 486

Missing 37 51

Tumor stage

0 230 262

I 188 174

II 299 274

III 45 41

IV 4 6

Missing 219 229

Chemotherapy

No 764 790

Yes 221 196

Missing  0  0 

Hormone therapy

No 378 375

Yes 607 611

Missing 0 0

Radiotherapy

No 406 399

Yes 579 587

Missing 0 0

Subtype

Luminal 647 623

TNBC 126 124

HER2 207 228

Missing 5 11

CA20 group 
(average)

Low 234 243

High 751 743

Missing 0 0

CIN25 group 
(average)

Low 337 329

High 648 657

Missing 0 0

CA20 group 
(optimal)

Low 274 278

High 711 708

Missing 0 0

CIN25 group 
(optimal)

Low 405 402

High 580 584

Missing 0 0

Age at diagnosis 
(years)

Mean 60.80 61.50

Median 61.28 62.56

Standard Deviation 13.01 12.92

Minimum 21.93 26.36

Maximum 92.14 96.29

Number Missing 0 0

CA20

Mean 30.46 30.33

Median 30.08 29.86

Standard Deviation 5.74 5.83

Minimum 17.27 17.70

Maximum 49.25 48.45

Number Missing 0 0

CIN25

Mean 53.30 53.05

Median 52.84 52.90

Standard Deviation 13.08 13.45

Minimum 22.16 20.90

Maximum 90.67 88.46

Number Missing 0 0

Table 1.  Descriptive statistics for the METABRIC breast discovery and validation sets.
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Variable
Level (categorical variables) or 
Statistic (continuous variables) Value

AJCC stage

I 49

II 241

III 92

IV 13

Missing 129

CA20 group 
(average)

Low 240

High 284

Missing 0

CA20 group 
(optimal)

Low 238

High 286

Missing 0

CIN25 group 
(average)

Low 256

High 268

Missing 0

CIN25 group 
(optimal)

Low 514

High 10

Missing 0

Age at diagnosis 
(years)

Mean 58.11

Median 59.00

Standard Deviation 13.19

Minimum 26.00

Maximum 90.00

Number missing 74

CA20 score

Mean 23.66

Median 24.57

Standard Deviation 8.91

Minimum 0.00

Maximum 45.70

Number missing 0

CIN25 score

Mean 45.37

Median 46.07

Standard Deviation 16.71

Minimum 0.00

Maximum 88.52

Number missing 0

Table 2.  Descriptive statistics for the TCGA breast dataset.

Covariates

Discovery set Validation set

p-value HR

95% CI for HR

p-value HR

95% CI for HR

Lower Upper Lower Upper

CA20 (high) <0.001 2.88 1.67 4.96 <0.001 2.38 1.50 3.79

Stage 0 <0.001 <0.001

Stage I 0.002 0.49 0.31 0.76 0.002 0.49 0.31 0.77

Stage II 0.002 0.58 0.41 0.82 0.85 0.97 0.69 1.36

Stage III/IV 0.001 2.28 1.39 3.74 0.001 2.23 1.37 3.62

Chemotherapy <0.001 2.09 1.42 3.06 0.008 1.64 1.14 2.36

Hormone therapy 0.031 1.43 1.03 1.98 0.84 0.97 0.71 1.33

Radiotherapy 0.082 0.75 0.54 1.04 0.59 1.09 0.80 1.48

Subtype (Luminal) 0.064 0.19

Subtype (TNBC) 0.38 1.23 0.77 1.96 0.51 1.17 0.73 1.86

Subtype (HER2) 0.017 1.55 1.08 2.21 0.068 1.37 0.98 1.92

Table 3.  Final multivariable Cox proportional-hazards models of breast cancer-specific survival including 
CA20 and CIN25 (stratified by average scores) in full models using METABRIC data. HR = Hazard Ratio; 
CI = Confidence Interval.
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CA20 score was highly correlated with CIN25 score (ρ = 0.93, p < 10−6), which may reveal that breast tumors 
with high CA20 scores have high levels of CIN. Although breast cancer subtype was not a common independent 
predictor of outcomes, we were interested to test whether CA20 and CIN25 scores differed grade-wise between 
TNBCs and non-TNBCs, which differ in aggressiveness. No grade 1 TNBCs were present in the dataset for com-
parison, but we found that average CA20 and CIN25 scores were higher in TNBCs than non-TNBCs in both 
grade 2 and 3 tumors per two-tailed independent samples t-tests, equal variances assumed (p < 0.001 for all) 
(Fig. 2), consistent with the more aggressive behavior of TNBCs compared with non-TNBCs and mirroring what 
we previously found for CA as assessed by microscopy3.

TCGA dataset.  To confirm the prognostic value of CA20 in a separate cohort, we analyzed the TCGA breast 
dataset. Stratification was conducted according to the average CA20 and CIN25 scores found in the entire data-
set as well as optimal cutpoints in CA20 and CIN25 found in the entire dataset based on the log-rank test. In 
Kaplan-Meier plots, stratification into high- and low-OS groups based on CA20 (average and optimal cutpoints) 
was significant (p = 0.025 and p = 0.024, respectively), with high CA20 conferring a worse prognosis. For com-
parison, stratification by CIN25 (optimal cutpoint) was significant (p = 0.029), whereas stratification by CIN25 
(average cutpoint) was not (Fig. 3). In stage-adjusted models, high CA20 scores (based on both average and opti-
mal cutpoints) were associated with 2.72- and 2.79-fold worse OS (bootstrap-p = 0.016 and 0.008, respectively). 
For comparison, in stage-adjusted models, high CIN25 scores (based on both average and optimal cutpoints) 
were also associated with worse OS, HR = 2.31 and 4.65 (bootstrap-p = 0.026 and 0.035, respectively). However, 
as in the METABRIC dataset, when both CA20 and CIN25 (stratified by average or optimal cutpoints) were 
entered along with stage in full models, following backward variable selection (based on an α = 0.10 removal 
criterion), only CA20 and stage remained as predictors in full models (CA20 [stratified by average cutpoint]: 
HR = 2.80, p = 0.008; CA20 [stratified by optimal cutpoint]: HR = 2.55, p = 0.009), and they remained significant 
following bootstrapping (Table 5).

Covariates

Discovery set Validation set

p-value HR

95% CI for HR

p-value HR

95% CI for HR

Lower Upper Lower Upper

CA20 (high) 0.006 2.13 1.24 3.68 0.028 1.82 1.07 3.12

CIN25 (high) 0.053 1.49 0.99 2.22 0.29 1.27 0.81 1.97

Stage 0 <0.001 <0.001

Stage I 0.001 0.48 0.31 0.75 0.005 0.53 0.34 0.82

Stage II 0.003 0.58 0.41 0.83 0.78 0.95 0.68 1.34

Stage III/IV 0.002 2.18 1.32 3.58 0.001 2.27 1.39 3.68

Chemotherapy <0.001 2.24 1.57 3.19 0.002 1.73 1.22 2.44

Hormone therapy 0.040 1.38 1.01 1.88 0.71 0.94 0.70 1.27

Radiotherapy 0.059 0.73 0.53 1.01 0.51 1.11 0.81 1.51

Table 4.  Final multivariable Cox proportional-hazards models of breast cancer-specific survival including 
CA20 and CIN25 (based on optimal thresholds) in full models using METABRIC data. HR = Hazard Ratio; 
CI = Confidence Interval.

Figure 2.  Grade-wise comparison of (A) average CA20 score and (B) average CIN25 score in non-TNBCs vs. 
TNBCs in the METABRIC dataset, which were significantly different at the p < 0.001 level in grade-matched 
comparisons. Error bars represent 95% confidence intervals.
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Although age at diagnosis was not a significant predictor of BCSS in the METABRIC dataset in final models, 
we recognized the possibility that it could confound analyses of OS in this independent dataset. We thus refit 
multivariable models entering CA20 and CIN25 (stratified by average or optimal cutpoints), AJCC stage, and age 
at diagnosis. In final models, CA20 remained a significant predictor, along with stage and age but not CIN25, and 
the hazard associated with high CA20 was even greater than in models not adjusted for age (CA20 [stratified by 
average cutpoint]: HR = 3.82, p = 0.001; CA20 [stratified by optimal cutpoint]: HR = 3.67, p = 0.002); further-
more, significance was retained after bootstrapping (Table 6). Because all the cases in the multivariable models 
were annotated with age at diagnosis, our sample size and, thus, statistical power were not diminished. Therefore, 
the prognostic value of CA20 adjusting for stage was upheld in this separate dataset adjusted for confounding var-
iables, suggesting broad clinical utility for this score to predict outcomes in female breast cancer patients. Similar 
to our findings in the METABRIC dataset, in the TCGA dataset CA20 was very strongly correlated with CIN25 
(ρ = 0.95, p < 10−6), suggesting that breast tumors with high CA20 scores also have high levels of CIN.

Finally, we were interested in exploring differences in biological processes, molecular pathways, and onco-
genic signatures between CA20-high and low groups (defined by the average CA20 value), which may reveal 
potentially actionable biology. To this end, we performed Gene Set Enrichment Analysis (GSEA)13 using the 

Figure 3.  Plots of Kaplan-Meier product limit estimates of overall survival of patients in TCGA dataset 
stratified by (A) CA20 (average value), (B) CA20 (optimal threshold), (C) CIN25 (average value), and (D) 
CIN25 (optimal threshold) determined using the entire dataset.

Model Covariates HR p-value

95% CI for HR Bootstrap 
p-value

Bootstrap 95% 
CI for HR

Lower Upper Lower Upper

CA20 and 
CIN25 
(average)

CA20 (high) 2.80 0.008 1.31 5.99 0.010 1.31 7.43

Stage III/IV 2.68 0.006 1.33 5.41 0.011 1.13 6.50

CA20 and 
CIN25 
(optimal)

CA20 (high) 2.55 0.009 1.27 5.15 0.010 1.34 7.29

Stage III/IV 2.87 0.008 1.32 6.25 0.012 1.14 6.16

Table 5.  Final multivariable Cox proportional-hazards models of overall survival including CA20 and CIN25 
(based on average or optimal thresholds) and AJCC stage in full models using TCGA data along with p-values 
and 95% confidence intervals (CIs) for final model covariate hazard ratios obtained via simple bootstrapping. 
References for hazard ratios (HRs) are CA20 (low) and stage I/II.

Model Covariates HR p-value

95% CI for HR Bootstrap 
p-value

Bootstrap 95% 
CI for HR

Lower Upper Lower Upper

CA20 and 
CIN25 
(average)

CA20 (high) 3.82 0.001 1.69 8.67 0.007 1.70 13.11

Age at 
diagnosis 1.04 0.010 1.01 1.07 0.028 1.00 1.08

Stage III/IV 2.74 0.005 1.35 5.55 0.003 1.22 6.85

CA20 and 
CIN25 
(optimal)

CA20 (high) 3.67 0.002 1.63 8.26 0.003 1.60 12.83

Age at 
diagnosis 1.04 0.015 1.01 1.07 0.032 1.00 1.07

Stage III/IV 2.50 0.011 1.24 5.05 0.009 1.14 6.05

Table 6.  Final multivariable Cox proportional-hazards models of overall survival including CA20 and CIN25 
(based on average or optimal thresholds), AJCC stage, and age at diagnosis in full models using TCGA data 
along with p-values and 95% confidence intervals (CIs) for final model covariate hazard ratios obtained via 
simple bootstrapping. References for hazard ratios (HRs) are CA20 (low) and stage I/II.
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TCGA dataset and explored differentially enriched biological processes, Reactome pathways, and oncogenic 
signatures. For the CA20-high group, 262 biological process gene sets were enriched at false discovery rate 
(FDR) q < 0.05 (Supplementary Table 2), but no such gene sets were significantly enriched in the CA20-low 
group (Supplementary Table 3). Among the most significant results, the CA20-high group was enriched in DNA 
repair processes, the DNA integrity checkpoint, many cell cycle processes (e.g., mitotic nuclear division, cell 
cycle phase transition, cell division, spindle assembly, regulation of sister chromatid segregation, mitotic spindle 
organization), and regulation of microtubule polymerization/depolymerization. Regarding Reactome pathways, 
the CA20-high group was enriched in 96 gene sets at FDR q < 0.05 (Supplementary Table 4), but the CA20-low 
group was not enriched in any such gene sets (Supplementary Table 5). Top enriched Reactome pathways in the 
CA20-high group exhibited much overlap with biological processes, including DNA repair and cell cycle path-
ways. For the purposes of comparison, we also compared biological processes and Reactome pathways between 
CIN25-high and low groups (stratified by the average CIN25 score) (Supplementary Tables 6–9), and it was found 
that results overlapped greatly with those from the CA20 analyses. Regarding enriched biological processes, only 
one gene set found in the CA20-high group (<1% of gene sets) was not found in the CIN25-high group, and 
only 14 gene sets found in the CIN25-high group (~5% of gene sets) were not found in the CA20-high group 
(Supplementary Table 10). Similarly, only four Reactome pathways enriched in the CA20-high group and four 
in the CIN25-high group differed (~4% of gene sets) (Supplementary Table 12). We also explored differences in 
oncogenic signature gene sets. We found that the CA20-high group was enriched in 13 such gene sets, includ-
ing genes upregulated upon overexpression of E2F1, stimulation with sonic hedgehog (SHH) protein, and loss 
of retinoblastoma protein (pRb) (Supplementary Table 13), whereas the CA20-low group was not significantly 
enriched in any of such gene sets (Supplementary Table 13). The CIN25-high group was enriched in 12 onco-
genic signature gene sets (Supplementary Table 14), all of which were found in the CA20-high group, whereas no 
such gene sets were significantly enriched in the CIN25-low group (Supplementary Table 15). These data suggest 
the CA20- and CIN25-high groupings may capture rather similar molecular tumor profiles. Finally, we tested 
whether the CIN25-high group was enriched in the centrosome gene ontology cellular component, and we found 
that it was at FDR q < 0.001 (Normalized Enrichment Score = 2.29), suggesting this group is enriched in centro-
somal genes, consistent with the strong correlation we found between CA20 and CIN25 scores.

Discussion
CA is a well-characterized hallmark of cancer14, especially breast cancer. Indeed, ≥75% of breast tumors (ductal 
carcinomas in situ, adenocarcinomas, invasive ductal carcinomas, or breast tumors not otherwise specified) 
exhibit CA1. Because CA promotes CIN and other aggressive phenotypes, it may be a driving force in tumorigen-
esis and tumor evolution that can offer insights into the clinical course of breast tumors, but only a few studies 
have investigated the potential prognostic value of CA. Our lab previously developed a four-gene signature, the 
CAI, which we demonstrated could stratify n = 162 breast cancer patients into two groups with significantly dif-
ferent clinical outcomes in Kaplan-Meier analysis, with high CAI based on an optimal cutpoint correlating with 
worse OS3. In the same study, we also found a non-significant trend among n = 120 breast cancer patients towards 
worse progression-free survival (PFS) in Kaplan-Meier analysis for tumors with high levels of CA (defined as 
the sum of the percentage of cells with >2 centrosomes and the percentage of cells with abnormally voluminous 
centrosomes based on microscopy, using an optimal cutpoint). Another study of n = 362 breast tumors found 
that large centrosomal size was not associated with OS or recurrence-free survival (RFS) after adjusting for tumor 
stage and subtype in multivariable Cox models; however, it is not known whether 2D (i.e., cross-sectional) meas-
urements reliably estimate centrosome size, given that centrosomes are 3D structures, and numerical CA was 
not considered in multivariable analyses15. In the same study, however, Kaplan-Meier analyses revealed that high 
numerical CA (defined as >2 centrosomes per cell on average) was associated with worse BCSS, OS, and RFS. 
Thus, there is limited evidence that CA may be associated with worse outcomes in breast cancer, but it is unclear 
what impact CA has on survival after adjusting for potential confounders and what biological processes and path-
ways could be targeted therapeutically in tumors with high levels of CA.

To shed light on these questions, we developed the CA20 score based on genes encoding centrosome struc-
tural proteins and genes that have been demonstrated to induce CA following experimental perturbations in their 
expression. As we found for CA previously3, CA20 (and CIN25) were higher in the aggressive TNBC subtype than 
non-TNBCs in grade-matched comparisons. In analyses of two large and well-annotated breast cancer datasets 
(the METABRIC and TCGA breast datasets), we found that high CA20 score was associated with worse BCSS 
and OS after adjusting for potentially confounding factors, suggesting that CA20 could be a useful clinical tool to 
identify breast cancer patients at greater risk of poor outcomes. When both CA20 and CIN25 were factored into 
multivariable models, only CA20 was significantly associated with outcomes. This finding suggests that when 
CA20 is accounted for CIN25 no longer holds prognostic value. Given that we found a very strong correlation 
between CA20 and CIN25 in breast tumors and it has been shown by others that CA and CIN are correlated 
in breast tumors15, it is tempting to speculate that CA20 captures CIN, thus rendering CIN25 redundant, and 
perhaps also captures other aggressive phenotypes not encompassed by CIN25 that are consequences of CA. 
Given that CIN engenders karyotypic diversity within tumors, we assert that CA20 may perhaps even serve as 
an indirect measure of intratumor heterogeneity in breast tumors. The overlap in biological processes, Reactome 
pathways, and oncogenic signatures that are enriched in CA20- and CIN25-high groups is striking given that the 
two signatures only share one gene in common (CDK1) and suggests that they reflect relatively similar molec-
ular tumor biology (namely, potential activation of DNA repair pathways, perhaps to cope with DNA damage 
occurring due to chromosome missegregation, enhanced cell cycle kinetics and microtubule dynamics, and acti-
vated E2F1 signaling), although perhaps with subtle but prognostically important qualitative and quantitative 
distinctions.
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An exciting avenue for future research would be to test whether breast tumors with high CA20 are more 
susceptible to E2F1 or SHH inhibitors, drugs targeting DNA repair mechanisms (e.g., PARP inhibitors), chem-
otherapeutics that target the cell cycle (e.g., taxanes), or centrosome declustering drugs (such as griseofulvin, 
noscapinoids, PJ34, and KifC1/HSET inhibitors), which preferentially eliminate cells with CA by forcing them to 
construct a multipolar spindle during mitosis16–20. Because most normal cells do not have amplified centrosomes, 
declustering drugs exhibit low to no apparent toxicity to them. It will also be important to validate (through 
careful microscopy and rigorous quantitation) that CA20 scores indeed correlate with CA in breast tumors in 
future studies.

Methods
Dataset details and power analyses.  Microarray datasets were chosen based on their availability in 
Oncomine21 and the presence of annotation regarding survival time (measured in days) and statuses and signa-
ture gene expression levels. Three microarray datasets met these criteria, including the METABRIC22, TCGA23, 
and Esserman24 breast datasets; however, power analysis suggested the Esserman dataset was too small, so it was 
excluded from analyses (see “Esserman dataset” below). The clinical data and log2 median-centered signature 
gene expression levels of the METABRIC and TCGA datasets were thus downloaded from Oncomine. 
METABRIC dataset: Normal breast, benign breast neoplasms, and cases without BCSS annotation were excluded 
from analyses, resulting in a sample size of n = 1,969 primary breast cancers. A majority of the cases were anno-
tated for AJCC stage and whether adjuvant chemotherapy was given. The dataset was then split randomly (via 
random number assignment) and approximately equally into discovery and validation sets (n = 985 and n = 984, 
respectively; Table 1, descriptive statistics). Neither significant differences nor non-significant trends (i.e., 
0.05 < p < 0.10) were found between these two sets for continuous variables (age, CA20 score, and CIN25 score; 
2-tailed t-tests), ordinal variables (Nottingham grade, tumor stage, CA20 group [optimal], CA20 group [average], 
CIN25 group [optimal], and CIN25 group [average]; Mann-Whitney tests), or nominal variables (breast cancer 
subtype, chemotherapy, radiotherapy, and hormone therapy; Chi-square tests) (data not shown). TCGA dataset: 
Normal breast specimens, metastases, and male breast cancers were excluded from analyses, resulting in a sample 
size of n = 524 primary invasive breast cancers (Table 2, descriptive statistics). OS annotation was incomplete, so 
we supplemented it with clinical data downloaded from the TCGA data portal, after which all cases had OS time 
and status. 395 cases had AJCC stage annotation, but information about adjuvant chemotherapy was not availa-
ble. We analyzed the METABRIC data to estimate whether this sample size would potentially achieve statistical 
power ≥0.80 in a study of the effect of CA20 on OS in stage-adjusted models with an average follow-up time of 
approximately 3 years, as in the TCGA study. Among METABRIC patients with invasive breast cancers 
(n = 1,030), the overall probability of an event (death) within 3 years was pE = 0.12, the probability of belonging 
to the CA20 (optimal)-high group was pH = 0.70, and the relative risk of death was HR = 2.34. Based on these 
data, it was estimated that a sample size of n = 339 would be needed to detect a HR = 2.34 with a Type I error rate 
of α = 0.05 and Type II error rate of β = 0.20, based on the formula to calculate the one-sided sample size in Cox 
proportional-hazards models25: =

θ θ

+

−
α β− −( )n

pApBpE

z z1
ln( ) ln( )

2
1 1

0
. Thus, we elected not to split the data into discovery 

and validation sets to preserve statistical power ≥0.80 and rather implemented bootstrapping methods to more 
reliably estimate population parameters. Esserman dataset: This dataset includes n = 120 primary breast carci-
nomas with OS annotation and expression values for all the signature gene probes selected. Average follow up 
time was ~4 years, so we based power analysis on the METABRIC data 4-year OS probabilities for invasive breast 
cancer patients, where pD = 0.18 and pH = 0.70. Based on these criteria and using the formula as in the power 
analysis for the TCGA data, we estimated that n = 227 patients would be needed to detect a HR = 2.34 with a Type 
I error rate of α = 0.05 and a Type II error rate of β = 0.20, suggesting that the Esserman dataset would be too 
small for our purposes. Thus, it was excluded from analyses.

Gene signatures and microarray probe selection.  A CA gene signature was derived by searching 
Pubmed (September, 2015) using the search term “centrosome amplification” and filtering for experimental stud-
ies wherein manipulation of a specific gene’s expression was found to induce CA, resulting in a set of 19 genes: 
AURKA26, 27, CCNA228, CCND129, CCNE230, 31, CDK132, CEP6332, CEP15233, E2F134, E2F234, LMO435, MDM236, 37, 
MYCN37, NDRG138, NEK239, PIN140, PLK141, 42, PLK433, 43, SASS644, and STIL45. In addition, the gene encoding the 
primary centrosome structural protein, TUBG1, was included, resulting in a set of 20 genes. The CIN25 gene sig-
nature is described in Carter et al.12. For both datasets, many genes were represented by multiple probes. To select 
the probe most likely to represent the gene, probes were filtered by rational selection processes that differed by 
dataset since they are based on different platforms (the Illumina HumanHT-12 V3.0 R2 Array for the METABRIC 
dataset and the Agilent custom 244 K for the TCGA dataset). The CA20 and CIN25 scores were calculated as the 
sum of the normalized (log2 median-centered) expression levels of the signature genes. METABRIC dataset: 
Probes were filtered by preferentially selecting those targeting all isoforms (A designation). For some genes, only 
probes targeting some isoforms (S designation) were available. In addition, probes mapping only to the gene of 
interest according to a BLAST-like Alignment Tool (BLAT) search against the reference genome GRCh38 using 
Ensembl46 were preferentially selected. When multiple probes mapped to the gene of interest, the average expres-
sion level was calculated to represent that gene. TCGA dataset: In the absence of A and S designations, probes 
were filtered by performing a BLAT search as for the METABRIC data, also with averaging of normalized expres-
sion levels when multiple probes mapped to the gene of interest. Scores exhibited negative values, so for ease of 
interpretation, scores were converted to non-negative values by adding the minimum score value to all scores, 
which did not alter the results of statistical analyses.
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Survival analyses.  Stratification of cases into high- and low-survival groups both by the average (as per-
formed in the CIN25 analyses previously12) and by an optimal cutpoint (based on the most significant log-rank 
test statistic found using Cutoff Finder47) per the Kaplan-Meier method. Prior to fitting Cox proportional-hazards 
models, the proportional-hazards assumption was tested by defining each covariate as a function of time and 
entering this time-dependent term into a simple Cox model and determining whether there was a significant haz-
ard in the discovery and validation sets. For no covariate was the assumption violated (data not shown). Spearman 
correlation (2-tailed) was performed to determine the correlation between CA20 and CIN25 scores. IBM SPSS 
Statistics version 21 was used for all analyses, and p < 0.05 was considered statistically significant. METABRIC 
dataset: Multivariable Cox models were fit using both discovery set data via backward-stepwise elimination of 
covariates (subject to an α = 0.10 removal criterion) and validation set data by entering final discovery model 
covariates. Full multivariable discovery model covariates included age at diagnosis (years), Nottingham grade 
(1, 2, or 3), AJCC stage (0, I, II, or III/IV, the latter two categories combined due to the relatively small number of 
stage IV cases), breast cancer subtype (luminal: ER and/or PR+, HER2−; HER2-enriched: ER/PR+/−, HER2+; 
triple-negative: ER/PR/HER2−), chemotherapy (yes/no), hormone therapy (yes/no), and radiotherapy (yes/no). 
Also, depending on the analysis, the full model either contained CA20 and CIN25 categorized based on the aver-
age score as found in the discovery set or CA20 and CIN25 categorized based on the optimal cutpoint as found in 
the discovery set. TCGA dataset: To confirm the prognostic ability of CA20 in an independent dataset, multivar-
iable Cox models were fit using TCGA data by entering CA20 and CIN25 (average or optimal, depending on the 
model) and AJCC stage (categorized as I/II vs. III/IV due to relatively low numbers of stage I and IV patients) into 
full models (chemotherapy information was not available). Covariates were then subjected to backward-stepwise 
elimination (α = 0.10 removal criterion). Multivariable models were also fit including age at diagnosis (years). 
To more robustly estimate population parameters, the final model covariates were entered into Cox models with 
simple bootstrapping (1,000 iterations).

Grade-wise comparison of average CA20 and CIN25 between TNBCs and non-TNBCs.  Using the 
METABRIC dataset, as grade information was not available for the TCGA dataset, we compared average CA20 
and average CIN25 between TNBCs and non-TNBCs grade-wise using two-tailed independent samples t-tests, 
guided by F-test results, and p < 0.05 was considered statistically significant.

Gene Set Enrichment Analyses.  Normalized (level 3) TCGA Hi-Seq data downloaded from the TCGA 
Data Portal were used for GSEA, although CA20 and CIN25 groups were specified based on average scores 
obtained from normalized Oncomine data. The Broad Institute GESA software version 2.2.3 was used. All 
20,530 genes in the dataset were used. With the exception of not collapsing the dataset to gene symbols, all 
other default settings were used. Gene set databases included biological process gene ontologies (c5.bp.v5.2.sym-
bols), Reactome pathways (c2.cp.reactome.v5.2.symbols), and oncogenic signatures (c6.all.v5.2.symbols). 
For the CIN25 analysis, the centrosome gene set was also used (http://amigo.geneontology.org/amigo/term/
GO:0005813). FDR q < 0.05 was considered statistically significant.
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