Table 3.
Pair of perturbed parameter distributions | 1 million parameter sets | 10 million parameter sets | 100 million parameter sets | |||
---|---|---|---|---|---|---|
Synergistic effect | p-value | Synergistic effect | p-value | Synergistic effect | p-value | |
Apoptosis | ||||||
pm1-pm10 | 0.078 | 0.012 | 0.082 | 0.012 | 0.076 | 0.018 |
pm2-pm10 | 0.15 | 0.009 | 0.132 | 0.009 | 0.139 | 0.009 |
pm3-pm10 | 0.155 | 0.002 | 0.17 | 0.002 | 0.156 | 0.004 |
pm6-pm10 | 0.161 | 0.004 | 0.167 | 0.002 | 0.17 | 0.005 |
pm7-pm10 | 0.528 | <0.001 | 0.514 | <0.001 | 0.527 | <0.001 |
pm7-pm30 | 0.086 | 0.015 | 0.085 | 0.015 | 0.091 | 0.012 |
pm8-pm10 | 0.102 | 0.008 | 0.099 | 0.01 | 0.089 | 0.014 |
pm9-pm10 | 0.089 | 0.017 | 0.088 | 0.013 | 0.1 | 0.016 |
pm10-pm11 | 0.096 | 0.014 | 0.106 | 0.007 | 0.107 | 0.007 |
pm10-pm13 | 0.08 | 0.016 | 0.086 | 0.018 | 0.093 | 0.013 |
pm10-pm14 | 0.081 | 0.018 | 0.08 | 0.014 | 0.069 | 0.03 |
pm10-pm15 | 0.067 | 0.03 | 0.063 | 0.028 | 0.065 | 0.040 |
pm10-pm17 | 0.092 | 0.014 | 0.087 | 0.019 | 0.079 | 0.011 |
pm10-pm19 | 0.083 | 0.013 | 0.082 | 0.017 | 0.085 | 0.011 |
pm10-pm20 | 0.107 | 0.009 | 0.108 | 0.008 | 0.115 | 0.005 |
pm10-pm26 | 0.104 | 0.009 | 0.099 | 0.018 | 0.105 | 0.008 |
pm10-pm30 | 0.076 | 0.013 | 0.119 | 0.008 | 0.094 | 0.018 |
pm10-pm32 | 0.074 | 0.017 | 0.085 | 0.011 | 0.08 | 0.02 |
pm10-pm33 | 0.079 | 0.017 | 0.089 | 0.015 | 0.074 | 0.015 |
pm10-pm34 | 0.108 | 0.009 | 0.108 | 0.01 | 0.096 | 0.011 |
pm10-pm35 | 0.089 | 0.019 | 0.084 | 0.01 | 0.085 | 0.016 |
pm10-pm36 | 0.096 | 0.013 | 0.083 | 0.016 | 0.098 | 0.012 |
pm10-pm37 | 0.1 | 0.008 | 0.1 | 0.02 | 0.086 | 0.019 |
pm22-pm23 | 0.145 | 0.009 | 0.138 | 0.008 | 0.143 | 0.009 |
Hypertrophy | ||||||
pm7-pm10 | 0.354 | <0.001 | 0.355 | <0.001 | 0.359 | <0.001 |
pm7-pm13 | 0.132 | 0.007 | 0.134 | 0.01 | 0.137 | 0.006 |
pm7-pm14 | 0.169 | 0.003 | 0.166 | 0.002 | 0.172 | 0.002 |
pm7-pm21 | 0.414 | <0.001 | 0.418 | <0.001 | 0.417 | <0.001 |
pm10-pm14 | 0.124 | 0.008 | 0.115 | 0.008 | 0.131 | 0.007 |
pm16-pm17 | 0.155 | 0.002 | 0.149 | 0.006 | 0.143 | 0.007 |
Results of two-distribution perturbation analysis for apoptosis and hypertrophy. The synergistic effect was calculated as the difference between the effect of simultaneous perturbation of marginal distributions of two parameters on the phenotype and the sum of that obtained from perturbing either individual marginal distribution. The data represent average synergistic effect of simulation analysis using each response function separately. Higher values indicate stronger synergistic effect. Parameter pairs exhibiting synergistic effect for apoptosis or hypertrophy with significance (p < 0.05) are shown. The mathematical analysis was all repeated for 10 times using different random seeds of 1, 10, or 100 million parameter sets for each case. p-values were determined using Student’s t test. See Supplementary Data Sets for full data.