Skip to main content
. 2017 Mar 22;7:296. doi: 10.1038/s41598-017-00403-5

Table 2.

Fluorescence competitive binding affinities of selected components to recombinant three SlitCSPs.

IUPAC Name CAS No. Resource IC50 Kd
SlitCSP11 SlitCSP3 SlitCSP8 SlitCSP11 SlitCSP3 SlitCSP8
Aliphatic alcohols
cis-3-Hexen-1-ol 928-96-1 Green leaf volatilea u.d u.d 5.68 u.d u.d 8.07
Aliphatic aldehydes
Hexanal 66-25-1 Cabbageb u.d u.d u.d u.d u.d u.d
Aliphatic ketones
6,10-Dimethyl-5,9-undecadien-2-one 689-67-8 Cabbagec 7.16 5.41 7.09 12.17 8.65 10.70
Aliphatic acid
trans-2-Hexenoic acid 13419-69-7 Tobaccod u.d 19.33 5.59 u.d 9.74 7.94
Hexadecanoic acid 57-10-3 Tobaccoe 3.42 u.d u.d 5.82 u.d u.d
Aliphatic esters
Butyl isothiocyanate 592-82-5 Cabbagef 12.12 u.d u.d 20.59 u.d u.d
Isothiocyanicacid 556-61-6 Cabbageg 11.92 u.d u.d 20.26 u.d u.d
Aromatic alcohols
Benzyl alcohol 100-51-6 Tobaccoi 5.28 u.d 7.89 8.97 u.d 11.20
alkene
Styrene 100-42-5 Cabbagej 13.78 u.d u.d 23.40 u.d u.d
Menthol 2216-51-5 Tobaccok 4.11 6.19 ud 6.99 9.90 u.d
Phenol 108-95-2 Cabbagel 5.90 5.05 u.d 10.03 8.07 u.d
Aromatic esters
Phenethyl isothiocyanate 2257-09-2 Cabbagem 5.32 5.67 4.34 9.04 9.07 6.17
Aromatic ketones
5-(Hydroxymethyl)furfural 67-47-0 Cabbagen u.d 4.49 u.d u.d 7.18 u.d
Furan-2-carboxaldehyde 98-01-1 Tobacco° 14.08 u.d u.d 23.93 u.d u.d
Benzaldehyde 100-52-7 Tobaccop 9.55 4.85 5.26 16.22 7.75 7.47
β-Ionone 14901-07-6 Cabbageq 2.90 7.16 3.57 4.93 11.44 5.07
Heterocyclic compound
2-Ethylfuran 3208-16-0 Cabbager u.d u.d u.d u.d u.d u.d
Pyridine 110-86-1 Tobaccos Cabbaget 6.79 u.d u.d 11.54 u.d u.d
Isonicotinamide 1453-82-3 Tobaccou 15.49 6.27 6.25 26.32 10.02 8.88
Others
Benzonitrile 100-47-0 Cabbagev u.d u.d u.d u.d u.d u.d
Decanenitrile 1975-78-6 Cabbagew u.d u.d u.d u.d u.d u.d

Solution of protein was at 2 μM, and the added concentration of 1 − NPN was in line with the dissociation constants of SlitCSPs/1 − NPN complex calculated. Then the mixed solution was titrated with 1 mM solution of each ligand in methanol to final concentrations of 0 to 20 μM. K D = dissociation constant of the competitors; IC50 = competitor’s concentration halving the initial fluorescence. Dissociation constants of ligands whose IC50 exceeded 50 μM are represented as “kd”. a b c d e f g h i j k l m nReferences: aRuther, J. et al., Journal of chemical ecology 2005, 31 (9), 2217–2222. bSong T. Y. et al., Food science, 2010. 31(8): 185–188. cZhao D. Y. et al., Food science and technology., 2007, 40(3): 439–447. dGuo L. et al., J of instrumental analysis 2008–07. eSun S. H. J of chromatography A. 2008 1179(2) 89–95. fBettery R. G. et al., J. agri food chem 1976. 24(4) 829–823. gWu C. Y. Shandong agricultural university. 2008. iRibnicky D. M. et al., Plant physology 1998 118(2) 565–572. jTruchon G. et al., Journal of occupational health. 1998 40(4): 350–355. kGandhi K. K. 2009 63(3) 360–367. lHendrich S. et al., Food and chemical toxicology., 1983 21(4) 479–486. mWu C. Y. et al. Food science., 2009 (4). nKim D. O. et al., Journal of food science 2006 69(9) 395–400. oWu L. J., Anal Methods, 2013 5:1259–1263. pClark T. J., Journal of agricultural and food chemistry 1997 45(3) 844–849. qLonchamp J. et al., Food research international. 2009 42(8) 1077–1086. rSong T. Y. et al., Food science, 2010. 31(8): 185–188. sStepanov I. et al., Cancer epidemiology biomarkers & prevention 2005 14:885. tTakasugi M. et al., Bulletin of the chemical society of Japan. 1988 61(1) 285–289. uTaguchi H., Bioscience, biotechnology and biochemistry. 1997 61(4). vKobayashi M. et al., FEMS microbiology letters. 1994. 1:217–223. wMachiels D. et al., Talanta 2003, 60(4): 755–764.