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Positive affect, surprise, and fatigue 
are correlates of network flexibility
Richard F. Betzel1, Theodore D. Satterthwaite2, Joshua I. Gold3 & Danielle S. Bassett1,4

Advances in neuroimaging have made it possible to reconstruct functional networks from the activity 
patterns of brain regions distributed across the cerebral cortex. Recent work has shown that flexible 
reconfiguration of human brain networks over short timescales supports cognitive flexibility and 
learning. However, modulating network flexibility to enhance learning requires an understanding of an 
as-yet unknown relationship between flexibility and brain state. Here, we investigate the relationship 
between network flexibility and affect, leveraging an unprecedented longitudinal data set. We 
demonstrate that indices associated with positive mood and surprise are both associated with network 
flexibility – positive mood portends a more flexible brain while increased levels of surprise portend a less 
flexible brain. In both cases, these relationships are driven predominantly by a subset of brain regions 
comprising the somatomotor system. Our results simultaneously suggest a network-level mechanism 
underlying learning deficits in mood disorders as well as a potential target – altering an individual’s 
mood or task novelty – to improve learning.

The human brain is a complex network composed of neural elements and their interconnections with one 
another1, 2. One approach for interrogating the brain’s network organization is via the so-called resting state fMRI 
paradigm, wherein blood oxygen level dependent (BOLD) signals are recorded from subjects in the absence of 
any explicit task instructions. The functional connectivity (FC) between pairs of brain regions is estimated as the 
statistical interdependency – e.g. temporal correlation, coherence, mutual information, etc. – of spontaneous 
fluctuations in their BOLD time series, and can be interpreted as a measure of communication between brain 
regions3, 4. FC networks can be constructed by calculating FC for all pairs of brain regions. The result is a square 
matrix whose elements represent the magnitude of FC between each pair of regions.

Recent work has shown that FC network organization fluctuates over timescales of seconds to minutes5–7, 
opening the possibility of studying the time-varying properties of FC networks by tracking the instantane-
ous communication patterns among brain regions8–11. One means of characterizing dynamic FC networks is 
by their community structure12–14, which refers to decompositions of a network into densely-interconnected 
sub-networks or “communities”15, 16. In the context of FC networks, communities represent collections of brain 
regions that tend to preferentially connect to (communicate with) one another, while weakly connecting to the 
rest of the brain17–19. The community structure of dynamic networks, then, tracks the ongoing formation and dis-
solution of communities over time20, 21. Such a measure makes it possible to identify the brain’s temporal core and 
periphery of flexible brain regions that tend to change their community assignment over time versus inflexible 
ones that maintain a consistent assignment22.

Intriguingly, network flexibility has been shown to correlate with both learning rate and cognitive flexibility12, 23.  
These abilities are not static but can vary considerably over time and as a function of an individual’s affective 
state. For example, learning often shows an “inverted-U” relationship with arousal, with optimal learning at 
moderate levels of arousal24. Together, these findings imply that the influence of affective state on learning and 
cognition may involve modulations of brain network flexibility. However, virtually nothing is known about such 
modulations.

A potential simple and intuitive affect-related driver of daily variations in brain network flexibility is mood25. 
Mood can fluctuate normally over time scales ranging from minutes to weeks. Moreover, mood can influence 
learning, for example by biasing the perception of reward outcomes26. These biases are thought to arise from neu-
rophysiological changes in neurotransmitter systems linked to arousal27. A second potential driver of fluctuations 
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in network flexibility is surprise, which refers to acute mismatches between expectation and reality28. Surprise 
plays a key role in memory formation29, associative learning30, error correction31, and the allocation of atten-
tional resources32. However, the network-level mechanisms of these processes in the human brain remain largely 
unknown.

We hypothesized that different affective components would be associated with enhanced brain network flex-
ibility, potentially explaining the observations that more flexible brains display greater cognitive flexibility and 
better learning12, 23 and may be related to attentional state33. To address this hypothesis, we leveraged data from 
the MyConnectome Project, which included extensive longitudinal neuroimaging and behavioral data from a sin-
gle subject acquired over a period of approximately one year34, 35. We extracted two affect-related indices from 
the behavioral data – one tracked the subject’s mood while the other tracked surprise – and showed that these 
indices were correlated with global network flexibility, a relationship that was driven primarily by the flexibility of 
the somatomotor network. These results simultaneously suggest a network-level mechanism underlying learning 
deficits in mood disorders as well as a potential target – altering an individual’s mood or state of surprise – to 
improve learning.

Results
To address the hypothesis that network flexibility is associated with mood, we analyzed data collected as part 
of the MyConnectome Project, which includes extensive longitudinal neuroimaging and behavioral data from 
a single participant acquired over a period of approximately one year34, 35. As part of the imaging protocol, the 
participant underwent multiple resting state functional magnetic resonance imaging (fMRI) scans. Using a novel, 
participant-specific parcellation, the cerebral cortex was divided into 630 non-overlapping regions. Each of these 
regions was also assigned to a cognitive system, explicitly representing a category of cognitive function (Fig. S1).

Using these data, we estimated network flexibility for each region and on average across the brain. This 
entailed first dividing regional fMRI BOLD time series into non-overlapping windows. Within each window, we 
estimated functional connectivity between all pairs of brain regions using a magnitude-squared wavelet coher-
ence12. The result was an ordered set of functional connectivity matrices, each of which represented a layer in a 
multi-layer network representation21. Functional connectivity measures the strength of a statistical relationship 
between brain regions’ activity over time and is usually interpreted as the propensity with which two brain regions 
communicate with one another4. In line with this interpretation, each layer in the multi-layer representation 
can be viewed as an estimate of the instantaneous communication pattern among brain regions8. Next, we used 
a community detection algorithm to partition brain regions into communities across layers (windows)20 (see 
Fig. 1 for a schematic illustrating the processes of network construction, multi-layer network model, community 
detection, and flexibility estimation). Intuitively, communities can be thought of as segregated sub-networks: 
brain regions assigned to the same community are more likely to be strongly connected to one another compared 
to regions assigned to different communities19. In the context of human brain networks, communities represent 
the boundaries between cognitive sub-systems14 and are believed to promote functional specialization17. Based 
on these detected community assignments, we calculated the flexibility of each brain region as the fraction of 
times that its community assignment changed from one layer to the next12. Flexible brain regions were those that 
frequently changed their community assignment from one layer to the next, whereas inflexible brain regions 
maintained consistent community assignments across layers. We repeated this analysis for all scan sessions.

Somatomotor, visual, and fronto-parietal systems are inflexible but variable from day to 
day.  We first sought to determine which regions of the brain were flexible versus inflexible, and which regional 

Figure 1.  Schematic figure illustrating network construction, multi-layer network model, and community 
detection output. (A) Functional connectivity networks were generated by calculating the magnitude squared 
wavelet coherence for all pairs of regional fMRI BOLD time series73. The resulting coherence estimates are 
arranged in a region-by-region functional connectivity matrix. (B) Functional connectivity matrices for non-
overlapping windows were arranged sequentially to form a multi-layer network – each layer corresponds to 
a window of time during the fMRI scan session12. For the purpose of multi-layer community detection, each 
brain region was coupled to itself across sequential windows. (C) Typical output of the multi-layer community 
detection algorithm20. Each network node (brain region) is assigned to a community in each layer. Here we 
show an example where four communities were detected. The consistency of those communities across adjacent 
layers determines a region’s flexibility12. The sub-panels show the 10% least flexible (top) and most flexible 
(bottom) brain regions.
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flexibility values varied appreciably across scan sessions. We observed that mean and standard deviation of flexi-
bility across scan session fell within a narrow range for most brain regions (Fig. 2A,B). A small number of regions, 
however, including components of visual, fronto-parietal, and somatomotor systems, possessed lower mean flex-
ibility and greater variability of flexibility than the rest of the brain (Fig. 2C). To quantify these observations and 
to make concrete statements about specific brain systems, we aggregated regional flexibility by cognitive system 
and found that these same systems had mean flexibilities much lower than expected by chance (permutation test, 
zFP2 = −6.52, p = 3.44 × 10−11; ZSMN = −4.53, p = 3.00 × 10−6; zVIS2 = −8.52, p < 10−15; FDR-controlled, d = 0.001) 
(Fig. 2D). Similarly, the quotidian variability of SMN and VIS2 were much greater than expected by chance (per-
mutation test, zSMN = 13.45, p < 10−15; zVIS2 = 7.93, p < 10−15; false discovery rate controlled at d = 0.001) (Fig. 2E). 
These observations corroborated earlier analyses of these data in which somatomotor and visual systems exhib-
ited the greatest variability in their connectivity patterns across scan sessions estimated outside of mesoscale 
network statistics34. The presence of high quotidian variability in relatively rigid regions suggests the presence 
of a strong energetic constraint on network dynamics. Rigid regions are strongly functionally connected to one 
another, requiring high metabolic resources36; if these resources are not required by the cognitive tasks of a par-
ticular day, strong coupling might be used sparingly and transiently, possibly leading to high levels of network 
flexibility.

Dimension reduction and correlation of PANAS-X scores with global flexibility.  Concurrent with 
the collection of neuroimaging data, the participant also underwent a battery of behavioral testing. These tests 
included the administration of a standard mood questionnaire (the expanded Positive and Negative Affect 
Schedule; PANAS-X)37, which tallied subjective ratings across 60 mood terms using a 0–5 Likert scale (See 
Supplementary Table S1 for a complete list of all terms). We calculated the correlation of ratings across data col-
lection sessions and observed that many of the terms were highly correlated with one another, suggesting that the 
data could be represented with fewer dimensions. We interrogated this structure using principal components 
analysis, which is a dimensionality reduction technique that generated a set of mutually orthogonal principal 
components, loadings of PANAS-X terms onto components, and the percent variance accounted for by each 
component. We tested the hypothesis that flexibility is associated with mood by calculating the Pearson’s correla-
tion of global flexibility, the average flexibility across all brain regions, with each of the principal components, the 

Figure 2.  Summary of flexibility analysis. (A,B) Topographic representation of mean and standard deviation 
flexibility. (C) Mean and standard deviation of flexibility scores plotted against one another. Color-coding 
indicates brain systems: fronto-parietal (purple), somatomotor (green), peripheral visual (blue), and the 
rest of brain (grey). Inset depicts topographic representation of somatomotor (SMN), fronto-parietal (FP1), 
and peripheral visual (VIS2). (D) The z-score of the mean system flexibility. (E) The z-score of the standard 
deviation of system flexibility.
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first (PC1) and fourth (PC4) of which exhibited statistically significant correlations (Pearson correlation: 
= .r̂ PC F( , ) 0 2891 , = .p 0 013; = − .r̂ PC F( , ) 0 4074 , = . × −p 3 5 10 4; Spearman correlation: ρ = .ˆ PC F( , ) 0 2031 , 

= .p 0 084; ρ = − .ˆ PC F( , ) 0 4004 , = .p 0 0006) (Fig. 3A,C,D). PC1 accounted for ≈33 percent of the variance 
(Fig. 3B). The top five terms, in terms of the loading magnitude onto PC1, were “happy”, “enthusiastic”, “confi-
dent”, “cheerful”, and “delighted”. The bottom five were “downhearted”, “blue”, “irritable”, “ashamed”, and “upset”. 
Because of its apparent sensitivity to emotional valence, we termed the first principal component the “positivity 
index” (PI) (Fig. 3C). PC4 accounted for ≈6 percent of the variance. The top loadings were “suprised”, “amazed”, 
and “astonished”, leading us to term this component the “surprise index” (SI) (Fig. 3D).

Correlation of global flexibility with positivity and surprise indices is driven by somatomotor 
system.  We observed that global flexibility was correlated with both positivity and surprise indices. Which 
brain regions drive these correlations? To address this question we calculated the correlation of regional flexibility 
scores, measurements of how frequently each brain region changes its community assignment across windows, 
with both positivity and surprise indices. We observed that the flexibility of regions comprising the somatomotor 
system exhibited significant positive correlations with the positivity index (permutation test, zPI = 8.49, p < 10−15) 
(Fig. 4A,B). Similarly, we observed that the flexibility of somatomotor regions were also anti-correlated with the 
surprise index (permutation test, zSI = −8.76, p < 10−15) (Fig. 4C,D). The spatial specificity of these relationships 
complement prior work linking heightened motor activations with positive mood38 and work demonstrating a 
slowing down of action/motor processing in response to unexpected and surprising events39.

We also observed that two cognitive systems exhibited significant anti-correlations with the positivity and 
surprise indices. The dorsal attention system (DAN) was anti-correlated with the positivity index (zDAN = −4.16, 
p = 1.56 × 10−5, FDR-controlled, d = 0.001), and the cingulo-opercular (CO) system was correlated with the sur-
prise index (zCO = 4.08, p = 2.26 × 10−5, FDR-controlled, d = 0.001). These results suggest that relative stability 
in higher-order cognitive systems affiliated with online control is accompanied by positive mood and decreased 
levels of surprise, offering a dynamic complement to the known relationship between control performance and 
affect40.

These results were corroborated by a series of additional analyses (See Supplementary Information). First, the 
correlations of PI and SI with flexibility were robust to variation in the parameters of our community detection 
method (Fig. S2). Second, these results were not driven by anomalous data points and data collection sessions 
(Fig. S3) and were not likely to have been observed given a random ordering of data collection sessions (Fig. S4). 
Third, we also observed consistent correlations when we focused on the relationship of flexibility to individual 
PANAS-X terms and pre-defined “affect classes” (Figs S5–S7)41. Finally, we tested the robustness of our results 
after controlling for in-scanner head motion (Fig. S8) as well as psychophysiological and other nuisance variables 
(Fig. S9). We also observed similar findings using window sizes of different durations (Fig. S11). In general, these 
supplementary analyses buttress the finding of a significant positive association between network flexibility and 
PI, and a negative association between network flexibility and SI.

Discounting fatigue as a potential driver of flexibility.  Initial analyses of MyConnectome Project data 
described an effect wherein visual and somatomotor variability could be explained on the basis of fatigue34, a 

Figure 3.  Relationship of global flexibility to principal components. (A) Correlation of first ten principle 
components with global flexibility. (B) Percent variance accounted for by each of said components. (C) 
Scatterplot highlighting relationship of the first principal component (PC1) with global flexibility. (D) 
Scatterplot highlighting relationship of the fourth principal component (PC4) with global flexibility. (E) Detail 
of the positivity index (PC1). Each colored point indicates the loading of a PANAS-X category onto the first 
principal component, which we termed the “positivity index”. (F) Detail of the surprise index (PC1). Each 
colored point indicates the loading of a PANAS-X category onto the fourth principal component, which we 
termed the “surprise index”. Note: In panel (A) the correlation of PC4 and flexibility was positive. For ease of 
interpretation, we flipped the sign of PC4 and the loadings of PANAS-X terms onto that component. In effect, 
this only changes the sign of the correlation; not its magnitude.
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finding that has been reported elsewhere42. Accordingly, we assessed whether the correlations of positivity and 
surprise with flexibility could be driven by fatigue. As a measure of fatigue, we combined the PANAS-X categories 
“sleepy”, “tired”, “sluggish”, and “drowsy” into a “fatigue” affect score41. This score was correlated with both the 
positivity and surprise indices ( = − .r̂ fatigue PI( , ) 0 48, p = 1.82 × 10−5; = − .r̂ fatigue SI( , ) 0 32, p = 0.0057). To 
test whether the observed correlation of PI and SI with global flexibility could be attributed to fatigue, we 
regressed fatigue from both indices and calculated the correlation of global flexibility with the residuals (Fig. 5). 
We observed that after regressing out fatigue from the positivity index, the residuals were no longer correlated 
with global flexibility at a statistically significant level ( = .r̂ F PI fatigue( , \ ) 0 07, p = 0.541), indicating that the 
correlation of PI and flexibility could be attributed to fatigue, in agreement with extant literature. On the other 
hand, after regressing fatigue from the surprise index, we observed that the residuals were still correlated with 
flexibility ( = .r̂ F SI fatigue( , \ ) 0 276, p = 0.018). Collectively, these results indicate that fatigue and affect (both 
level of positivity and surprise) represent powerful potential drivers of network flexibility. They also suggest that 
positivity may be confounded with the subject’s fatigue level, making it difficult to disambiguate whether positiv-
ity makes an independent contribution to network flexibility. Surprise, on the other hand, was still significantly 
associated with flexibility, even after controlling for fatigue, suggesting that it may independently drive 
flexibility.

Discussion
The relationship between affect and flexibility suggests a potential network-level mechanism for learning deficits 
observed in mood disorders43, and the dependence of those deficits on cognitive flexibility44. In these individu-
als, the development of pharmacological and stimulation-based interventions to alter brain network flexibility 
is therefore of particular interest. For example, brain network flexibility can be altered through modulation of 
NMDA receptor function45. However, an arguably more powerful approach might be to target states of arousal, 
which are known to be altered in mood disorders46, implicated in learning25, and modulated by norepinephrine 

Figure 4.  Relationship of regional flexibility with positivity and surprise indices. (A) Topographic 
representation of the correlation coefficient of each region’s flexibility score with the positivity index. (B) 
Regional correlations grouped by system. Panels (C,D) are identical to (A,B), but replace the positivity index 
with the surprise index. (E) Regional correlation coefficients – of flexibility with positivity and flexibility with 
surprise – plotted against one another.

Figure 5.  Correlation of positivity and surprise indices after controlling for fatigue. (A) Scatterplot of global 
flexibility with residuals of the positivity index after regressing out fatigue. (B) Scatterplot of global flexibility 
with residuals of the surprise index after regressing out fatigue.
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systems25. There is some preliminary evidence that arousal modulates network connectivity26, but further work is 
needed to understand the patterns and dynamics of these network modulations and their relationship to mood.

We observed that the subject’s level of surprise was negatively correlated with flexibility, indicating that 
decreased surprise is accompanied by increased network variability. This observation is similar to how com-
plex motor behaviors are learned; during early learning when the movement is novel and unfamiliar, there is 
sometimes a “freezing” period during which only a small number of the system’s degrees of freedom are actively 
manipulated; with increased familiarity, those components are gradually “freed” and can be incorporated into 
the movement pattern47, 48. Here, we speculate that the relationship of surprise to flexibility is analogous to the 
relationship of novelty to motor variability. Indeed, surprise and novelty are sometimes viewed as related con-
cepts49, and furthermore, our findings directly implicate the somatomotor network as the system that most closely 
tracks surprise. To investigate the complicated relationship of flexibility, learning, and surprise, future work could 
involve the study of motor learning paradigms similar to those described elsewhere12 but supplemented with 
administration of PANAS-X questionnaires to track surprise and other affective components, particularly con-
trasting effects with and without positive(negative) mood induction.

An alternative hypothesis is that the negative correlation of surprise and flexibility reflects the “inverted-U” 
relationship of learning with arousal and surprise. Here, it may be the case that self-reports of surprise fall on the 
right side of the “U” and correspond to the high end of arousal, which can lead to increased levels of distraction 
that hamper learning24. Future work is needed to compare these two hypotheses.

Our observations can also inform the development of educational interventions to enhance learning. 
Intuitively, our results support the notion that by altering mood, one might alter brain network flexibility, and 
therefore predispose the brain to learn quickly in subsequent tasks. Such an outcome would directly fulfill the 
goals of personalized neuroeducation50: the use of neuroscientific information to inform educational practices 
tuned to individual students. Potentially powerful modulations could include simple mental exercises, which are 
easily translated into educational settings. For example, self-affirmation tasks have been shown to parametrically 
alter brain activity51 to a degree that predicts individual differences in future behavior52. Future work could define 
a carefully titrated library of mental tasks that modulate brain network flexibility (and subsequent learning) in a 
predictable fashion by modulating mood.

While our study informs our understanding of how the human brain is related to human behavior, it is also 
important to bear in mind that extrapolating our findings beyond the present study is hampered by the fact that 
we study data recorded from one subject. Indeed, recent studies have shown that the modular and system-level 
neural architecture of the brain varies across individuals in idiosyncratic ways53–55, suggesting the possibility that 
network flexibility could do the same. Future studies should investigate whether the findings reported here are 
general and broadly applicable to large populations of individuals, or whether they apply more narrowly to the 
individual studied here.

Finally, our results inform the field of network neuroscience56, more broadly, where the typical analysis has 
sought network features that can be used to classify brains at the population level – e.g. healthy versus patholog-
ical57–59, young versus old60, 61, or task versus task-free62. While such classifications have provided insight into the 
average network organization of the human brain, they nonetheless overlook potentially meaningful individual 
variation63. Indeed, recent work has demonstrated that functional brain networks encode nuanced, personalized 
features of an individual64, 65 that moreover can change with an individual’s cognitive state66. Our results build on 
and contribute to this growing body of literature, identifying network flexibility in the somatomotor cortex as 
a potential neuromarker of mood. With personalized medicine and healthcare increasingly becoming a reality, 
such subject-level markers may serve as important measures to facilitate diagnosis, target interventions, and 
monitor disease progression or response to treatment67.

Materials and Methods
MyConnectome data.  All data and cortical surface files are freely available and were obtained from the 
MyConnectome Project’s data-sharing webpage (http://myconnectome.org/wp/data-sharing/). Specifically, we 
studied pre-processed parcel fMRI time series for scan sessions 14–104. Details of the pre-processing procedure 
have been described elsewhere34, 35. Each session consisted of 518 time points during which the average fMRI 
BOLD signal was measured for N = 630 parcels or regions of interest (ROIs). With a TR of 1.16 s, the analyzed 
segment of each session was approximately 10 minutes long. In addition to fMRI data, we also examined behav-
ioral data available on the same webpage. The behavioral data included additional biometric information, such as 
blood pressure and sleep quality as well as variations in temperature and weather (See Supplementary Table 2 for 
a complete list). We analyzed only PANAS-X terms, a set of emotional terms that the subject rated on a 0–5 Likert 
scale. Usually the PANAS-X test includes 60 terms. Only 57 were used as part of our analysis; the terms “bashful”, 
“timid”, and “shy” had ratings of zero for the entire duration of the experiment.

Principal component analysis.  Our analysis focused on the n = 73 scan sessions for which both 
resting-state fMRI data and all p = 57 PANAS-X terms were available. We standardized each category to have zero 
mean and unit variance. We represented the full set as the matrix, ∈ ×X n p, which we submitted to a principal 
component analysis (PCA). Essentially, PCA takes a data matrix and linearly factorizes it by creating a set of 
orthogonal principal components, subject to the condition that each successive component has the greatest possi-
ble variance. Each component is a linear combination of the original data variables.

Specifically, we performed PCA using a singular value decomposition (SVD)68 which deconstructs X accord-
ing to the equation:

=X USV (1)T

http://myconnectome.org/wp/data-sharing/
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where ∈ ×U n n and ∈ ×V p n contain the left and right singular vectors and where ∈ ×S p p is the diagonal 
matrix of singular values. Importantly, U and V have rank equal to that of X. The ith principal component, then, 
is the ith column of U. The corresponding column of V gives weights that indicate the extent to which each 
PANAS-X category contributed to that component. Similarly, squaring the corresponding singular element of S 
gives the magnitude of variance accounted for by that component.

Dynamic network construction and community detection.  We sought a division of brain regions 
into communities, which are thought to reflect the brain’s functional sub-systems19. We divided the parcel time 
series into T = 14 windows of 37 time points (TRs) each (≈43 seconds in length). This particular window length 
was chosen for several reasons. First, recent work has emphasized that short window lengths (much less than 40 s) 
may result in time-varying FC matrices in which the connectivity pattern is driven predominantly by sampling 
variability rather than true fluctuations in network organization69, 70. Accordingly, one of our aims was to ensure 
that the length of our windows met this minimum requirement. Second, rather than estimate FC using linear 
correlations of BOLD activity, we used wavelet coherence, a measure that has at least as much behavioral and 
neurobiological relevance as linear correlation71 but benefits from longer samples72. Finally, we wanted to ensure 
that whatever window length we selected would evenly divide into the 518 samples (TRs) collected for each scan 
session. Collectively, these three factors – methodological and practical – motivated our selection of the 37 TR 
window size.

For each window, we calculated the wavelet coherence matrix, ∈ ×C N N73. Each element, Cij, represented the 
magnitude squared coherence of the scale two Daubechies wavelet (length 4) decomposition of the windowed 
time series obtained from regions i and j (http://www.atmos.washington.edu/wmtsa/)12. We examined two fre-
quency ranges: 0.125–0.25 Hz, the results of which we describe in the main text, and 0.0625–0.125 Hz12, 23, which 
are covered in the supplementary materials (Fig. S10).

Each dynamic network was treated as a layer in a multi-layer network, = …C C{ }1 14 74. To detect the tempo-
ral evolution of modules, we maximized the multi-layer modularity20, which seeks the assignment of all brain 
regions in all layers to modules such that:

∑γ ω
µ

γ δ δ ω δ= 
 − 

 + ⋅ 
Q C P G G i j G G( , ) 1

2
( ) ( , ) ( , ) ( , )

(2)ijsr
ijs ijs is js is jr

is maximized. In this expression, Cijs is the coherence of regions i and j in layer s. The tensor Pijs is the expected 
coherence in an appropriate null model. Specifically, we choose =Pijs

k k

m2
is js

s
, which is a multi-layer extension of the 

common configuration model (see Refs. 75–77 for further discussions on the choice of null model). The parame-
ter, γ, scales the relative contribution of the expected connectivity and effectively controls the number of modules 
detected within a given layer. The other free parameter, ω, defines the weight of the inter-layer edges that link each 
node i to itself across layers. Effectively, the value of ω determines the consistency of multi-layer modules; when 
its value is large (small) relative to the intralayer links, the detected modules will tend to be more (less) similar to 
one another across layers. For this reason, ω is sometimes referred to as the temporal resolution parameter21. In the 
main text, we fix these parameters to the commonly used default values of γ = ω = 121.

We use a Louvain-like locally greedy algorithm to maximize the multi-layer modularity, Q(γ, ω)78 (typical 
output is show in Fig. S1). Due to near-degeneracies in the modularity landscape79 and stochastic elements in the 
optimization algorithm80, the output typically varies from one run to another. For this reason, rather than focus 
on any single run or the consensus communities over many runs81, we characterized the statistical properties of 
50 runs of the algorithm, which correspond to 50 optimizations of the multi-layer modularity. Specifically, we 
calculated all network statistics, including network flexibility, for each run of the community detection algorithm 
and subsequently averaged those statistics over the 50 runs to obtain an estimate of their mean value.

Regional and global flexibility.  The output of the Louvain-like locally greedy algorithm is a partition, ∈ ×G N T, 
whose element ∈ …G c{1 }i r,  is the community to which brain region i in layer r is assigned in that optimization. 
The multi-layer modularity maximization simultaneously assigns brain regions in all layers to communities so 
that community labels are consistent across layers, thus circumventing the commonly studied community match-
ing problem. Given G, we can calculate each brain region’s flexibility score:

∑δ= −
− =

−

+f
T

G G1 1
1

( , ),
(3)i

s

T

i s i s
1

1

, , 1

which counts the fraction of times that brain region i changes its community assignment in successive layers. 
Flexibility is normalized so that scores near zero and one correspond to brain regions whose community assign-
ments are highly consistent and highly variable, respectively, across layers. Flexibility can also be averaged over all 
brain regions to obtain the global flexibility of the whole brain, = ∑ =F f

N i
N

i
1

1 . Both regional and global flexibility 
scores were calculated separately for each of the 50 modular partitions obtained from the Louvain-like algorithm 
and averaged across optimizations.

Intuitively, the flexibility measure serves as an indicator of community stability across layers, which represent 
time, in this case. Regional flexibility scores are bounded between 0 and 1; a value near 0 implies that a node’s 
community assignment varies little over the course of a scan session while a value close to 1 implies that a node’s 
community assignment is highly variable. The global flexibility score can be interpreted similarly.
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