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A PSO-based multi-objective multi-
label feature selection method in 
classification
Yong Zhang, Dun-wei Gong, Xiao-yan Sun & Yi-nan Guo

Feature selection is an important data preprocessing technique in multi-label classification. Although 
a large number of studies have been proposed to tackle feature selection problem, there are a few 
cases for multi-label data. This paper studies a multi-label feature selection algorithm using an 
improved multi-objective particle swarm optimization (PSO), with the purpose of searching for a 
Pareto set of non-dominated solutions (feature subsets). Two new operators are employed to improve 
the performance of the proposed PSO-based algorithm. One operator is adaptive uniform mutation 
with action range varying over time, which is used to extend the exploration capability of the swarm; 
another is a local learning strategy, which is designed to exploit the areas with sparse solutions in 
the search space. Moreover, the idea of the archive, and the crowding distance are applied to PSO for 
finding the Pareto set. Finally, experiments verify that the proposed algorithm is a useful approach of 
feature selection for multi-label classification problem.

Multi-label feature selection (MFS) exists widely in engineering practice, such as image processing1, 2, and text 
categorization3. Its purpose is to remove irrelevant/redundant features, which is able to decrease the complexity 
of classifier, even improve the classification performance4. Since each sample is associated with multiple labels 
simultaneously and those labels are not mutually exclusive, this problem is much more difficult than traditional 
single-label feature selection. Classical method is to transform a multi-label problem into a traditional single-label 
one5–8. However, the kind of method is often inefficient for solving multi-label problems, because a new created 
label often contain many classes, resulting in the decreases of learning performance. On the other hand, feature 
selection is challenging in nature, since the search space of an algorithm increases exponentially with the number 
of available features9, 10.

Due to well global search capability, evolutionary algorithms (EAs) have been widely used solve feature selec-
tion in the single-label case. Part work includes genetic algorithm (GA)11, 12, ant colony optimization algorithm 
(ACO)13, and differential evolution algorithm (DE)14. As a relatively new EA algorithm, the PSO algorithm shows 
many advantages (such as simple implement and fast convergence)15. Thus, it has also been applied to feature 
selection in recent years9, 16–19.

However, few researches in those literatures have focused on the application of EAs in multi-label feature 
selection. Zhang et al. proposed a GA-based multi-label feature selection algorithm by using the accuracy of a 
multi-label classifier to estimate the fitness of feature subset20. Yu and Wang proposed a supervised feature selec-
tion algorithm for a multi-label data set based on mutual information and GAs21. The first step of this algorithm 
employs mutual information to fulfill local feature selection. Based on the result of local feature selection, GA is 
then adopted to select the global optimal feature subset at the two stages. However, since GA often costs much 
time in seeking a feature subset, these GA-based algorithms have the disadvantage of premature converges. To 
overcome this drawback, Lee and Kim presented a memetic-based multi-label feature selection algorithm22. In 
this algorithm, after a feature subset is found by using genetic search, a memetic process is employed to refine this 
subset further. In our recent work, we developed a DE-based multi-label feature selection algorithm23. However, 
the performance of that algorithm is not compared with any other EA-based algorithms. Recently, Pereira et al. 
provided a review of nature-inspire multi-label feature selection approaches24.

Actually, MFS is a kind of multi-objective optimization problems, which includes at least two conflicting 
objectives, i.e., maximizing the classification accuracy and minimizing the size of feature subset. In this paper we 
study a multi-objective optimization approach for MFS, for finding a set of feature subsets (solutions) to meet 
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different requirements of decision-makers. Focused on this goal, an improved multi-objective PSO algorithm 
is developed by employing the probability-based encoding operator, the adaptive uniform mutation, the local 
learning strategy, and the archiving method based on crowding distance.

Particle swarm optimization
As a population-based search method, PSO regards each individual in the population as a particles in search 
space.  Supposing the location of the i-th particle is  = P t p p p( ) ( , , , )i i i i D,1 ,2 , ,  its  velocity is 

= V t v v v( ) ( , , , )i i i i D,1 ,2 , , the optimal location found by this particle so far (i.e., the local best position, Lbest) is 
= Lb t lb lb lb( ) ( , , , )i i i i D,1 ,2 , , the optimal location found by the swarm so far (i.e., the global best position, Gbest) 

is = Gb t gb gb gb( ) ( , , , )i i i i D,1 ,2 , , then, this particle is updated as follows15:
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where, t is the iteration times, c1 and c2 are two acceleration coefficients, r1 and r2 are random numbers between 
[0, 1], and w is an inertia weight of particle on fly velocity.

Methods
This section shows the PSO-based multi-objective multi-label feature selection algorithm. First a 
probability-based encoding operator instead of traditional binary encoding is employed to represent a particle. 
Based on this, a discrete multi-label feature selection problem is transformed into a continuous one suitable for 
the PSO. Second, we give the fitness function of multi-label feature selection problem, and introduce an archive 
to save optimal solutions obtained by the swarm. Next, an adaptive uniform mutation with action range varying 
over time, and a local learning strategy are proposed. Finally the implementing steps and the computational com-
plexity of the algorithm are discussed.

Encoding and Fitness function of Particle.  In order to transform a discrete multi-label feature selection 
problem into a continuous one suitable for PSO, this paper employs a real encoding strategy, called the 
probability-based encoding strategy4. This method takes the probability value that a feature is selected as an 
encoding element of particle. Thus a particle including a number of probability values is a candidate solution of 
the  problem.  Taking a  par t ic le  = P t p p p( ) ( , , , )i i i i D,1 ,2 ,  as  an example,  i f  the  probabi l ity 

> . = p d D0 5, 1, 2, ,i d,  then the d-th feature is chosen into the corresponding feature subset; otherwise it is 
not.

This paper adopts two objectives, the multi-label classification error and the number of features, as the fitness 
function of the algorithm. Various measures have been designed to evaluate the classification performance of a 
multi-label classifier, including Hamming loss, accuracy, one-error, coverage, ranking loss, and so on ref. 25. Like 
some multi-label classification methods2, 5, 26, this paper uses Hamming loss (Hloss) to evaluate the classification 
error rate of a particle. Let |S| be the number of samples in test dataset, S, the set of true class labels and that of 
labels predicted by a classifier, h, be yi and ′ = y i S, 1, 2, ,i , respectively, the Hamming loss is defined as 
follows:

∑= ∆ ′
=

Hloss h S
S C

y y( , ) 1 1
(2)i

S

i i
1

where Δ represents the symmetric difference between two sets, and |C| means the number of labels. Thus, the 
fitness function of a particle is described as:

=F P Hloss P S Pmin ( ) ( ( , ), ) (3)i i i

where |Pi| is the number of features within the particle Pi.

Adaptive uniform mutation.  PSO is known to have a fast convergence speed. However, fast convergence 
speed often makes a PSO-based algorithm converge to a false Pareto front27, 28. In the paper, an adaptive uniform 
mutation is employed to extend the ability of the proposed algorithm in exploration. The details of the proposed 
mutation are given in Fig. 1. In this operator, a nonlinear function, pm, in terms of iterations, is adopted to control 
both the probability and range of mutation on each particle. At each iteration, first, pm is updated according to the 
following approach:

= . ∗ + .− ∗p e0 5 0 01 (4)m
t T( 10 / )

where T is the maximum iteration times. It can be seen that the value of pm tends to decrease at an exponential 
rate as the iterations increases. Then, each particle in the swarm is checked in turn. If pm is bigger than a random 
number between [0, 1], we run the mutation on the current particle as follows: first pick randomly K elements 
from this particle, and then re-initialize the values of these elements within the search space. Here the value of K 
is an integer which is used to control the mutation range:

= ∗⌈ ⌉K D pmax{1, } (5)m
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On the one hand, this operator can show a good explorative behavior at the beginning of the algorithm, 
because nearly half of the particles in the swarm are affected by the operator with a high mutation space; on the 
other hand, it can improve the exploitative behavior of the swarm at the second half of the algorithm, because 
both the probability and range of the mutation decrease simultaneously with the increasing of iteration times.

Local learning strategy.  To improve the performance of the proposed algorithm, especially self-learning 
capability of elite particle in the swarm, a local research strategy based on differential learning is designed to 
explore the areas with sparse solutions in search space. In this strategy, first a solution with big crowding distance 
in the archive is selected as a base vector, notified Xbest, in differential learning. Second, two random solutions 
from the archive, notified Xn1 and Xn2, are set as differential vectors. Then, a new solution is generated by adding 
the difference between Xn1 and Xn2 to the base vector Xbest:

′ = + ⋅ −X X F X X( ) (6)i best n n1 2

This loop is implemented repeatedly until generating N′ new solutions. Finally, the N′ new solutions are saved 
into the archive. The parameter F is a scale factor that amplifies the difference between the two vectors. This 
paper sets F to be a random value within [0.1, 0.9] in order to improve the diversity of new solutions. Since the 
base vector often locates to good promising area, the local research strategy is competent for exploiting the area 
including sparse solutions.

Implement of the algorithm.  This section shows implementing steps of the proposed PSO-based 
algorithm:

Step 1: Initialize a swarm of particles. (a) Set the size of swarm, Ns, the size of archive, Na, and the maximal 
number of iterations, T; (b) Initialize the locations of particles; (c) Evaluate all objectives of each particle; (d) Save 
non-dominated solutions into the archive.

Step 2: Update the personal best positions for particles. This paper uses the Pareto domination relationship to 
update the personal best positions. Taking a particle Pi(t) as an example, if its new position Pi(t + 1) dominates the 
old personal best position Lbi(t), set Lbi(t + 1) = Pi(t + 1); otherwise, keep the personal best position in memory 
unchanged.

Step 3: Update the global best position of each particle. For each particle, we select the global best position 
from the archive based on the diversity of solutions. First, the crowding distance value of each solution in the 
archive is calculated. Then, based on the crowding distances above, the binary tournament is employed to select 
the global best position for the current particle. For any solution in the archive, the bigger its crowding distance 
is, the more the probability that it is selected as the global best position is.

Step 4: Generate new positions for each particle. For each particle, the equation (1) is employed to update its 
velocity and position. Different from most PSO-based algorithms with fixed control parameters, we set the two 
acceleration coefficients, c1 and c2, to linear functions over the number of iterations, respectively29.

Step 5: Perform the proposed uniform mutation above.
Step 6: Evaluate all objectives of each particle based on equation (3).
Step 7: Update the external archive. First, save all the new particles that don’t dominated by other solutions 

into the archive; if the number of solutions saved into the archive reaches its maximal capacity Na, the |Ar| − Na 
solutions with worst distribution are deleted from the archive, where |Ar| is the number of solutions saved in 
the archive. In this paper, the crowding distance method30 is introduced to evaluate the distribution of solutions 
among the archive, since this technology does not involve parameters.

Step 8: Implement the local learning strategy above.
Step 9: Check the termination condition. If the algorithm meets the maximal number of iterations, T, stop and 

output the final solutions; otherwise, return Step 2.
Furthermore, the flowchart of the proposed algorithm is showed in Fig. 2.

Complexity Analysis.  In the proposed algorithm, Step 1, 4, 5, 6 and 9 need O(1) basic comparison oper-
ation. In Step 2 and 3, the update of Pbest and Gbest need O(M × Ns) and O(Ns) basic operations, respectively. 
The computation complexity of the proposed algorithm lies mainly in Steps 7 and 8. In Step 7, the Pareto 
domination comparison costs O(M × N × log N) basic operations, and the crowding distance measure costs 

Figure 1.  The pseudocode of the function MUTATION.
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O(M × Na × log Na) operations. In Step 8, both the Pareto domination comparison and the crowding distance 
measure need O(M × Na) operations. Owing to N = Ns + Na, in the worst case the computation complexity of our 
algorithm is simplified as O(M × N × log N).

However, when the proposed algorithm applies to a real feature selection problem, it's hard to calculate its 
real run-time. Like other EA-based algorithms, the run-time of our algorithm lies mainly in evaluating the fitness 
function. The evaluation time of a particle depends on the number of features, which is hard to predict. So, the 
run-time of the proposed algorithm depends on both the algorithm and the data sets.

Results and Analyses
The performance of our proposed algorithms is discussed on six datasets from various applications, such as image 
processing, bioinformatics, music emotion, and so on. These datasets includes Emotions, Yeast, Scene, Flags, 
CAL500 and Birds. The format of these data sets is listed in Table 1, which includes the number of training sam-
ples, testing samples, features, and labels. These data sets above are freely available at the website of Mulan (http://
mulan.sourceforge.net/datasets.html).

We compare our proposed method with two conventional feature selection algorithms and a well-known 
EA-based multi-objective algorithm. The two conventional methods are the ReliefF method (RF-BR) proposed 
in the literature5, and the mutual information method (MI-PPT) proposed in the literature7. The evolutionary 
multi-objective algorithm is NSGA-II30. It is one of the most popular multi-objective evolutionary algorithms. 
The main principle of NSGA-II is the application of the fast no-dominated sorting technique and the diversity 
preservation strategy. The idea of NSGA-II has been used to deal with single-label feature selection problems31, 32.

In the proposed algorithm and NSGA-II, the size of swarm or population is set to 20, and the fitness evalua-
tion times as 2000 for all the test problems. In NSGA-II, the representation of each individual is the same as the 
proposed algorithm, the mutation rate is 1/D and the crossover probability is 0.9. The ML-KNN21 is used as the 
classifier in this paper.

Comparison on the smallest Hamming loss.  Taking the three datasets, Emotions, Yeast and Scene as 
examples, this section evaluates the proposed algorithm's performance on finding extreme solution with the 

Figure 2.  The flowchart of the proposed algorithm.

Data sets Number of training samples Number of testing samples Number of labels Number of features

Flags 129 65 7 19

CAL500 250 252 174 68

Emotions 391 202 6 72

Yeast 1500 917 14 103

Birds 322 323 19 260

Scene 1211 1196 6 294

Table 1.  Format of six datasets.

http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html
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smallest Hloss value. Table 2 shows the best Hloss value and the number of selected features obtained by the two 
conventional methods, RF-BR and MI-PPT, NSGA-II, and the proposed algorithm. Additionally, the bold data 
are the best values among these algorithms.

As shown in Table 2, the proposed algorithm performs better than RF-BR, MI-PPT and NSGA-II in search-
ing for those solutions with the smallest Hloss value. In details: (1) the RF-BR algorithm has the best solutions 
with respect to the number of features, but our proposed algorithm shows the best performance with respect to 
Hamming loss. For example, for the dataset Scene, the best Hloss value of our algorithm reduces by 4.2% com-
pared with RF-BR; (2) Compared with MI-PPT, the proposed algorithm has a small Hamming loss with small 
number of features when classifying Emotions. For the rest data sets, Scene and Yeast, the proposed algorithm 
not only reduces the number of features significantly, but also improves the minimum of Hamming loss; (3) 
Compared with NSGA-II, the proposed algorithm has still the smallest Hloss for all the three data sets. Especially, 
for Emotions and Yeast, it shows the best capability to remove irrelevant or redundant features.

Assessment on the parallel search capability.  This subsection tests the parallel search performance of 
our algorithm. Classical MI-PPT method is often inefficient for solving multi-objective feature selection, because 
it can only find a few of optimal solutions in a single run, suggesting that it has to run several times to achieve 
a good Pareto set. The proposed PSO-based algorithm in this paper, on the other hand, is a population-based, 
metaheuristic method with the ability to search for multiple Pareto solutions in one run. Taking Emotions, Yeast 
and Scene as examples, Figs 3, 4 and 5 shows Pareto optimal sets obtained by MI-PPT and our algorithm when 
tackling the three data sets.

For Emotions, we can see from Fig. 3 that: when 6 and 7 features are selected only, the proposed algorithm 
obtains worse results than MI-PPT in terms of the Hamming loss. However, the Hamming loss values of the 
proposed algorithm drop fiercely from about 23.6% to 18% when the number of features increases from 8 to 19. 
Contrarily, MI-PPT shows an unstable curve, where its Hamming loss values move around 24.5% up and down 
as the number of features increases. When 18 features is selected, MI-PPT finds the best Hamming loss, 23.1%, 

Datasets

Proposed algorithm MI-PPT RF-BR NSGA-II

Hamming 
loss

Number of 
features

Hamming 
loss

Number of 
features

Hamming 
loss

Number of 
features

Hamming 
loss

Number 
offeatures

Emotions 0.178 27 0.229 43 0.220 17 0.183 47

Yeast 0.193 45 0.194 91 0.240 41 0.196 56

Scene 0.088 164 0.092 278 0.120 56 0.092 123

Table 2.  Solutions with the smallest Hloss value found by the four comparison algorithms.
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Figure 3.  Pareto optimal sets found by MI-PPT and our algorithm on Emotions.

Datasets (Proposed algorithm, MI-PPT) (MI-PPT, Proposed algorithm)

Emotions 0.8571 0.1429

Yeast 1.0 0

Scene 0.6429 0.4286

Table 3.  The average set coverage values of the two algorithms.
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which is obviously bigger than the value obtained by the proposed algorithm, 18.8%. The proposed algorithm has 
the best Hamming loss 18.23% with 19 features.

For Yeast, we can see from Fig. 4 that the Hamming loss values of the proposed algorithm drop fiercely from 
about 20.6% to 19.3% when the number of features increases from 17 to 45. Like Emotions, MI-PPT shows also 
an unstable curve. When 35 features are selected, MI-PPT finds the best Hamming loss 19.7%, which is still 
slightly bigger than the value obtained by the proposed algorithm, 19.67%. Our proposed algorithm finds the 
best Hamming loss value when 45 features are selected, which get a 0.9% lower error rate compared with MI-PPT.

Figure 5 shows the solutions on optimizing Scene. We can see that: when less than 80 features are selected, 
MI-PPT has more close results as the proposed algorithm; but it can’t obviously improve the Hamming loss by 
increasing the number of features. The proposed algorithm achieves clearly better results than MI-PPT when 
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Figure 4.  Pareto optimal sets found by MI-PPT and our algorithm on Yeast.

40 60 80 100 120 140 160 180

0.09

0.095

0.1

0.105

Number of features

H
am

m
in

g 
lo

ss

Scene

 

 
MI−PPT
Proposed algorithm

Figure 5.  Pareto optimal sets found by MI-PPT and our algorithm on Scene.

Data sets Proposed algorithm NSGA-II t-test

Flags 0.738/0.076 0.592/0.063 Y+

CAL500 0.798/0.077 0.595/0.022 Y+

Emotions 0.766/0.029 0.553/0.036 Y+

Yeast 0.709/0.036 0.508/0.011 Y+

Birds 0.859/0.043 0.580/0.015 Y+

Scene 0.756/0.021 0.560/0.014 Y+

Table 4.  The average HV values obtained by the two algorithms on the six datasets.
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more than 80 features are selected. It finds the best Hamming loss value, 8.8%, when 164 features are selected, 
which gets an about 0.8% lower loss value compared with MI-PPT.

Furthermore, the set coverage (SC) measure33 is employed to compare the domination degree between differ-
ent algorithms. Taking algorithms Z1 and Z2 as an example, SC(Z1, Z2) = 1 represents that each solution of Z2 is 
dominated by or equal to at least one solution of Z1, indicating that the Pareto solutions founded by Z1 is better 
than those obtained by Z2.

Table 3 shows the average SC values of the proposed algorithm and M-PPY. It reports that the proposed algo-
rithm has the best performance with respect to the SC metric for all the three datasets. In details, for Emotions, 
solutions obtained by the proposed algorithm dominate 85.71% solutions obtained by MI-PPT; in contrast, the 
proportion that MI-PPT dominates the proposed algorithm is 14.29%. For Yeast, the proportion that MI-PPT 

Figure 6.  Solutions obtained by our algorithm and NSGA-II on six datasets.
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dominates the proposed algorithm is 0, but our proposed algorithm dominates all the solutions of MI-PPT. For 
Scene, the proportion that MI-PPT dominates the proposed algorithm still is 64.29. Overall, due to good parallel 
search capability, the proposed algorithm can find a set of optimal solutions, which is better than those obtained 
by MI-PPT.

Assessment on the multi-objective performance.  The proposed algorithm is compared with the pop-
ular algorithm NSGA-II to test its multi-objective performance. Herein, hyper-volume metric (HV)33 is intro-
duced to estimate a multi-objective algorithm, because it can simultaneously estimate the distribution and the 
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Figure 7.  The curve of HV values with respect to the iterations obtained by MPSOFS and MPSOFS/LLS.



www.nature.com/scientificreports/

9Scientific Reports | 7: 376  | DOI:10.1038/s41598-017-00416-0

convergence of a solution set. The better the diversity and/or convergence of a solution set are, the higher the HV 
value of this set is.

The two algorithms both are run 30 times for all the six datasets, statistical results of the two algorithms are 
showed in Table 4. Furthermore, the paired t-tests at the significant level of 0.05 (α = 0.05) is utilized to test the 
significance of results with respect to the HV metric. In this table, ‘Y+’ indicates that the proposed algorithm is 
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Figure 8.  The curve of HV values with respect to the iterations obtained by MPSOFS and MPSOFS/M.
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significantly better than NSGA-II. As Table 4 shows, the proposed algorithm has better HV values for all the six 
data sets, and its multi-objective performance is significantly better than NSGA-II as their t-test results.

Furthermore, Fig. 6 shows optimal solution sets obtained by the two algorithms on the six datasets, for high-
lighting their search capability. Clearly, the proposed algorithm shows better convergence than NSGA-II, where 
each solution of NSGA-II is dominated by at least one of the proposed algorithm. So we consider that the pro-
posed algorithm outperforms NSGA-II in terms of the multi-objective performance.

Analyses of the key operators.  In this experiment we perform an extensive analysis on the two key opera-
tors, i.e., the adaptive mutation and the local learning strategy. For the sake of simplicity, our proposed algorithm 
is denoted as MPSOFS in this experiment. Four compared algorithms are designed. The first one is the proposed 
algorithm which deletes the local learning strategy (LLS), denoted as MPSOFS/LLS; the second one is the pro-
posed algorithm without mutation, denoted as MPSOFS/M; the third one is the proposed algorithm with the 
nonuniform mutation (NM) proposed in ref. 4, denoted as MPSOFS-NM; the last one is the proposed algorithm 
with the Pareto rank based mutation (PRM) proposed in ref. 34, denoted as MPSOFS-PRM. In the PRM, the 
mutation probability of a particle is determined by both the current iteration times and the fitness rank of the par-
ticle. For details, please see the literature4, 34. The HV metric is selected to estimate these algorithms. The datasets, 
Emotions, Yeast and Scene, are used to analyze the two key operators.

First, we compare the proposed algorithm MPSOFS to MPSOFS/LLS, for observing the effect of the local 
learning strategy. Figure 7 shows the curve of HV values with respect to the iteration times obtained by MPSOFS 
and MPSOFS/LLS. It can be seen from Fig. 7 that for all the three datasets, MPSOFS shows better convergence 
than MPSOFS/LLS with respect to the HV value. Taking Emotions as an example, MPSOFS has the best HV 
value 76.4% at the100-th iterations, but MPSOFS/LLS has its best HV value 70.7% at the100-th iterations, which 
is almost 6 percentage points lower than MPSOFS. This indicates that the effect of the local learning strategy on 
improving the performance of MPSOFS is visible.

Second, we compare the proposed algorithm MPSOFS to MPSOFS/M, for observing the effect of the adaptive 
mutation on the proposed algorithm. Figure 8 shows the curve of HV value with respect to the iteration times 
obtained by the two compared algorithms. It reports that for the three datasets, the mutation-based algorithm 
MPSOFS shows better convergence curves than MPSOFS/M with respect to the HV metric. Moreover, at the end 
of algorithm, the best HV value obtained by MPSOFS is also obviously higher than that of MPSOFS/M. Taking 
Yeast as an example, the best HV values of MPSOFS and MPSOFS/M are 70.9% and 67.1% at the100-th iterations, 
respectively. This indicates that the mutation is important on improving the performance of MPSOFS.

Furthermore, we compare the three mutation-based algorithms, MPSOFS, MPSOFS-NM and MPSOFS-PRM, 
for observing the effectiveness of the adaptive mutation. Table 5 shows statistical results of HV obtained by the 
three algorithms for the datasets Emotions, Yeast and Scene. As Table 5 reports, for the dataset Emotions with 72 
features, MPSOFS, MPSOFS-NM and MPSOFS-PRM have similar results with respect to the average HV value. 
However, for the datasets Yeast and Scene with more 100 features, the average HV values of MPSOFS-NM are 
obviously smaller than that of MPSOFS and MPSOFS-PRM. Taking the dataset Yeast as example, the average HV 
values of MPSOFS, MPSOFS-NM and MPSOFS-PRM are 70.9%, 68.6% and 71.0%, respectively. On the other 
hand, MPSOFS show a close performance to MPSOFS-PRM with respect to the HV metric for the three datasets. 
Here, the average HV values of MPSOFS are slightly higher than that of MPSOFS-PRM for Emotions and Scene, 
while MPSOFS-PRM has the best average HV value for Yeast, which is slightly higher than MPSOFS. However, 
since a Pareto rank relationship between all the particles needs be built every time the swarm implements the 
PRM mutation, the run time of MPSOFS-PRM is higher than MPSOFS for all the three datasets. For example, the 
ratio of run time between MPSOFS and MPSOFS-PRM on tacking the dataset Emotions is about 1:1.07. Thus our 
proposed mutation is highly competitive compared to the NM mutation and the PRM mutation.

Discussion
In this paper, a PSO-based multi-objective multi-label feature selection algorithm has been presented. In this 
algorithm, the probability-based encoding was introduced to transform a discrete feature selection problem into 
a continuous one suitable for PSO. The idea of non-dominated comparison, as well as the crowding distance, 
was used to prune the archive. And, the adaptive uniform mutation, combined with the local learning strategy, 
enhanced significantly search capability of the proposed algorithm.

The proposed feature selection algorithm is examined and compared with two traditional methods (RF-BR 
and MI-PPT) and the popular NSGA-II approach. According to their experiments, we can find: (1) The proposed 
algorithm has a good capability in searching for the extreme solution with the best Hloss value; (2) The proposed 
algorithm found a set of feature subsets with small Hamming loss in one run; (3) The newly presented operators, 
together with the established operators, make the proposed algorithm has a good capability in exploration than 
NSGA-II. In the future, we will investigate meta-heuristic-based feature selection approaches for new feature 
selection problems, such as cost-based feature selection.

Data sets MPSOFS MPSOFS-NM MPSOFS-PRM

Emotions 0.766/0.029 0.762/0.025 0.764/0.027

Yeast 0.709/0.036 0.686/0.031 0.710/0.039

Scene 0.756/0.021 0.738/0.020 0.754/0.024

Table 5.  The average HV values obtained by MPSOFS, MPSOFS-NM and MPSOFS-PRM on the three datasets.
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