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Abstract

In 2004, when the protein estimate from the finished human genome was only
24,000, the surprise was compounded as reviewed estimates fell to 19,000 by
2014. However, variability in the total canonical protein counts (i.e. excluding
alternative splice forms) of open reading frames (ORFs) in different annotation
portals persists. This work assesses these differences and possible causes. A
16-year analysis of Ensembl and UniProtKB/Swiss-Prot shows convergence to
a protein number of ~20,000. The former had shown some yo-yoing, but both
have now plateaued. Nine major annotation portals, reviewed at the beginning
of 2017, gave a spread of counts from 21,819 down to 18,891. The 4-way
cross-reference concordance (within UniProt) between Ensembl, Swiss-Prot,
Entrez Gene and the Human Gene Nomenclature Committee (HGNC) drops to
18,690, indicating methodological differences in protein definitions and
experimental existence support between sources. The Swiss-Prot and neXtProt
evidence criteria include mass spectrometry peptide verification and also
cross-references for antibody detection from the Human Protein Atlas.
Notwithstanding, hundreds of Swiss-Prot entries are classified as non-coding
biotypes by HGNC. The only inference that protein numbers might still rise
comes from numerous reports of small ORF (smORF) discovery. However,
while there have been recent cases of protein verifications from previous
miss-annotation of non-coding RNA, very few have passed the Swiss-Prot
curation and genome annotation thresholds. The post-genomic era has seen
both advances in data generation and improvements in the human reference
assembly. Notwithstanding, current numbers, while persistently discordant,
show that the earlier yo-yoing has largely ceased. Given the importance to
biology and biomedicine of defining the canonical human proteome, the task
will need more collaborative inter-source curation combined with broader and
deeper experimental confirmation in vivo and in vitro of proteins predicted in
silico. The eventual closure could be well be below ~19,000.
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Introduction

While hypothesis-neutral scientific endeavours are sometimes
referred to in derogatory terms as “stamp collecting”, the colla-
tion of molecular part lists (e.g. genes, transcripts, proteins and
metabolites) remains a crucially important exercise, not only for
many aspects of basic biology, but also for application to the bio-
medical sciences and drug discovery. Paradoxically, however,
despite technical advances in analytical experimentation that
should be making them easier to verify and quantify, definitive (or
“closed”) counts of even just these four entities for key species
remain largely refractive. This is particularly so for proteins, as
the most demonstrably biologically functional of these entity sets,
even though they were the first to emerge historically by many
decades'. In 2001, an analysis of the first public version of the
draft human genome included an estimate of ~24,500 protein-
coding genes’. The general opinion at that time was that this was
lower than expected and would thus probably rise above 30,000.
Notwithstanding, when the more complete first reference assem-
bly (92% euchromatic coverage at 99.99% accuracy) was released
in May 2004, the estimate was revised slightly downwards to
~24,000°. In the same year a detailed review appeared support-
ing a lower bound of ~25,000*. This latter publication alluded
to a “yoyo” effect that persisted in subsequent reviews by falling
to ~20,500 in 20077, rising to 22,333 in 2010°, but then dropping
to ~19,000 by 2014’. Those accepting the latter estimate may have
felt a touch of chagrin as the count thereby fell to ~ 1000 below
the model worm Caenorhabditis elegans. While we humans were
still, reassuringly perhaps, ~ 7000 proteins ahead of the model fly
Drosophila melanogaster, we are still ~20,000 behind the lowly
Paramecium (see Table 1).

This article will compare and discuss the current numbers
(as of 1Q 2017) from major sources. The evidence types and theory
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behind protein counting have been described in many publications
and documentation from the individual database portals, but the
reviews referenced above provide complementary background.
It needs to be stated that numbers used herein refer to what can
be termed the “canonical” human proteome. This has its origins
in the Swiss-Prot approach to protein annotation whereby pro-
tein sequence differences arising from the same genomic locus
either by alternative splicing or alternative initiations (or permuta-
tions of both) and/or genetic variants, are all cross referenced to a
single, maximal length, protein entry®. Importantly, while this was
originally introduced as the curatorial strategy of choosing the
longest mRNA for an entry, it actually turns out to have post-
genomic data support, not only in the form that coding-loci
express a single main protein (i.e. that most predicted alternative
transcripts may not be translated), but also that in most cases this is
the max-exon form (i.e. the curatorial choice actually seems to be
the biological “default”)’.

Historical growth

The set of open reading frames (ORFs) constituting the canoni-
cal human proteome can be historically followed in Ensembl
and Swiss-Prot (as the manually reviewed and expert annotated
sub-set of UniProtKB). Both of these are very different pipelines,
but are partially coupled in the sense that the latter is one of the
inputs to the automated ORF-building algorithms of the former.
We can assess the progress of Ensembl first, since it has been
compiling an approximation to the human proteome based on
genomic predictions since 2001'°. A 2004 review assessed histori-
cal figures from the first three years, over which the total shifted
only marginally from 24,037 to 24,046*. While a maximum of
29,181 was reached in January 2002, this was an artefact associ-
ated with clone orientation changes caused by a switch in the
assembly source, and this number had dropped back to 24,179

Table 1. Human protein coding gene counts from nine different portals, collected at the beginning of 2017. Ensembl
numbers for the yeast, worm, fly and a protozoan are included for comparison (abbreviations are defined in the text).

Source Version/date Total URL
GeneCards v4.3.4,Jan 2017 21,819
GenelD Feb 2017 20,671
Swiss-Prot Release 2017_01 20,171
neXtprot Jan 2017 20,159
GENECODE v25, March 2016 19,950
Ensembl 87.38 19,915
Vega/Havana Feb 2017 19,768
HGNC Feb 2017 19,033
CCDs 20, Aug 2016 18,891
S. cerevisiae Dec 2011 6,692
C. elegans WS250, 2012 20,362
D. melanogaster Release 6, 2014 13,918
P, tetraurelia v87.1, 2006 39,642

http://www.genecards.org/
https://www.ncbi.nim.nih.gov/gene/statistics/
http://www.uniprot.org/

https://www.nextprot.org/about/statistics
http://www.gencodegenes.org/stats/current.html
http://www.ensembl.org/Homo_sapiens/Info/Annotation
http://vega.sanger.ac.uk/Homo_sapiens/Info/Annotation
http://www.genenames.org/cgi-bin/statistics
https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi
http://www.ensembl.org/Saccharomyces_cerevisiae/Info/Annotation
http://www.ensembl.org/Caenorhabditis_elegans/Info/Annotation
http://www.ensembl.org/Drosophila_melanogaster/Info/Annotation

http://protists.ensembl.org/Paramecium_tetraurelia/Info/Annotation/#assembly
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by the next release. Despite some year gaps (not covered by the
current archived data sets) the older figures can be plotted with
the most recent ones to give a 15 year-span (Figure 1).

It is important to note that, for technical reasons, the longitudinal
Ensembl protein numbers are not strictly comparable, since the
pipeline model, its parameterisations and data feeds, have, as one
might expect, evolved considerably over the years (e.g. the assem-
bly source change mentioned above). This has included incremental
improvements of various kinds (e.g. in the quality of the reference
genome), but some changes have altered the exact definitions of
the headline protein numbers. For example, the pseudogene figures
given in the early 2001-3 releases needed to be subtracted from the
totals. Those earlier numbers also specified a proportion of novel
genes (defined as not having an exact match to RefSeq or UniProt
entries at build time), but these tailed off from a maximum of 12,398
in November 2001 to only 46 by 2009 (release 54).

The most recent releases have other changes that complicate
protein counts. One of these is the inclusion of ‘“alternative
sequence”, referring to genomic sections that differ from the
primary contiguous assembly. The current release of Ensembl
(87.38) specifies 2,541 proteins in this category, but it is not clear
which of these are just variants of those derived from the primary
assembly. Another, somewhat enigmatic aspect, is the appearance
in the protein count of so called “read-through” genes. These are
defined as transcripts connecting two independent loci on the same
strand. These debuted at 463 in release 74, via manual annota-
tion, climbing slowly to the current total of 526. While they are
also included in the NCBI genome annotation, these have not
been included in the Figure 1 counts because, if they exist at all as
translated chimeric proteins, they are non-canonical by definition.

30,000

F1000Research 2017, 6:448 Last updated: 09 MAY 2017

Despite these shifts in exactly what the protein numbers represent,
we can draw three principle conclusions from Figure 1. These are:
a) yo-yoing has at least subsided, if not ceased; b) the number has
plateaued at just below 20,000; and c) the pipeline has ceased to
spawn significant numbers of novel proteins (i.e. they are now pre-
dominantly “seen before”).

One of the core operations for Ensembl is resolving transcripts
and their mRNA coding sections (CDSs) against ORFs pre-
dicted ab initio. Swiss-Prot, on the other hand, has historically
been doing this for mRNA-to-protein independently of genomic
coordinates (although it increasingly now maps the two together
where possible). Over the years, the criteria and manual triage for
defining canonical ORFs have been consistently applied in
Swiss-Prot. This means the growth rate can be straightforwardly
recorded by slicing Swiss-Prot human proteins by “create date”
(Figure 2). The pattern is interpretable as a concerted effort
towards provisional closure of the proteome at 19,658 by 2008.
Subsequent increases were essentially incremental, climbing
slowly to 20,168 by 2017.

While issues around evidence types will be addressed later, a
simple filter can be applied to count just those proteins with either
transcript and/or other forms of experimental support for their
existence. The result, in the Figure 2 plot, shows this difference
to be fairly constant (i.e. that in the order of ~1,400 sequences
remaining experimentally unsupported). There are three other
salient features. The first is that the total has only increased by a
modest 516 since 2009, whereas Ensembl shrunk by 1,455 over
the same period. They have thus both converged towards ~20,000
(it is not clear if the two sets are congruent for the same ORFs, but
this question will be addressed later). However, there were already
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Figure 1. Protein counts from the Ensembl pipeline database releases over the first three years and last seven years. The latter are only
those from the current archive that have protein rebuilds rather than maintenance/patch releases with nearly identical numbers.
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Figure 2. Protein counts from human UniProtKB/Swiss-Prot by create date (red). The blue columns include the additional selection
for existence evidence at the protein or transcript levels (note the date is just for the entry into Swiss-Prot, not the first appearance of the

sequence in TTEMBL that can be many years earlier).

indications of approximate concordance as early as 2001, where
adding the Ensembl novels to the Swiss-Prot knowns reached
18,191. The inference is that the number of novel proteins confirmed
since 2001 is less than 2000. Note also that many are TrTEMBL-to-
Swiss-Prot promotions (i.e. with data already surfaced) rather than
de-novo deposited protein sequences. By comparing 2009 with the
subsequent seven years we can also infer that Swiss-Prot has not
purged significant numbers of accessions (i.e. they have revised
sequences but generally not removed them).

Current counts

‘We can move on from tracking historical numbers to taking a con-
temporary snapshot of major sources (including the two already
described) that are well established and regularly declare revised
protein counts (Table 1). There are many aspects that could be
expanded on from this set, but the feature that immediately stands
out is the difference of nearly 3000 between highest and lowest
(i.e. 13%). The highest figure comes from what can be considered
a meta-source, GeneCards, that merges different pipeline outputs,
so this could be expected to be an upper bound''. The protein-
coding set from the NCBI genome annotation pipeline ranks
second but there are some caveats regarding comparability
with the other sources'”. One of these is the inclusion of 1235
“LOC” entries with low homology support. Although 107 of these
do have Ensembl gene IDs, none have been assigned Human
Gene Nomenclature Committee (HGNC) symbols. Removing
LOCs from the NCBI protein set would drop them down to seventh
at 19,436.

The next two sources are related in that neXtprot takes the human
Swiss-Prot set as a starting point for evidence expansion and
interrogation enhancements. This is why these have (almost) the
same count (the residual differences being due to synchronisation
timings)'’. The next three sources are also coupled in the sense
that not only are GENECODE and Vega marked-up in Ensembl,
but there are plans to merge the three. However, they do show a
small difference of 182, with the lowest being the Vega pipe-
line (as Havanna manual curation). But even from Vega, there is
a substantial drop of 735 to the stringently reviewed approved
protein-coding gene-based assignments from the HGNC. The
lowest number in Table 1, coming in at just below 19,000, comes
from the Consensus Coding Sequence (CCDS) project. These cor-
respond to a core set of proteins annotated as having full length
transcripts that exactly match reference genome coordinates.

Some sources have invested effort into mapping between each
other’s identifiers. This can establish if the protein sequence in
pipeline output A is the same as pipeline B. However, the fidel-
ity of such a mapping (and consequent cross-reference reciproc-
ity) depends on differences in methods and stringencies. For
example, for all intents and purposes the beta-secretase 1 entry
(BACEL1) is the same across all 9 pipelines. However, a different
population variant was chosen on each side of the Atlantic. There-
fore, the RefSeq and Gene ID sequence NP_036236 differs by
one residue (481 Cys — Arg) from the Swiss-Prot and Ensembl
sequence as P56817. Note also that HNGC does not instanti-
ate sequence entries in the way that the other pipelines do, but
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collates cross-references, so in this case HGNC 933/BACEI points
to both sequences. The process of cross-referencing between
multiple annotation sources allows the generation of both inter-
sects and differences. Crucially, in terms of protein counting, this
gives us the possibility to discern where they are concordant or
discordant and (on a good day) we may be able to identify causes
for the latter.

Cross-reference counting

All nine sources in Table 1 provide some extent of cross-
referencing between what should be the same protein in different
sources (also referred to as cross-mapping). However, the choice
was made here to exemplify just four identifiers, Swiss-Prot
accession numbers, HGNC IDs (directly, or via the current gene
symbols) Ensembl gene IDs and NCBI Entrez Gene IDs. These
were chosen for their global prominence but also methodologi-
cal complementarity. This derives from the fact that that the first
two are essentially automated pipelines (but different), while the
second two are primarily manual expert annotation operations (but
also different). Each of the four offers their own internal ways of
querying cross-references, including BioMart installations'* or
downloadable mapping tables for this to be done extrinsically.
However, because it has the largest number of selectable cross-
references, as well as extended options for live-linked result
displays and filtered downloading, the UniProt interface was
used here. Intersects for the four sources can be seen in Figure 3.

Figure 3 can be explained as follows: The queries executed gave
the totals indicated in the segments. Note that some segments are
empty, because, by definition, the identifier mapping has been done
“inside” Swiss-Prot (even if in some cases the external sources
collaborated in generating the mappings). By comparing with
Table 1, we can thus see that 2,923 NCBI proteins did not map at
all (which includes most of the LOCs). Similarly, 834 Ensemble

EN 19081 HG 19957

SP 20171

Gl 18896

Figure 3. Intersects between identifier cross-references
recorded from the UniProt interface. The results are generated
via cross-reference totals according to UniProt, not from the sources
in situ. EN, Ensembl; SP, Swiss-Prot; HG, Human Gene Nomenclature
Committee; GI, NCBI Entrez Gene.
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protein gene IDs also did not map. For HGNC, on the other hand,
we see the cross-reference result is actually 905 higher than the
distinct identifier count at source. One explanation could be a pro-
portion of a one-to-many relationship (e.g. Swiss-Prots with more
than one HGNC). Some were identified, such as haemoglobin
subunit alpha (P69905) that maps to HGNC HBA1 and HBA2.

A notable result from Figure 3 is that a 1:1:1:1 mapping (i.e. four-
way concordance) is achieved for only 18,690 proteins, lower than
any of the totals from Table 1. Detailed analysis of all the segments
cannot be presented here but some trends can be noted. Starting
with the 187 in the “SP” segment (i.e. Swiss-Prot only, absent
from the other three), the majority of the protein names are given
as “putative” or “uncharacterised”. The 391 common elements in
“SP”, “EN” and “HG” (i.e. missing in NCBI Gene) are clearly
dominated by variable domains of immunoglobulin light chains
and HLA class I histocompatibility antigen alpha chains, the poly -
morphic nature of which necessitates a level of manual annotation
that may not have been compatible with the NCBI pipeline automa-
tion. The 179 common elements in “SP”, “HG” and “GI” (i.e. miss-
ing in Ensembl) are enriched for “Uncharacterized protein” from
the so called Chromosome ORF predictions. The large set of 697
common elements in “SP” and “HG” (i.e. missing in NCBI Gene
and Ensembl) are heterogeneous but show enrichment for trans-
lated endogenous retrovirus transcripts, putative uncharacterized
proteins encoded by LINC loci and include 41 odour receptors.
Notably, in these three sets, the HGNC cross-references classify
them as not being within their own protein-coding set of 19,033,
but rather as endogenous retrovirus, long non-coding RNAs and
pseudogenes, respectively. This particular discordance (i.e. in
UniProt but not a protein according to the HGNC) explains the
1: many cross-references mentioned at the start of this section. A
duplicate check on the 960 indicated only 152 could be ascribed to
Swiss-Prots with multiple HGNC:s. It can also be seen in Figure 3
that two of the Swiss-Prot intersects are empty. The explanation
is that Ensemble and NCBI Gene have consolidated mapping
reciprocity for proteins in Swiss-Prot (but, as mentioned above,
many proteins from these two sources are still nominally “outside”
Swiss-Prot).

As one of its powerful utilities, we can interrogate ~ 90 cross
references in UniProt. While not all of these are human-relevant
we can chose those to compare with Table 1. This has already
been done for the four above but can be extended. For example,
we can determine counts of 18,384 from CCDS and 19,940 for
GeneCards. Note both of these are below the in situ counts by 510
and 1,871 respectively (GENCODE and Vega do not currently have
cross-references inside Swiss-Prot). In some cases it may be possi-
ble to investigate counts reciprocally. For example, from the HGNC
protein-coding download table we can establish that the 19,035
rows in the UniProt mapping column contained 18,997 Swiss-
Prot IDs. The same table includes 19,035 Vega Gene ID mappings
that also collapse to 18,973 distinct entries. This confirms what
was implicated already above, as a small proportion of multiple
Swiss-Prots < > HGNCs is also occurring for HGNC < > Vega.
Cross-mapping counts can similarly be explored via other
sources for comparison, depending on what query and/or down-
load options are available. However, accumulating such results can
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quickly generate large Venn-type sets that generally end up being
more confusing than illuminating.

Following on from above, since they are derived from structure
data sources, cross-references give precise protein counts; but they
also have associated equivocality (even though they will be used
further in this report). For this reason, it is important to understand
(e.g. via source documentation) technical differences in exactly
how the mappings are determined. A second problem is they may
be circular (i.e. source B may collegially accept A< > B map-
pings from source A without independently verifying the reci-
procity of B >A). The third problem is synchronisation, where
release dates are at different intervals (and may not always include
mapping refreshes). The forth problem is the “churn” rate (appear-
ance and/or disappearance of protein records) in genome resources.
This is much lower that is was some years ago, but can still be an
issue.

Existence evidence

In the context of advancing towards proteomic “closure”, the
imperative to verify the existence of an in silico database ORF as an
in vivo protein translation product is obvious. By definition, the pre-
requisite mRNA transcription also needs experimental verification;
especially if the ORF is only a genomic DNA prediction. However,
on its own, active transcription is insufficient to prove translation,
even with a predicted CDS, and it is established that pseudogenes
can exhibit low-level transcription'’. While it has inherited the cat-
egorisations from UniProt, the neXtprot database has a particular
focus on the evidence code system and has set up collaborations to
extend experimental support in general'’. The outlines of this can
be seen in Figure 4.

The categories (expanded on in the neXprot documentation) are as
follows:

1. PEIl: evidence that includes at least partial Edman sequenc-
ing, mass spectrometry (MS) with a threshold of 2 peptides

PES probably non-coding element L

PE4: no protein, transcript, or homology levels. 77

PE3 : Inferred from homology (probable
orthologues)

PE2 : Expression data

PE1 : Protein level (mostly MS or Ab)

Total

572

563
B 1939

e 17008
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of at least 9 amino-acids, X-ray or NMR structure, protein-
protein interaction data or detection by antibodies (Abs).

2. PE2: not proven at protein level but has transcription data
(e.g. cDNA, RT-PCR or Northern blots).

3. PE3: probable existence based on orthologues with high
similarity scores being found in related species.

4. PE4: no evidence at the protein, transcript, or homology
levels.

5. PE5: may be a spurious in silico translation of a non-coding
transcript.

There is now a community effort to promote more proteins to
P1 using both MS and Abs, so we can go into these in more
detail. The former has a long history with a proprietary project
reporting MS identification of 14,223 human proteins as early as
2004'°. An analogous public effort described the verification of
11,115 Ensembl coding sequences, made available in the first data
release of the ProteinAtlas (PA) in 2005". By 2017 the Human
Proteome Organisation has been extensively engaged in MS
initiatives, particularly in regarded to the “missing proteins”
(i.e. those still in P2 to P5) that remain refractory to tryptic peptide
verification at the necessary stringency. This aspect has been the
subject of several recent reviews and so does not need expanding
here'*"”.

As another important methodological push, antibody-based pro-
teomics has developed more recently into a large-scale enterprise.
This was first described in 2014 as the Human Protein Atlas project
with its own associated database’. This has now been extended
with the setting up of an International Working Group for Antibody
Validation and the accompanying Antibodypedia database’'. These
have the objective to increase the reproducibility of protein iden-
tification and ultimately, as with the MS initiatives, to move more
sequences up to the P1 evidence code)

ﬁ 20159

0

5000 10000 15000 20000

Figure 4. Protein existence codes and their occupancy statistics from neXtprot.
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We can use the categories above to further “slice and dice” cross-
referencing to gain more insight into particular subsets (e.g. via
downloadable identifier sets for P1to P5). The possible query com-
binations are many, so we need to frame useful questions. Notably,
it is now possible to select proteins supported by PA MS support
entries (17,084) or HPA (16,800) or both (15,189) (n.b. numbers
differ slightly from those in neXtprot of 18,083 for PA and 16,473
for HPA). In terms of questions, an example that can be posed is
“how many proteins, either supported by HPA or PA, overlap with
the 4-database consensus set generated in Figure 3?” The result
(Figure 5) effectively intersects the in silico with the in vivo evi-
dence sets.

As was done for Figure 3, lists from the Venn sections were input
to the UniProt ID mapping interface to examine trends. Not all of
these can be discussed here, but looking at the unique sets exposed
some initially counter-intuitive results. For example, the 4-way only
(734) included 214 Pls, but without HPA or PA cross-references.
This is because P1 also includes 3D structures and interaction
data. Looking at the 152 HPA-only set included 101 at P4 or P5
levels (i.e. unexpectedly high for the implied Ab confirmation
which might be expected to push them up to P1). It turns out
there is a cross-reference specificity problem from the inclusion
of uncertain results. The HPA link (for the 16,800) actually means
the protein has been tested (i.e. had an antibody raised against
peptide sections) but is not necessarily confirmed. The histochem-
istry support status, including consistency with two sources of
transcript data are commented on in each HPA entry. However,
from the HPA download for 16.1, only 10,230 (of the Ensembl
proteins as primary identifier) are designated as “approved” or
“supported” at the histochemistry level. Examples of evidence
complications include the 40-residue of putative protein
FAMS6JP as the Swiss-Prot entry QO05BU3. Flagged as PS5,

4-way 18690

HPA 16880

PepAt 17084

Figure 5. Swiss-Prot cross-reference intersects between the
4-way confirmed set from Figure 3, the Human Protein Atlas
(HPA), and the Peptide Atlas.
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this shows anomalies including designation as a pseudogene by
HGNC (n.b. it has neither GenelID nor an Ensembl cross-reference
which excluded it from the 4-way set) and the HPA entry
ENSG00000186523-FAM86B1 was flagged as uncertain based on
two antibodies. A second example exposes a different problem. The
putative uncharacterized protein C70rf76 (Q6ZVN7) is mapped
from UniProt to a different protein in HPA as ENSG00000127922-
SHEMI (i.e. P60896). The miss-mapping appears to be extrinsic
to HPA and in this case could be a UniProt < > Ensembl problem
(which is why this is not in the 4-way set). It is important to empha-
sise that none of this is about fault finding, but these examples attest
to the technical challenges of evidence classifications and mapping
fidelity.

Inspecting the 360 “PepAt” (i.e. PeptideAtlas only) set reveals a
different set of interpretive challenges. An example is the small-
est of the set at only 11 residues as morphogenetic neuropeptide
(P69208). This has no genomic annotation, but does have an appar-
ent match in PeptideAtlas for the peptide QPPGGSKVILE. The
Swiss-Prot entry has its origins in an Edman sequencing result from
1986 and is consequently indicated as “Experimental evidence at
protein level”, but has been dropped from neXtprot. A large pro-
portion of the rest of the 360 are immunoglobulin heavy variable
and HLA class I histocompatibility antigen chains for which the
ability of the PeptideAtlas system to resolve into separate proteins
is unclear.

Small proteins

Back in 2004, it was already mooted that a significant expansion in
protein number was likely to occur via the discovery of small ORFs
(smORFs). However, this was not supported by Swiss-Prot statis-
tics at that time”. In the intervening decade, the smORF question
has surfaced regularly” and it now overlaps with the two closely
related themes of de novo protein evolution (i.e. recent non-coding
to coding transitions)” and ribosomal profiling experiments
attempting to define the translation of novel smORFs from what
was hitherto classified as non-coding RNA?. In addition, the
theme of existence evidence discussed above is also relevant, since
whatever data support type is being sought (e.g. active transcrip-
tion plus detection by MS or Abs), the experimental verification
of smORFs becomes more difficult.

An obvious approach to this topic is to repeat the exercise first
performed in 2004%, namely splitting the smORF count in Swiss-
Prot by create date. By setting a cut-off of 100 residues, the
current total is 682/20,168. This can be compared with the cor-
responding 2009 totals of 612/19,675. This establishes that the
proportional smORF content has only risen from 3.1% to 3.3%.
In addition, from the latest 2017 size cut, 161 of the 682 do not
have an HGNC biotype designation as protein-coding. Many also
only have the protein existence support as Edman sequencing reads
from the earliest Swiss-Prot releases. These short sequences are
difficult to genome map and/or re-confirm by MS, which is why
six were recently purged from neXtprot (P.Gaudet personal com-
munication). We are thus presented with a paradox that, despite
many reports of putative novel human smORF discovery, very few
are crossing the Swiss-Prot evidence threshold for becoming new
protein entries.
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Notwithstanding, recently confirmed smORF examples have sur-
faced that are informative from the protein counting viewpoint. The
first of these, the apelin receptor early endogenous ligand, was inte-
grated into Swiss-Prot in 2014 (HGNC symbol APLEA, synonyms
Elabela, Toddler; see Swiss-Prot PODMC3 for cross-references
including links to the discovery papers). It was in fact “hiding in
plain sight” in so far as its full-length cDNA (AK092578) had been
in GenBank since 2008. However, since this sequence translates
into eight possible smORFs, the submission process for the high-
throughput cloning project (sensibly) chose not to annotate a CDS
in the feature lines of this prostate library entry, since there was no
basis on which to choose any of the possible translations by protein
similarity at that time (although arguably, manual sequence analy-
sis, including TBLASTX, might have given clues). Significantly
though, this transcript had originally been annotated in Vega as a
Long non-coding RNA (LncRNA) giving rise to speculation that
additional cryptic smORFs could be “hiding” in other LncRNAs.
Such a second case has in fact been described in 2016 in paper enti-
tled “A peptide encoded by a transcript annotated as long noncod-
ing RNA enhances SERCA activity in muscle”, although the work
was done in mouse”. The publication was processed by Swiss-Prot
in March 2016 to generate PODN83 and PODN84 for a 34 residue
mouse and human proteins, respectively.

These two smORFs illustrate a spectrum of evidence differences
as follows:

. In terms of transcript support, APLEA has been re-cloned
as KJ158076 with a submitted CDS, but this is not yet
incorporated in the Swiss-Prot annotation. The DWORF
authors mention obtaining ¢cDNAs but have neither
deposited human or mouse mRNA accession numbers.
There are many TBLASTN matches as supporting evi-
dence for the protein (not withstanding miss-matches,
see below) both to mammalian sequences designated as
LOC non-coding RNAs and over 30 human expressed
sequence tag (EST) mRNAs.

. APLEA hasthree-way genomic supportand aCCDS, while
DWOREF has no human genome cross reference in Swiss-
Prot. The mouse paralogue does have an Ensembl protein
mapping (ENSMUSG00000103476) despite still being
flagged as an LncRNA gene in the Mouse Genome Atlas.
However, multiple lines of evidence (Southan, unpub-
lished observations) indicate the correct human sequence
is the 35 resides represented in ENSG00000240045 (via
Vega) as TrEMBL AOA1BOGTWO (but circularly as
this was picked up from Ensembl) and independently as
ACT64388 from 2009. The predicted transcript is classi-
fied by NCBI as a non-coding LOC100507537.

. Neither APLEA nor DWOREF have any cross-references
in the seven MS sources in UniProt. Note that APLEA
cannot pass the double 9-mer criteria for neXtprot, and
DWORF only has a single predicted tryptic peptide.
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Whether either protein passes the verification threshold
for MS datasets in the future remains to be seen.

. Publications for both APELA and DWOREF have included
Western blots from Abs raised against peptides (but
mouse for the latter). However, neither yet has an HPA
entry. While the possibility of inclusion in a future update
is clear for APELA, there may not only be technical chal-
lenges from the small size of DWOREF, but also, since
HPA uses Ensembl IDs for its primary identifiers, this
protein and its transcript would need first to be resolved
in a future Ensembl release (n.b. LOC100507537 appears
to have somehow parsed HPA transcript data, but this
may be a miss-mapping).

. Replication of the basic findings and expanded aspects
of in vivo function have been consolidated in numerous
publications for APELA, including a 2017 paper”®. While
the experimental characterisation of DWORF rests on
one study done with mouse so far”, consolidation of the
human protein evidence is to be expected in forthcoming
work.

To summarise the implications; the discovery of additional
smORFs seems certain, especially given that the putative LncRNA
gene count has recently risen to 27,919%”. However, the question
remains as to how many will be verified to the evidence level
sufficient to enter the major genome and protein portals (even
though it will be challenging to obtain Abs and MS verification
data). On a continuum of what we might expect between 10, 100 or
1000, the middle estimate seems most likely.

Pharmacological interaction intersects

This last section assesses the corroboration of data linkages by
existence evidence and other types of concordance. Many of the
Swiss-Prot cross-references are related to protein function and other
attributes such as tissue distribution or post-translational modifica-
tion. Others would include pathway membership, protein-protein
interactions, Genome Ontology categorisation, disease associa-
tions, interactions between enzymes and substrates, drugs and their
targets, as well as endogenous ligands for receptor proteins. The
advantage of the analyses described above is that results centred
on functional categories can be intersected with independent cross-
references. This can be exemplified by selecting the curated ligand
interactions in the [TUPHAR/BPS Guide to PHARMACOLOGY*
(GtoPdb) that are included in the set of five chemistry (interaction)
cross-references. The current UniProt has 1,460 human Swiss-
Prot records (as defined by the GtoPdb criteria for submitting the
links) that have publication-supported molecular interactions. The
majority are pharmacologically active small-molecules, but the
curated relationships include some protein-protein interactions, for
example, antibody ligands directed against cytokine targets (n.b. a
proportion of these proteins are derived from a new project as the
Guide to Immunopharmacology). The result of the corroboration
analysis is shown in Figure 6.
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Prot Exist 18497

4-way 18690

GtoP x-ref 1460

Figure 6. Corroboration of human proteins in Swiss-Prot with
ligand interactions in GtoPdb (selected as “Guideto-
PHARMACOLOGY” in the Chemistry cross-references). The first
of the two intersected lists are labelled as “Prot Exist” with evidence
at the transcript and protein levels (i.e. PE1 and PE2 from Figure 4),
and the 4-way major source consensus set (i.e. the central panel of
Figure 3).

We can see the results of a three way comparison in Figure 6
between existence evidence, four-source convergence and GtoPdb
entries. The first feature to note is that not all proteins with
existence evidence are in the four-source set, and vice versa.
Possible systematic reasons behind this cannot be explored here,
but may be related to the points discussed for Figure 5. The key
observation for GtoPdb is that, reassuringly, 1,450 entries inter-
sect with both existence evidence and four-source identifiers.
Notwithstanding, there are nine intersects with the existence set
but not four-source corroborated with one vice versa (i.e. in the
four-source set but not evidence-supported). Given that GtoPdb
interactions are expert-curated, the result from Figure 6 raises
questions about the annotation of the 10 protein entries. These
were followed up to establish that the lack of evidence support for
POC264 arises from the absence of an mRNA entry (i.e. it remains
a genomic prediction). The existence of this kinase seems well
supported (e.g. via CCDS74457), but a cloned cDNA would be
an important consolidation. Inspection of the other nine sequences
also supported their existence but they all had a mixture of cross-
referencing failures that had excluded them from the four-source
set. For example, for the aspartyl aminopeptidase, DNPEP
(QO9ULAO) the protein is solidly supported even to the extent of
a PDB structure, but the Entrez GenelD is missing (although this
is cross-referenced by HGNC). Likewise, the alpha-2B adrenergic
receptor, ADRA2B (P18089) is solidly supported, but in this was
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missing the Ensembl cross-reference (it turns out from Swiss-Prot
update enquiry this was due to an unusual accession number change
associated with a TTEMBL to Swiss-Prot transition, Gasteiger,
personal communication). In both cases GtoPdb had in fact been
manually curated in the correct links for the Entrez Gene ID in
Target ID 1559 and Ensembl Gene for Target ID 26, respectively
(n.b. the appropriate UniProt corrections have been suggested
via the feedback form). This cross-checking for GtoPdb targets
thus proved a useful exercise that will be re-visited as our protein
content expands.

Conclusions

Despite over 16 years having elapsed since the first draft human
genome, the diversity of current counts indicates that progress
towards what the community might consider a gold-standard
set of canonical protein sequences, remains frustratingly slow.
This is especially so considering that the “zone of equivocality”
lies only between an upper bound of ~ 20,000 and a lower one of
~18,500. The slow progress towards closure is clearly a reflection
of both the inherent biological complexity of protein translation,
as well as the challenges of combining automated annotation
with various proportions of expert curation needed to define the
entire expressed genomic landscape”. There are of course cave-
ats, even with the concept of closure, in so far as recent evidence
indicates that each of us, on average have at least 100 protein
loss-of function variants (i.e. proteomes are “personal”’)*’.

The wider bioscience community could be forgiven being
puzzled that major global efforts continue to produce different
sets of canonical proteins at roughly the same time from the same
primary data (leaving aside another layer of yet more inter-source
differences in alternative splice and/or initiation forms). Those
of us with some insight into the bioinformatic, genomic and pro-
teomic challenges might be more sanguine in our judgment, but
the criticism still stands (note also that human is the testbed from
which the community needs progress to analogous proteomic
closure for at least mouse, rat and Zebrafish). Approaching the
question as to why this situation persists and possible solutions,
would necessitate a detailed comparison of the underlying assump-
tions, data processing models and pipeline parameterisations.
However, inter-source clustering of explicit protein sequences
could make identifying difference more effectively than cross-
references alone (e.g. a possible resurrection of the Human Protein
Index initiative’").

Regardless of the technical options to solving the problem,
substantial resources have been committed over decades by the
major gene and protein annotation resources globally. We should
thus expect more inter-team collaboration dedicated to harmonis-
ing amongst themselves for the mere ~2000 protein sequences
in question (i.e. not many compared to the 0.55 million and
77 million processed in Swiss-Prot and TrEMBL respectively). It
could be argued that additional (collective) manual curation would
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be needed to accomplish this, but the consequent improvement
in silico concordance could then be consolidated by an expansion
of experimental existence verification both in vitro and in vivo.
This could include a supply of expressed protein standards,
advances in MS-based proteomics, including sets of synthetic
proteotypic peptides for spiking experiments®’, deep transcript
profiling by RNA-seq and the increased availability of validated
antibody reagents.

Data availability

These statistics on protein numbers are presented and compared
here in good faith and with implicit expectation that they should
be reproducible, including by others who may want to repeat
and/or extend these types of analyses. Notwithstanding, this may
be confounded by several factors that could give rise to slightly
different results (but it is hoped not major discrepancies). The most
obvious is data updates that can be as frequently as monthly for
some sources (e.g. since the completion of this work UniProt
notched up to UniProt release 2017_03 on March 15, 2017 with
the human SwissProt count increasing, from Table 1, by 13 pro-
teins to 20,184). Another is the exact form of the queries, which
vary between resources, particularly when each selection interface
has a different look and feel, different syntactic formats of execu-
tion and download lists having different formats of cross-referenced
identifier columns. One example is the need to covert UniProt
interface queries into the equivalent SPARQL queries in
neXtprot as shown below. The UniProt syntax to count HGNC
cross-references, as entered in the web query box, is below:

database:(type:hgnc) AND reviewed:yes AND organism:”Homo
sapiens (Human) [9606]”

The answer was 19967 (March 2017), but note we need to
make to pre-selects for a) species/organism and b) “reviewed”
to select Swiss-Prot over TrEMBL. For the neXtProt equivalent
cross-reference query, these two pre-selects are not necessary since
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is human Swiss-Prot derived anyway. The HGNC select has the
form below:

select distinct ?entry where {
Pentry :reference ?ref .

?ref :provenance db:HGNC ;
:accession ?ac.

filter (regex(?ac, "HGNC’))

}

In this case the result was 19956. The basic listings from sources
used and some of the result sets have been made available as a
Figshare data collection (https:/figshare.com/collections/Sup-
plementary_data_for_assessing_the_human_canonical_protein_
count/3716413%). If any reproducibility issues do arise, interested
parties are welcome to contact the author.
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The article compares the number of canonical proteins encoded by the human genome in different
resources, including UniProtKB/Swiss-Prot, HGNC, neXtProt, GenelD, Ensembl or CCDS. The major
conclusion is that the number of canonical proteins should be around 19,000 and that, while numbers
converge across resources the full canonical human proteome is still not defined.

This is a good description of the current situation and the article is therefore interesting even if there could
be confusion between protein-coding genes and canonical proteins. If the author assumes it is the same,
maybe for consistency reason it would be good to mention only protein-coding genes or to explain what
the differences are. The author also suggests that an inter-team collaboration could come-up with a
finished canonical proteome and seems to ignore the ways the different resources already collaborate. As
this has already been raised in the review of E.Bruford, we will not enter into details. The question of the
release cycle is also important and should be developed in more details. Many discrepancies are only
transitional and only due to the release cycle of the resources compared. As mentioned in the article,
neXtProt is built on UniProtKB/Swiss-Prot and differences between these resources are only due to
release schedule. But this is also holds true for the other resources and should be emphasized.

Another issue concerns the methodology of the study. A number of resources compared in this study do
not have the same primary mission and it is therefore normal to have discrepancies between them. For
example, HGNC is a nomenclature committee and official gene names are assigned when a consensus
name is reached in the community. As a consequence, some clear protein-coding genes, such as NSG1
and NSG2 (UniProt P42857 and Q9Y 328, respectively) are not yet present in HGNC, because no
consensus has been found for these genes. The same is true for CCDS, which aims to provide a
consensus sequence for all protein-coding genes: some protein-coding genes are absent from the CCDS
set because no consensus has been found for the sequence (for example ELOA3C; UniProt
AOAO087WX78).

An alternative approach to assess the number of human protein-coding genes might be to compare
portals described in this article with proteomics resources: it might be interesting to investigate the
number of peptides that do not match to protein-coding genes in HGNC, UniProtKB/Swiss-Prot or
GenelD.

We think that the article would benefit developing these different points in the discussion.

There are a number of typos and imprecisions in the text listed below that alter the quality of the
manuscript and should be reviewed:
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“are all cross referenced to a single, maximal length, protein entry.”

It is not absolutely true since the maximal length is one the criteria. However, the relevance of the
selected canonical protein in Swiss-Prot in term of expression and biological relevance are also
considered among other criteria.

“the fact that that”

“the first two are essentially automated pipelines” it is not clear what the author is referring to? Swiss-Prot
and HGNC?

“There is now a community effort to promote more proteins to P1”
The author uses indifferently PE1 to PE5 and P1 to P5. This could be misleading.

“indicate the correct human sequence
is the 35 resides represented in”

One should read residues instead of resides.

“The current UniProt has”
When mentioning the database, prefer UniProtkKB

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: We are working for UniProtKB/Swiss-Prot

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Referee Report 05 May 2017

doi:10.5256/f1000research.11995.r21692

? Elspeth Bruford
European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
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General remarks:

The author has investigated the question of how many protein coding genes are encoded in the human
genome, and come to the conclusion that while protein coding gene counts from a variety of resources do
appear to be converging, there are still significant differences. One key aspect the author has maybe not
fully appreciated is the considerable level of collaboration already occurring between the cited resources,
which can be both advantageous - by reaffirming correct annotations - and disadvantageous - by
perpetuating erroneous annotations through multiple resources. At the same time, definitions of biotypes,
and membership within in each biotype, do still present differences which groups, including members of
the CCDS collaboration, are looking to unify. Furthermore, while different interpretations of available data
can of course cause discrepancies (and this is perhaps an area where more work is required by the
community to reach agreed standards, for example see PMID 26367542"), unsurprisingly some
resources access different datasets which cause further differences. While collaborations, definitions and
data-sharing could be tightened up, there is no doubt that what is most needed is concerted experimental
investigation of the remaining putative/hypothetical/dubious protein coding loci that remain within the
genome, so that the resulting data can be used to decide upon a definitive biotype for these loci.

Overall this is discussing an important question but there is a tendency to be rambling in sections and |
think the paper needs better organising to highlight some interesting questions the author raises. Some
assumptions made about the various projects also need to be corrected, and more attention to detail is
required for the numbers quoted to avoid confusing readers.

Specific remarks:

use of "miss-" throughout instead of mis-

Ensembl, not Ensemble

Entrez Gene is more widely referred to now as "NCBI Gene" - but variously referenced throughout the ms
as "GenelD", "NCBI genome annotation”, "RefSeq and Gene", "NCBI Entrez Gene", "GI", "NCBI", "NCBI
pipeline automation" etc...

GENCODE, not GENECODE

HGNC is HUGO Gene Nomenclature Committee (not Human)

neXtProt, not neXtprot

Abstract:

| disagree that the only suggestion that total numbers of protein coding genes may rise is from reports of
smORFS - as the author discusses later in the paper, even the very few genes reported to date to encode
"smORFs" have limited evidence. | would anticipate most increase would come from careful re-annotation
using increasing amounts of data (conservation, RNAseq, etc) and from annotation of multiple haplotypes
that may cover regions of the human genome that are not currently included in the reference assembly
and could be included in the future as alternate loci by the GRC.

Introduction:

While saying that the longest mRNA strategy has data support, it would also be worth mentioning the
exception of read-through transcripts which can confuse this strategy significantly.

Historical Growth:
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It could also be worth noting that Ensembl and Swiss-Prot/UniProtKb are also coupled as Ensembl
sequences that are absent from UniProtKB are imported into UniProtKB/TrEMBL and tagged as part of
their human proteome.

Ensembl's statistics make it very clear the number of proteins encoded by readthrough transcripts and on
"alternative sequence”, so | don't see how these could be said to "complicate" the figures. The issue of
how many of the proteins (and protein coding genes) included on the alt loci are not represented in the
primary assembly is however an interesting question.

Figure 2 shows the Swiss-Prot protein counts divided into total in red and those with protein or transcript
evidence in blue - it would be nice to have the 2017 figures actually stated as opposed to having to
guesstimate them from the graph.

Current Counts:

The author does not seem to understand the relationship between GENCODE (not GENECODE),
Vega/Havana and Ensembl. It is nicely explained on the GENCODE site:
https://www.gencodegenes.org/fag.html

Hence none of these figures are truly independent at all, and any differences between Ensembl and
GENCODE figures are likely due to release asynchrony.

As it is unsurprising that GeneCards, which combines data from a variety of resources, has the largest
"protein coding gene count" it is equally unsurprising that the CCDS consortium has the lowest as they
are looking for the consensus CDS from Ensembl/Havana (=GENCODE) and RefSeq.

| disagree with the statement that mapping identifiers across sources can "establish if the protein
sequence in pipeline output A is the same as pipeline B", and indeed the author discusses the example of
BACE1 which shows this is not necessarily true; however, this discrepancy is not due to the mappings
themselves or how they are made, but simply due to the methods of protein prediction/selection used in
each resource. The mapping may correctly suggest that both pipelines are considering the same genomic
locus (in this case the BACE1 gene), but agreement on the encoded protein(s) is not guaranteed. This
paragraph would be better rephrased to make this clear.

Typo: if HGNC instantiate then they should also collate (not collates)
Cross-reference counting:

"However, the choice was made here to exemplify just four identifiers, Swiss-Prot accession numbers,
HGNC IDs (directly, or via the current gene symbols) Ensembl gene IDs and NCBI Entrez Gene IDs.
These were chosen for their global prominence but also methodological complementarity. This derives
from the fact that that the first two are essentially automated pipelines (but different), while the second two
are primarily manual expert annotation operations (but also different)"

The first two resources in the list are Swiss-Prot and HGNC, and neither are "essentially automated"; |
think the author meant to say "last two" as nowhere else in this paper does he suggest either of these
resources rely heavily on automation. As discussed earlier, the Ensembl gene set is a merge of their
automated predictions with Havana manual annotations, and the manual annotations make up the vast
majority of the protein coding genes. Likewise, the NCBI "Entrez Gene IDs" undergo extensive manual

Page 16 of 22


https://www.gencodegenes.org/faq.html

FIOOOResearch F1000Research 2017, 6:448 Last updated: 09 MAY 2017

curation, especially for the human set. Therefore | would disagree that any of these four resources are
"essentially automated pipelines".

Figure 3 is very confusing with all of the "zero" segments - this figure would make more sense if it was an
"all by all" comparison, as opposed to being based solely on the Swiss-Prot dataset. In fact | would
venture that a simple table would be more readable, and as stated later in the paper this is a "Venn-type
set(s) that generally end(s) up being more confusing than illuminating." Further, the numbers listed in Fig
3 do not correspond with those in the text - in Table 1 20,617 mappings were listed for "GenelD"/NCBI,
whereas here there are 18,896, a difference of 1,721, not 2,923 as stated in the text. And for HGNC
19,957 is 924 higher than the 19,033 listed in Table 1, not 905 higher as stated.

The reason for the increase in mappings to HGNC IDs is more likely the inclusion of mappings to loci that
HGNC do not regard as protein-coding, such as immunoglobulin light chain segments, than it is due to
Swiss-Prot having more than one HGNC ID in any given record. In fact this explanation is discussed in the
next paragraph where the types of loci enriched in specific segments are discussed, such as
immunoglobulin light chain segments and endogenous retroviruses (note again the NCBI pipeline is
referred to as "automation" which | do not think is a fair representation). | think it would make more sense
for these two paragraphs to be rewritten to present the reasons more coherently. Perhaps it also would
have made a better comparison to limit the Swiss-Prot data to loci that ALL four resources regard as
protein coding, or to at least present how many of the loci in some segments of the diagram each
resource individually considers as protein coding? This would also have made a comparison with the
figures in Table 1 more valid, as currently the figures in Table 1 represent a different set to those being
compared in Figure 3. Finally, the zero figures in the Ensembl (not Ensemble!)/Swiss-Prot and
NCBI/Swiss-Prot segments must reflect their efforts to map between resources, though | am surprised
there are no differences at all, even due to update cycle asynchrony? These figures certainly do not result
from HGNC importing everything that NCBI and Ensembl annotate automatically (which | note Michael
has suggested in his review), as this is definitely not the case. In the next paragraph 19,035 rows are
quoted (twice) for HGNC data, but again this does not tally with the figure of 19,033 quoted in Table 1 for
HGNC protein coding loci.

Existence Evidence:

In the figures quoted with evidence from Peptide Atlas for Swiss-Prot and neXtProt (17,084 vs 18,083) |
would disagree that this could be described as a "slight" difference; this is nearly 1000 loci, which is at
least 5% of the protein coding loci in the genome, even using the highest of the counts cited in this paper.
What is the reason for this difference, it would be interesting to know. In the next paragraph the figure of
152 is quoted for the HPA-only set, but from Figure 5 this looks to be 158. Which is correct?

Typo - "...complications include the 40-residue of putative protein FAM86JP...".

Also note that while FAMB8JP does not have cross-reference to NCBI Gene or Ensembl from Swiss-Prot
these can be found in HGNC and NCBI Gene. The last paragraph of this section again mentions the issue
of IG chains, which most resources do not class as "protein coding".

Small Proteins:

HGNC symbol is APELA (not APLEA).
Typo: "...to generate PODN83 and P)DN84 for a 34 residue mouse and human proteins..."
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The name of the second smORF (DWORF) is not actually mentioned until it is listed in the bullet points, it
would be good to introduce "DWORF" by name in the paragraph above. | do not agree with the author that
from the (paucity of) evidence cited for these examples that it is therefore "certain” that additional smORfs
will be discovered, | think "likely" would be more appropriate.

Data Availability:

When discussing data update cycles, note that HGNC have daily updates and | think the same can be
said of NCBI Gene, so these are both far more frequently than monthly.

Again the figure quoted in the text does not match numbers given in Figure 3: this section says that the
query for HGNC cross-references gave 19967, while Fig. 3 quotes 19957.

Typo: "...pre-selects are not necessary since is human Swiss-Prot derived..."

References
1. Bruford EA, Lane L, Harrow J: Devising a Consensus Framework for Validation of Novel Human
Coding Loci.J Proteome Res. 2015; 14 (12): 4945-8 PubMed Abstract | Publisher Full Text

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: | am the Project Coordinator and one of the Pls of the HGNC project

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.
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Michael Tress
Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO),
Madrid, Spain

Abstract:

“In 2004, when the protein estimate from the finished human genome was only 24,000, the surprise was
compounded as reviewed estimates fell to 19,000 by 2014. “

This makes no sense; it seems to be missing a large chunk.

“miss-annotation”

Introduction:

“This has its origins in the Swiss-Prot approach to protein annotation whereby protein sequence
differences arising from the same genomic locus either by alternative splicing or alternative initiations (or
permutations of both) and/or genetic variants, are all cross referenced to a single, maximal length, protein
entry8.«

This is not strictly true, SwissProt does NOT divide up all proteins from the same gene in different entries
(TMPO for example). Here you have to be clear that SwissProt does this most of the time.

“Importantly, while this was originally introduced as the curatorial strategy of choosing the longest MRNA
for an entry, it actually turns out to have post- genomic data support, not only in the form that coding-loci
express a single main protein (i.e. that most predicted alternative transcripts may not be translated), but
also that in most cases this is the max-exon form (i.e. the curatorial choice actually seems to be the
biological “default”)9.”

Strictly speaking this is true, the longest SwissProt form is the biological default in most cases. But it is
purely technical and is not the best way of selecting the biological default. The way this paragraph is
written makes it sound like it is. Better to say:

“not only in the form that coding-loci express a single main protein [ref to Ezkurdia et al, JPR] (i.e. that
most predicted alternative transcripts may not be translated), but also that in most cases this max-exon
form (i.e. the curatorial choice) actually coincides with the biological “default”)®.”

Ref: Ezkurdia I, Rodriguez JM, Carrillo-de Santa Pau E, Vazquez J, Valencia A, Tress ML. Most highly
expressed protein-coding genes have a single dominant isoform. J Proteome Res. 2015 Apr
3;14(4):1880-7. doi: 10.1021/pr501286b. '

Historical Growth:

“One of these is the inclusion of “alternative sequence”, referring to genomic sections that differ from the
primary contiguous assembly. The current release of Ensembl (87.38) species 2,541 proteins in this
category, but it is not clear which of these are just variants of those derived from the primary assembly.”
Alternative sequence genes are not included in the Ensembl reference counts.

principle = principal

GENCODE not GENECODE!
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And GENCODE, VEGA and Ensembl ARE merged and have been for a number of years.
VEGA is annotated by the HAVANA group (part of the GENCODE Consortium), not Havanna.

It's also worth pointing out that Ensembl (since it is now merged with GENCODE) is essentially a manually
curated annotation too with manual curations coming from the HAVANA team.

“Consensus Coding Sequence (CCDS) project. These correspond to a core set of proteins annotated as
having full length transcripts that exactly match reference genome coordinates.”

In fact CCDS transcript models need to exactly match between RefSeq and Ensembl/GENCODE, which
explains why CCDS is the smallest set. This is actually an important caveat for the next paragraph, as
might be imagined.

Cross-reference counting:

It is also worth mentioning that these are the only four independent sets, in that Vega and GENCODE
merge into Ensembl, NextProt is UniProt and GeneCards and CCDS are essentially intersections and
unions of different subsets.

Ensembl, not Ensemble.

“The explanation is that Ensemble and NCBI Gene have consolidated mapping reciprocity for proteins in
Swiss-Prot (but, as mentioned above, many proteins from these two sources are still nominally “outside”

Swiss-Prot).”

| think what it really says is that genes annotated in both Ensembl and SwissProt are automatically
included in HGNC.

“GENCODE and Vega do not currently have cross-references inside Swiss-Prot”
Because GENCODE/VEGA == Ensembl
“forth” - fourth

Existence evidence:
“However, on its own, active transcription is insuficient to prove translation, even with a predicted CDS”

Maybe given the proliferation of such papers it might be worth pointing out that neither is ribosome
profiling evidence ...

“in regarded to” in regard to

“As was done for Figure 3, “

| think this whole paragraph could be written more carefully. | can follow it, but | suspect most people
wouldn't. The data sets being compared need to be introduced specifically (again) and the numbers
cross-checked. The examples are interesting, but:

“A second example exposes a different problem. The putative uncharacterized protein C70rf76 (Q6ZVN7)
is mapped from UniProt to a different protein in HPA as ENSG00000127922- SHFM1 (i.e. P60896). The
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miss-mapping appears to be extrinsic to HPA and in this case could be a UniProt < > Ensembl problem
(which is why this is not in the 4-way set).”

Actually the problem stems from the fact that Ensembl annotates a single gene (now called SEM1) for
these coordinates, while RefSeq has two (those listed in the paper). | have looked at this case before and
wrote “RefSeq has two genes for SHFM1; RefSeq is right”. | am not 100% sure that it is, but if it is one
gene, it looks to be a gene that has two ORFs and hence it makes sense that UniProt has two entries.

Small proteins
“APLEA” = APELA

Also worth pointing out the conservation all the way back to Danio for APELA. In fact cross-species
conservation studies currently being undertaken by Ensembl may unearth some “missing” smORFs.

“not withstanding miss-matches”
“miss-mapping”

“However, inter-source clustering of explicit protein sequences could make identifying difference more

effectively than cross- references alone (e.g. a possible resurrection of the Human Protein Index initiative
31 ).

Nooooo, do not resurrect the IPI, it died for good reasons. | don’t believe that we need any more
competing (and only superficially communicating) bodies in the field.

“It could be argued that additional (collective) manual curation would be needed to accomplish this”

This is nice in principal, but manual curation is VERY subjective. For many genes whether it is annotated
as coding or not is based on the balance of probabilities and each annotator has his/her own balance of
probabilities. What is needed is more and better information for the corner cases.

General Comment:
There are a lot of distinct sets being compared in the figures. | would name and define the sets clearly in
the text when possible, otherwise readers will struggle to see what is being compared.
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Competing Interests: | am part of the GENCODE Consortium

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
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