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Abstract

The closure of gaps is crucial to maintaining epithelium integrity during developmental and repair 

processes such as dorsal closure and wound healing. Depending on biochemical as well as 

physical properties of the microenvironment, gap closure occurs through assembly of multicellular 

actin-based contractile cables and/or protrusive activity of cells lining the gap. This review 

discusses the relative contributions of ‘purse-string’ and cell crawling mechanisms regulated by 

cell–substrate and cell–cell interactions, cellular mechanics and physical constraints from the 

environment.

Introduction

Epithelia have important roles in shaping tissues and organs during embryogenesis, as well 

as in protecting tissues from homeostasis loss during wound healing [1]. Many physiological 

and pathological processes involve the (re-)sealing of epithelial gaps. From single cell 

apoptosis to macroscopic wound, discontinuities of the epithelial barrier occur continuously 

throughout the lifetime of organisms and in various scales and geometries.

Our review hence focuses on how epithelium maintains its own integrity by examining 

diverse gap closure scenarios. Such discontinuities can arise either intrinsically (e.g. ventral 

closure and dorsal closure during development, cell extrusion during homeostasis 

maintenance) or extrinsically (e.g. physical and chemical injury, infection). Due to its 

physiological importance, a wide range of studies has strived to elucidate the mechanism of 

epithelial gap closure with both in vivo and in vitro techniques.

Various morphogenetic events require the collective migration of neighboring epithelium 

into an opening to form a continuous monolayer, including D. melanogaster dorsal closure, 

C. elegans ventral enclosure, eyelid closure, neural tube closure and trachea invagination 

[2,4••,5•,6]. In all these processes, an actin cable assembles apically to form a contractile 

‘purse-string’, and actin-based structures drive basal protrusion [7–10]. Lessons learnt from 

other gap closure processes studied in vitro, thanks to their striking similarities, helped 

understand the analysis of tissue morphogenesis in vivo [3].
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Wound healing takes place during embryogenesis but also during adult life after a stress, for 

instance a skin cut, asthma or acute lung injury in the airway system. Independent of the 

tissue, healing processes share similarities [11]. However, due to its prevalence and tissue 

accessibility, epidermal wound healing has been the most studied: a multi-step process 

including tissue growth and remodeling leading to the reconstruction of the wounded area 

[12]. In adult skin injuries, re-epithelization can last days, during which activated 

keratinocytes migrate collectively over the wound area, dragging their own basal lamina as 

they move forward [13]. Keratinocytes in the front remodel the underlying ECM by 

secreting proteolitic enzymes such as metalloproteinases and depositing new ECM proteins 

[14]. Cell crawling seems to be more prominent here, with leader cells extending broad 

lamellipodia [15–17]. Interestingly, wound healing mechanisms vary with the age of the 

tissue. Much attention has been devoted to the study of embryonic wound healing due to its 

lack of scarring, reminiscent of gap closure events during morphogenesis, typically by a 

purse-string mechanism including rapid recruitment and assembly of actin and myosin into a 

thick cable in neighboring cells around the wound [18–20].

Finally, a particular case of epithelial gap closure is apoptotic cell extrusion, in which a 

dying cell is excluded from an epithelial monolayer. Cell extrusion also occurs recurrently in 

adulthood during tissue turnover and homeostatic processes [21–23]. When one or more 

cells undergo apoptosis, a purse-string mechanism triggers contraction that squeezes the 

apoptotic cell out of the epithelium.

From the examples discussed above, it appears that two main mechanisms contribute to the 

restoration of the epithelial integrity: (1) acto-myosin cable contraction in a purse-string 

manner and (2) cell crawling driven by lamellipodial and/or filopodial protrusions. 

Sometimes one mechanism dominates but often the two are both present and not mutually 

exclusive, making it challenging to distinguish their individual contributions [24,25•] (Tables 

1 and 2). Fortunately, recent development of in vitro approaches allowed great progress in 

the understanding of the relative and synergistic effects of the two mechanisms as well as 

their regulation, by means of applying mechanical and geometrical constraints [25•,26•,27••,

28•,29,30•,31].

The acto-myosin purse-string in epithelial gap closure

The purse-string mechanism is defined as the accumulation of actin and myosin II forming a 

contractile cable surrounding the rim of the gap [19]. It is involved in a large variety of 

situations related to epithelial gap closure.

Single cell wounding is a critical event that must be quickly addressed to avoid leakage of 

intracellular components and subsequent cell death [32]. Cell repair by purse-string 

mechanism is conserved from embryonic to adult tissue cells of mammalian and non-

mammalian origin [33–37]. As observed in wounded Xenopus oocyte, actin and myosin II 

accumulate at the injury site within the first minute, and then progressively segregate to form 

two concentric rings surrounding the rim of the gap [33,38]. A repertoire of small GTPases 

Rho, Rac and Cdc42 localize circumferentially around the gap and actively regulate the 

reorganization of acto-myosin cytoskeleton in a spatiotemporal manner [39]. During fly 
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early embryo cell repair, the acto-myosin ring colocalize with E-cadherin at the plasma 

membrane [20]. In this situation, microtubules play an important role in organizing the acto-

myosin ring [20,34,37] and in guiding vesicular transport to the injury site.

For gap closure events involving multiple cells and therefore epithelium healing, a 

supracellular purse-string has been reported to form in all cells at the wound border (Figure 

1Ia). In this case, acto-myosin accumulates at the wound margin, but junctional acto-myosin 

also participates in the healing process [40]. Acto-myosin fibers are linked between 

neighboring cells, presumably through adherens and/or tight junctions [41–45], such that the 

supracellular cables can build-up and maintain tension across several cells. In this way, the 

contraction of the acto-myosin cable can drive the collective movement of the wound edge 

cells into the void [45] (Figure 1Ic). A complex spatiotemporal function of Rho GTPases 

signaling in controlling the closure has been reported [39,45–47].

Purse-string mechanism is mainly found in the closure of small monolayer defects during 

wound healing or cell extrusion [45,48]. The study of a pure purse-string mechanism in vitro 
has been challenging since it requires preventing cell adhesion and matrix-based migration.

However, recent studies have managed to implement in vitro models where epithelial gap 

closure can occur over non-adherent surfaces [49••,50••] (Figure 1Ib). Here, the contraction 

of a multicellular actin cable is efficient enough to close large-scale gaps, while the cells at 

the edge of the pattern are still attached to the ECM. Geometrical cues such as size and 

curvature of the gap matters, as well as intact intercellular junctions [28•,49••]. Interestingly, 

it appears that the maximal gap size that can be closed via purse-string differs among 

different cell types, such as keratinocytes and kidney epithelial cells, possibly due to 

differences in cytoskeleton and intercellular adhesion associated mechanical properties [28•,

49••,50••]. In the case of skin cells, force measurements revealed that they are first exerting 

traction forces on the substrate that point away from the gap. Once the cells have extended 

over the gap, as the contractile ‘purse-string’ cables form across the leading edge cells, the 

radial component of the force reverts direction with a maximal radial force of proximately 4 

μN [48]. These cables contract rapidly, leading to the formation of a suspended cell sheet 

over the gap and complete closure of the wound. The ‘tug-of-war’ mechanism identified in 

this study provides a clear demonstration of how cells exert directional forces to facilitate 

epithelial gap closure.

The role of cell crawling in epithelial gap closure

The crawling mechanism requires the extension of a lamellipodium by leading edge cells, 

often switching from apico-basal polarity to front-rear polarity [51] (Figure 1IIa and IIb). 

This process was initially described in monolayer wounding experiments using mechanical 

removal of a strip of cells, that is, manual scraping with pipette tip or razor blade [16,52,53]. 

Other studies performed with damage-free stencil removal and surface patterning techniques 

have shown that gap closure can in fact be triggered by the mere presence of free space 

[16,54]. The geometry and the size of these gaps can be easily varied with reproducibility 

[29,30•,55]. First-row cells extend lamellipodia and crawl into the free space in a Rac1-

dependent manner [52]. However, cells positioned rows behind the leading edge also extend 
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unusual lamellipodia, so called ‘cryptic’, under the cell ahead [56]. Moreover, advanced 

image analysis showed that cells at back of the epithelial cell sheet are also motile [53]. 

Interestingly, when only the first row of cells are subjected to a dominant negative form of 

Rac1, closure proceeds normally as cells behind the leading edge, with normal levels of 

Rac1 activity, can jostle through the first row of cells and become leader cells. Nevertheless, 

the closure is abrogated when the dominant negative form of Rac1 is expressed in the three 

first rows of cells at the edge [52]. Therefore, although the role of leader cells remains 

crucial to locally orient and drive collective epithelial migration [57,58], the closure is not 

necessarily only led by the leader cells [59,60]. Along this line, particle-based computational 

simulations relying on the migratory capacity of cells can describe in silico coordinated cell 

movements, as well as the appearance of leader cells at the boundary of cell monolayers 

[61,62]. In fact, these stimulations have shown that the cell crawling behavior is sufficient to 

account for gap closure [63].

Controversy remains as to what triggers the activation of the protrusive machinery. In studies 

where cell death occurs due to the closure process, damage-induced factors can initiate the 

response through ERK signaling pathway, whereas under conditions without damage, cell 

crawling may be induced by the presence of free space and self-polarization alone 

[53,54,64–67]. Along this line, the role of front cells is also important in coordinating the 

polarization of a migrating tissue through their interactions with their physical environment 

and neighboring cells as recently reviewed in [68].

Coexistence and interplay between cell crawling and purse-string

Cell crawling and purse-string are both important for closing epithelial gaps, and one can be 

favored over the other depending on the experimental conditions, including the presence of 

dead factors, gap size and geometry. Importantly, the two mechanisms are not mutually 

exclusive (Table 2). For instance, even though wound healing has been shown to mainly 

depend on purse-string in embryos, the presence of cellular protrusions has also been 

reported, and both mechanisms are required for efficient closure [3,10,69] (Figure 2a,b). 

Interestingly, the mode of closure appears to depend on the curvature of the wounded edge 

[25•].

In vitro systems have provided a novel understanding of the physical and mechanical 

parameters involved in epithelial gap closure [25•,26•,27••,70•]. The coexistence of cell 

crawling and actin-based cable contractility has been reported to be crucial for promoting 

optimal wound closure. Moreover, in model wounds or scratches, the leading edge 

repolarizes and transforms into crawling cells, with the appearance of leader cells harboring 

a large forward lamellipodium [15,16]. However, along the side of the protrusive front and in 

between two leader cells, the assembly of a supracellular actomyosin cable is frequently 

observed preventing new leader cell formation [70•] (Figure 2c). This cable is reminiscent of 

the one observed in purse-string process, and its formation also depends on RhoA activity 

[70•].

Brugues et al. studied how actomyosin cables and actin-based protrusions generate 

mechanical forces during wound repair [27••]. Cells adjacent to the wound generate radial 
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traction forces pointing either away from the wound or into the wound. The inward pointing 

forces coincide with the position of protrusions, whereas outward pointing forces coincide 

with the position of acto-myosin cables. Interestingly, the forces generated by the 

contraction of the acto-myosin cable around the wound are also transmitted to the substrate. 

Cells transmit forces to the substrate through specialized structures known as focal 

adhesions (FAs) [71,72]. During epithelial gap closure, it appears that FA orientation is 

mostly parallel to the wound edge under the acto-myosin cable but perpendicular in cell 

protrusions [25•,27••].

The shape of the wound, and in particular the direction of the local curvature of the gap, may 

be a key determinant of the modes of epithelia gap closure (Figure 2d). Negative curvature, 

that is, concave border, is related to actin cable assembly and purse-string-based closure, 

whereas positive curvature, that is, convex border, favors cell crawling [25•,26•,73,74•]. A 

recent study explored the roles of two gap-closing mechanisms and described how the 

relative contributions of the two mechanisms are affected by gap geometry [25•]. Cells 

predominantly crawl at positive curvature, whereas purse-string and crawling mechanisms 

additively operate to fill the gap in areas of negative curvature, thus leading to faster tissue 

velocity (Figure 2). To summarize, these two mechanisms can act in concert to close gaps 

consisted of both concave and convex regions and their relative contribution depends on the 

local curvature.

Conclusions and perspectives

Purse-string and cell crawling mechanisms have been proposed to drive epithelial gap 

closure, but a clear picture of their respective functions is masked by the complexity of the 

closure process and the variety of conditions. However, recent in vitro and in vivo 
experiments have shown that physical constraints, such as local tissue curvature are crucial 

to the regulation of gap closure mechanisms [25•,27••,70•]. Such coupling could be 

mediated by a differential organization of the actin cortex depending on the shape of the cell 

membrane, but also by a differential distribution of curvature-sensing proteins, such as BAR 

domain proteins [75].

Interestingly, components of cell–cell adhesion, such as E-cadherin, are also dynamically 

redistributed at the wound edge, which could be mediated by contractile forces exerted by 

the acto-myosin cable [3,42,76,77••]. Cadherin-based adhesions have been implicated in the 

transmission of intercellular, as well as in cell–substrate forces [78,79,80•,81], making them 

indispensable players in the mechanical regulation of multicellular gap closure.

Finally, it would be of great interest to systematically characterize the closure of gaps, 

depending on the mechanical properties of the surrounding environment, such as how the 

stiffness of the substrate may affect epithelial wound healing [82,83]. Aside from the passive 

mechanical properties of the ECM, other cells in the wound microenvironment can also 

actively provide mechanical cues to the epithelium. Recent works suggest that contraction of 

underlying cells drives Drosophila dorsal closure or Zebrafish epiboly [84]. Similarly, 

myofibroblasts in the dermis beneath an injured epidermis can contract and help the sealing 

of wounds [85,86].
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Venturing into the realm between biology and physics should help us better understand the 

mechanics guiding epithelial gap closure. With the recent advances in in vitro techniques, 

we have the means to unveil more hidden mysteries in the process.
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Figure 1. Contractile actin cable (Purse-string) or cell crawling mechanisms for epithelial gap 
closure both in vivo and in vitro situations.
(Ia) Top panel: Actin labeling during embryonic dorsal closure of D. melanogaster. Scale 

bar: 20 μm (from [87]). Bottom panel: Actin staining during Xenopus leavis wound healing. 

W: wound; scale bar: 50 μm (from [88]). (Ib) Actin staining of HaCaT keratinocytes 

covering a cyto-repulsive area in vitro (Top and side views; left: before gap closure; right: 

during gap closure; fibronectin: red; from [49••]). (Ic) Scheme of purse-string gap closure. 

Cell at the gap margin assemble a supracellular contractile actin cable. Adherens junctions 
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insure actin cable continuity between adjacent cells. Inset: Myosin II proteins cross-link 

actin filaments and insure contractility. (IIa) Light migrograph of the leading edge of 

healing mouse corneal epithelium.

Arrowhead: lamellipodium; w: wound; scale bar: 25 μm (from [89]). (IIb) E-cadherin 

staining of a leader cell at the wound margin of rat liver epithelium cultured in vitro. scale 

bar: 10 μm.

Source: From Ref. [15] ‘Copyright (2003) National Academy of Sciences, U.S.A.
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Figure 2. Combination of contractile cables and cell crawling for gap closure.
(a) Top: the actomyosin cable and the actin-based lamellipodia (arrows) participate in 

embryonic gap closure. Myosin and actin are displayed green and red, respectively; scale 

bar: 20 μm. Bottom: schema of D. melanogaster embryo wound healing during contraction 

phase (from [24]). (b) Left: F-actin staining of the leading edge of adult mouse corneal 

epithelium during wound healing. At the wound margin cells extend lamellipodial 

protrusions (yellow arrowheads) and take a part in the assembly of the supracellular actin 

cable (white arrows). Note the actin reinforcement at the intercellular contacts (white 

arrrowheads). WS: wound surface, scale bar: 10 μm (from [41]). Right: Scheme of epithelial 

adult mouse corneal wound healing. (c) Organization of a finger-like protrusion. At the tip of 

the protrusion, the leader cell extends large lamellipodia (arrows). At wound border and 

between two leader cells, follower cells assemble a supracellular acto-myosin cable 

(arrowheads). Pictures shows F-actin staining of the protrusive front of a kidney epithelium 

in vitro; top and side views; scale bar: 50 μm and 5 mm respectively (from [70•]). (d) Local 

curvature of the epithelium edge induces either lamellipodia extension (arrow) or acto-

myosin cable assembly (arrowhead). The amplitude of curvature is correlated with the 

predominance of the lamellipodia or actin cable (from [25•]); grey: F-actin; purple: 

phospho-myosin light chain; green: cortactin; scale bar: 20 μm). At the edge of the tissue, 

the force balance relies on the stress, σ, normal to the edge and the contributions of the 

crawling forces due to lamellipodium extension, fL, and purse-string forces, γκ, where γ is 

the line tension and κ the local curvature (=1/R).
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