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Summary

The fitness effect of biological noise remains unclear. For example, even within clonal microbial 

populations, individual cells grow at different speeds. Although it is known that the individuals’ 

mean growth speed can affect population-level fitness, it is unclear how or whether growth speed 

heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division 

times can significantly affect population-level growth rate. Using time-lapse microscopy to 

measure the division times of thousands of individual S. cerevisiae cells across different genetic 

and environmental backgrounds, we find that the length of individual cells’ division times can vary 

substantially between clonal individuals and that sublineages often show epigenetic inheritance of 

division times. By combining these experimental measurements with mathematical modeling, we 

find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of 

division times increases the population growth rate. Furthermore, we demonstrate that the 

heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation 

in the expression of catabolic genes. Taken together, our results reveal how a change in noisy 

single-cell behaviors can directly influence fitness through dynamics that operate independently of 

effects caused by changes to the mean. These results not only allow a better understanding of 

microbial fitness but also help to more accurately predict fitness in other clonal populations, such 

as tumors.
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Introduction

The fitness of a population depends on the reproductive performance of each of the 

individuals in the population. However, populations can be very heterogeneous, for example, 

due to differences in so-called life-history traits such as the kinetics of reproduction, age, 

and mortality [1]. Interestingly, many studies have revealed that even clonal populations in 

homogenous environments can show substantial levels of heterogeneity [2–12]. For 

example, microbial populations that are growing in the exponential phase show a 

considerable heterogeneity in the length of doubling (division) times (DTs) between 

different cells [13–19]. Similarly, cell-to-cell growth rate heterogeneity also occurs in other 

clonal cell populations, such as tumors [20–22]. While such biological noise in growth 

behavior has often been interpreted to have a direct negative impact on population-level 

growth rate [2, 23, 24], this effect has rarely been quantified and analyzed in detail [25].

Gene expression noise, i.e., stochastic variability in gene expression, is a key factor believed 

to contribute to differences between cells in a clonal population [2, 26–29]. Gene expression 

noise can be a disadvantageous imperfection, for example, when a robust and precise 

physiological response to an environmental change is required to maintain high fitness [30–

33]. However, phenotypic heterogeneity arising from gene expression noise can also be part 

of a bet-hedging strategy, for example, by creating subpopulations that are prepared for 

changing or adverse conditions, often at a fitness cost in the current environment [7, 9, 34–

37]. Similar to noise in single-cell growth, the direct quantitative impact of gene expression 

noise on population-level fitness has received little attention [7, 9, 34, 38–40].

Here, we use a combination of modeling and experimentation to investigate in detail how 

key life-history traits, including mean, variation, and epigenetic inheritance of DTs, affect a 

population’s fitness. Using time-lapse microscopy, we acquired single-cell DT distributions 

for a diverse range of genetically distinct Saccharomyces cerevisiae yeast strains growing 

exponentially on medium supplied with different carbon sources. Measurements of mother 

and daughter cell DTs indicate that certain strain/medium combinations yield noisy DT 

distributions, with substantial epigenetic inheritance of DT within sublineages. A stochastic 

model reveals that DT variability within mother and daughter fractions and the epigenetic 

inheritance of DT increase the population growth rate considerably beyond the predictions 

of a simple deterministic model. We show that this surprising result can be explained by a 

complex evolution toward a steady-state distribution of single-cell growth rates within the 

population. Finally, using a reverse-genetics approach, we show how changes in gene 

expression of catabolic genes can contribute to noisy single-cell growth behaviors. Together, 

our results show how variability in life-history traits across clonal individuals can sometimes 

counterintuitively affect population-level growth rates.

Results

Measuring Single-Cell DTs Using Automated Live-Cell Microscopy

To investigate growth at the single-cell level, we used automated time-lapse microscopy to 

measure key life-history traits, including mean, variance, and epigenetic correlations of DTs 

of single cells in the clonal populations of exponentially growing yeast cells (Experimental 
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Procedures). We acquired time-lapse growth records for ten genetically distinct yeast strains 

growing in up to seven different growth media. By varying the carbon source, we were able 

to analyze single-cell DTs across a wide range of population growth rates (n = 41 

experiments; see Dataset S1). These population growth rates were measured on solid media 

by tracking microcolony growth and in liquid media using a colony-counting assay 

(Supplemental Experimental Procedures; Dataset S3).

For each experiment, we analyzed the time-lapse movies by tracking the growth of 

individual cells within 16–113 microcolonies, yielding a total number of more than 5,500 

single-cell DTs (Experimental Procedures; Dataset S1). Figure 1A and Movie S1 show how 

we measured the single-cell DTs. In our analyses, we distinguish between mothers (cells that 

have already completed a bud) and daughters (newborn cells that have not completed a bud 

yet). For each experiment, this analysis yields mother and daughter DT distributions, which 

are represented in Figure 1B.

DT Variability and Epigenetic Inheritance Are Condition and Strain Dependent

Several trends emerged from this dataset. First, it is clear that, although there is considerable 

variability in mean single-cell DTs across strains and environments, mean daughter and 

mother DTs display a striking linear relationship (Figure 2A; R2 = 0.881, p < 2.2e–16). We 

also find that the large increase in mean daughter DTs at slower growth rates is mostly 

accounted for by an increase in the length of the unbudded period of the daughter cells 

(Figure 2B).

In order to statistically summarize the variability (or noise) in DTs for mother and daughter 

cells, we calculated the coefficient of variation (CoV; SD/mean). This trait is partially 

correlated with the mean DT (Figure 2C). However, 37% and 75%, respectively, of the 

variability in mother and daughter CoVs is left unexplained by the mean DT, which implies 

that DT noise in strains varies quite independently of the mean. For example, the strains Y55 

and BC187 growing in galactose have very different DT CoVs at similar mean DTs (BC187 

versus Y55; mother DT CoV = 0.201 versus 0.098; daughter DT CoV = 0.215 versus 0.139; 

Figures 1B and 2C).

Apart from raw DT values, our dataset also allowed us to follow how DTs were correlated 

between mothers and daughters (Figure 1A; Figure S1A). Using these genealogical 

relationships, we investigated whether there is epigenetic inheritance of the DT length by 

measuring correlations between individual DTs within lineages [41, 42] (Figure S1). We 

found that, on average, the strongest DT correlation exists between a mother and her most 

recently born daughter cell (R2 = 0.2517; Figure 2D). In contrast, the average correlation 

between consecutive DTs of a given mother was much weaker (R2 = 0.0153; Figure S1D). 

These traits are independent of mean and CoV in DT (Dataset S4). Notably, across our 41 

experiments, certain strain/condition combinations displayed considerably higher DT 

correlations than others (Dataset S1). For example, for BY/S288c growing in palatinose, we 

found that the R2 of both genealogical relationships is higher than 0.4 (discussed later).

Using this dataset, we used linear regression to investigate which DT characteristics best 

explain population-level growth. We found that a simple linear model based only on the DT 

Cerulus et al. Page 3

Curr Biol. Author manuscript; available in PMC 2017 May 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



means is highly predictive of population-level growth rate (R2 = 0.880, p < 2.2e–16; Dataset 

S4). The accuracy of this model is not significantly improved by adding the DT CoV and DT 

correlations as parameters (Dataset S4).

An Individual-Based Model that Combines Single-Cell Variance and Epigenetic Behavior to 
Predict Population-Level Growth Rates

To gain insight into how the mean, noise, and epigenetic inheritance of single-cell DTs affect 

population-level growth behavior, we used mathematical analysis and simulation. 

Previously, an elegant single-cell model for budding yeast population growth was proposed 

by Hartwell and Unger [43]. In this deterministic model, mothers and daughters are modeled 

to grow at a fixed DT (measured as the arithmetic mean of the empirical DT distributions).

Deterministic Model—

This model can be solved analytically, allowing the prediction of population growth rate 

during steady-state growth [43, 44] (Experimental Procedures).

Importantly, this deterministic model considers only the arithmetic mean of mother and 

daughter subpopulations and does not take into account the inter-individual variability. To 

explore the effect that single-cell variability in DTs could have at the population level, we 

developed an individual-based model of population growth that accounts for variance and 

epigenetic inheritance of cellular DTs. In our model, all cells divide at variable DT lengths, 

which are randomly assigned to them by sampling from a distribution specific for the mother 

and daughter cells (Figure 3A). For mathematical simplicity, we describe the model in terms 

of the parameters of a normal distribution that were fitted to empirical DT measurements, 

which showed a good fit for the data (Dataset S2; Supplemental Experimental Procedures). 

However this analysis can be extended to other distributions, including simply the empirical 

DT distribution (Figure S4; Supplemental Experimental Procedures).

Stochastic Model, Without Epigenetics—

Such a stochastic model does not yet take into account the epigenetic inheritance of DTs, 

since DTs are distributed randomly and independently of previously assigned DTs. To 

include the effect of epigenetic inheritance of DTs on the population growth rate, we 
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expanded our stochastic model so that the choice of new DTs also depends on previous 

mother DTs (Figure 3A; Figure S2). For each cellular lineage in the simulation, previously 

assigned DTs are used as an input to determine new DTs (the output). The set of equations 

used to determine new DTs constitute a transfer function that returns a series of output DTs 

matching the empirical DT distribution. Furthermore, the transfer function’s parameters can 

vary the strength of the correlation (R2) between the input and output distributions.

Stochastic Model, With Epigenetics—

These equations introduce two new parameters that reflect the extent of DT correlation: 

 and A. In the Supplemental Information, we show that, for certain parameter 

combinations, when provided with a series of normally distributed input DTs, these 

functions return a series of normally distributed output DTs (Figure S2B). Each combination 

of A and  leads to a certain correlation (R2) between the input and output 

distributions. In this way, the R2 values of the experimentally determined DT correlations 

are used to choose the parameters A and  for strain/condition-specific modeling.

To obtain population growth rate estimates for our stochastic model, we ran Monte Carlo 

simulations of population growth based on our empirically measured DTs (Supplemental 

Experimental Procedures). We ran the model under different assumptions: (1) strictly 

deterministic, (2) strictly stochastic (without epigenetic effects), and (3) including both DT 

variability and epigenetic behavior (Figure 3A). We found that all models accurately predict 

experimentally measured population growth rates made on solid medium and in liquid 

culture (Figures 3B and 3C; Figure S3). In other words, the deterministic model predicts 

experimentally measured population-level growth with an accuracy very similar to that of 

the stochastic and epigenetic models, suggesting that the DT mean is the strongest 

determinant of population growth rate across our dataset of growth measurements in a wide 

range of environments. Consistent with this, as previously mentioned, we found that, across 

all experiments in our dataset, the mean DT alone statistically explains 88% of population-

level growth rate (Dataset S4). However, the results in the next paragraphs indicate that, for 

certain environments and strains, inter-individual variation and epigenetic inheritance of DTs 

become important and also significantly affect the population-level growth.
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Heterogeneous Single-Cell Growth Affects Population-Level Fitness

Our growth simulation model allowed us to address two key questions about the potential 

population-level effects of our single-cell observations: (1) What role does variance in 

single-cell DTs play in population fitness? (2) What role does epigenetic inheritance in 

single-cell DTs play? Contrasting our model’s predictions of population-level growth rate 

with the prediction of the classic deterministic model allowed us to measure the effect that 

these factors can have on fitness.

To attack the first question of how variability in DTs can affect population-level behavior, 

we compared our stochastic model with the deterministic model across our 41 experiments. 

This analysis revealed that a deterministic model can underestimate population growth rate 

by up to 4%–7%, depending on the type of distribution used in the simulation (Figure 4A; 

Figure S4A). Further analysis indicates that DT CoV explains nearly all of this growth rate 

increase (R2 = 0.96, p < 2.2e−16). Even when controlling for the weak covariation between 

DT mean and DT CoV (Figure 2C), variation in single-cell DT alone can explain 63% of 

this growth rate increase (p < 2.2e−16; Dataset S4; Supplemental Experimental Procedures).

We used stochastic simulations to systematically investigate how these aspects of DT 

variation affect population-level growth. Consistent with our statistical observations, these 

analyses indicated that the DT CoV has a large effect on the population growth rate across 

the wide range of values in our experimental measurements (Figure 4B). By contrast, 

although we found that skewness and kurtosis can have large population-level growth rate 

effects, such effects are negligible in the parameter space that we observed in our dataset 

(Figures S4A and S4B).

The aforementioned results indicate that, given a constant mean DT, stochastic variation in 

DTs increases growth rate. To understand how this counterintuitive effect occurs, we first 

have to consider the growth rate of each single cell, which is given by ln(2)/DT. Importantly, 

given a DT distribution with mean = μ and SD > 0, the mean of the corresponding growth 

rate values will actually be higher than the growth rate of the mean DT = ln(2)/μ. This effect 

is more generally known as Jensen’s inequality, which states that the mean of a set of values 

that have undergone a convex transformation f(x)—in this case, growth rate = ln(2)/DT—is 

equal to or higher than the same transformation of the mean of these values (or mean[f(x)] ≥ 

f(mean[x])). Therefore, for a given mean, adding noise to a single-cell DT distribution has 

the potential to increase the population growth rate, since, on average, cells are assigned 

faster growth rates over the course of each doubling.

However, Jensen’s inequality alone is not sufficient to explain how population-level growth 

rate changes with increasing DT noise. We also have to take into account that the single-cell 

DT distribution evolves with time to reach a steady state that is enriched with slowly 

growing cells (Figure S4D). This is because individuals with short DTs finish their doubling 

more quickly than cells with a long DT, while new individuals have equal chances of 

growing with a long or a short DT. In the Supplemental Information, we show that it is the 

arithmetic average of the single-cell growth rates at steady state that equals the population-

level growth rate. Therefore, the enrichment of slower growing individuals during steady 

state has the potential to reduce, or even counteract, the population growth rate increase that 
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is predicted by Jensen’s inequality. Combining both effects, our stochastic model shows that 

there is a net population growth rate increase, which is, however, lower than the arithmetic 

mean of the sampled growth rate (ln[2]/DT) distribution (Figure S4C).

The effect of increased DT noise on population-level growth can be non-trivial, especially 

given that the variance and mean of single-cell DTs can be largely independent phenotypic 

traits (Figure 2C). The results imply that a change in DT CoV can yield a considerable 

difference in fitness and, thus, a significant selective advantage over evolutionary timescales. 

Indeed, a simple simulation using the stochastic model shows that, when the mean DT is 

kept constant, mutants with more noisy DT distributions have a selective advantage 

compared to a population with less noisy DT distributions. Moreover, these mutants reach 

fixation at similar frequencies as mutants that have the same fitness advantage by having a 

shorter DT mean but the same DT noise (Supplemental Experimental Procedures). Together, 

these results are at odds with the common intuition that growth noise is always detrimental 

for the population-level fitness.

Epigenetic Inheritance of Single-Cell DTs Further Increases Population-Level Fitness

To investigate the effect of epigenetic DT inheritance on population growth rate, we 

compared the predicted population growth rates from the stochastic-epigenetic model with 

those of the strictly stochastic model (Figure 5). For each specific strain/condition 

combination, we modeled two experimentally observed DT correlations, including the 

correlation between consecutive mother DTs and the correlation between the DTs of a 

mother and her most recently born daughter (Figure 5A; Figure S2C).

Viewed across our dataset, epigenetic inheritance has only a small effect on population 

growth rate compared to predictions made when there is no individual DT correlation 

(Figure 5B). However, some strain/condition combinations show a significant population-

level growth rate increase when epigenetic effects are considered, especially for strain/

condition combinations that show both high single-cell DT variability and high epigenetic 

DT inheritance (Figure S5). We illustrate this in Figure 5C with a fitness landscape of the 

strain BY/S288c growing in palatinose. The growth-rate-increasing effect of epigenetic DT 

inheritance can be intuitively understood by its effect on the steady-state DT distribution. 

Even though cells with a short DT finish their doubling more quickly, because of the 

epigenetic factor, they are more likely to give rise to fast-growing cells themselves. This 

diminishes enrichment for slowly dividing cells, leading to a steady-state DT distribution 

containing more quickly dividing cells than under the assumption of a purely stochastic 

model (Figures S4D and S4E).

Epigenetics Can Amplify the Heterogeneity of Growth Rates between Small Populations

We found that single-cell DT variability and epigenetic DT inheritance can affect 

population-level growth rates at large population sizes (Figures 4 and 5). Likewise, we 

expected that these parameters could also considerably affect the variability of growth rates 

between different (isogenic) populations, especially at small population sizes when the 

variability in single-cell DTs might not yet be averaged out [7, 9, 24, 45].
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To test for these effects, we used a non-parametric statistical comparison between our 

model’s predictions and empirical measurements made at small population sizes 

(Supplemental Information). These analyses revealed that, for strain/condition combinations 

where the mother-daughter DT correlation is low (R2 < 0.35), epigenetics plays a small role 

in microcolony variability. However, for strain/condition combinations where the mother-

daughter DT correlation is high (R2 > 0.35), simulations of microcolony growth rate 

distributions that account for epigenetic effects are consistently closer to the measured 

values (Figure S6B; Supplemental Information). Together, these results indicate that, in 

many cases, microcolony growth variability is simply the result of stochastic variability in 

single-cell DTs. However, in other cases where epigenetic effects are strong, this can lead to 

further increases in microcolony growth rate variability.

Overexpressing the Genes Required for Growth Reduces Heterogeneity and Epigenetic 
Inheritance of Single-Cell DTs

We set out to identify a molecular mechanism that might underlie stochastic and epigenetic 

single-cell DT variability. To explore this, we examined gene expression and single-cell 

growth in palatinose, a condition that gave rise to both a high degree of single-cell DT 

variability and high epigenetic DT inheritance (Figure 5A). We reasoned that expression of 

the genes necessary for growth on this sugar might affect the observed growth variability. To 

grow fermentatively on palatinose, S. cerevisiae needs to transport the sugar through the 

alpha-glucoside transporter Mal11p and cleave the sugar intracellularly using an alpha-1,6-

glucosidase enzyme (enzyme encoded by two paralogous genes, IMA1 and IMA5) [46–48]. 

The expression of MAL11 and IMA1 is induced by two transcriptional activators (MAL13 
and YFL052W), both of which are essential for growth on palatinose [46]. The regulatory 

gene network is visualized in Figure 6A.

We constructed a strain bearing fluorescently tagged IMA1(-yECitrine) and MAL11(-
mCherry) alleles and measured the expression of these two genes with flow cytometry. The 

results indicate that, while both genes are, on average, highly expressed in palatinose, they 

exhibit high expression noise (Figure 6B). Moreover, the expression levels of MAL11 and 

IMA1 show a significant correlation at the single-cell level (R2 = 0.37 ± 0.01 of log-

transformed fluorescence; p < 0.001). We hypothesized that noise in the gene expression of 

Ima1p could be reduced by overexpressing MAL11, since this transporter is part of a 

positive-feedback loop in the regulatory network (Figure 6A). Indeed, overexpression of 

MAL11 in the fluorescently tagged strain (using an extra untagged copy of MAL11 
expressed from a constitutive GPD promoter) results in reduced network noise, with much 

more homogeneous Ima1p expression levels (Figure 6B), leading to an approximately 7-fold 

reduction in single-cell expression noise of Ima1p-mCitrine (gene expression noise σ2/μ2 

[26] lowers from 0.549 to 0.075).

Next, we investigated whether these changes in the expression of the palatinose utilization 

pathway would affect DT variability and epigenetic inheritance by measuring single-cell 

growth using timelapse microscopy. The results show that both single-cell DT variability 

and epigenetic DT inheritance are strongly reduced by overexpression of MAL11 compared 

to wild-type (WT) control cultures (p = 0.011 and 0.052 for mother and daughter DT CoVs, 
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respectively; Figure 6C). These changes are comparatively large as well: across all 

measurements made in this study, variability in the daughter DT distributions (the residuals 

of the plot of CoV versus mean; Figure 2C) shifts from the 84th percentile to the 12th 

percentile (p = 0.052), and variability in the mother DT distributions is reduced from the 

88th percentile the 60th percentile (p = 0.011; Supplemental Information; Dataset S4). 

Finally, we found a strong reduction in epigenetic DT inheritance; the correlation (R2) 

between consecutive mother DTs is reduced from 0.440 to 0.115 (p = 0.010), and the 

correlation between mother and daughter DTs is lowered from 0.485 to 0.265 (p = 0.045). In 

contrast, the effect of MAL11 over-expression on the mean mother DTs and mean daughter 

DTs was weak and opposite for mothers and daughters (mean mother DT reduced from 1.86 

hr to 1.71 hr; mean daughter DT increased from 3.35 hr to 4.07 hr). Taken together, these 

results indicate that a single genetic modification can affect the variance and epigenetic 

features of single-cell DTs, with inconsistent effects on the mean. Furthermore, they show 

that the expression of genes required for growth can modulate DT variability and 

epigenetics.

Discussion

Together, our observations indicate that three life-history traits of cellular growth—mean, 

variance, and epigenetic inheritance of DT—are naturally variable, largely independent, and 

genetically influenced traits. Furthermore, our mathematical models and simulations indicate 

that these traits have the potential to significantly affect population-level fitness. Most 

intuitively, population-level growth rate is affected by the mean DT. However, for a given 

mean DT, individual-level variation in DT can further influence population-level growth, 

with higher variance counter-intuitively increasing fitness (Figure 4). Finally, for a given 

level of mean and variation, increasing epigenetic inheritance in DTs can further increase 

population-level growth (Figure 5). We show that the effect of DT variation and epigenetic 

inheritance occurs through a complex evolution toward a steady-state distribution of single-

cell growth rates within the population. These results are in line with results obtained by 

Tăvnase-Nicola and ten Wolde (2008) [25], who used mathematical models to show that 

Gaussian noise in the instantaneous single-cell growth rate could increase population growth 

rates.

Given that increased DT variation and epigenetic inheritance of DTs have the potential to 

increase population-level growth rate, one might wonder whether, like the mean growth rate, 

these traits can, in principle, be subject to natural selection. Indeed, a simulation indicates 

that mutants with more noisy DT distributions, but the same mean DT, can reach fixation in 

populations of WT cells (Supplemental Experimental Procedures). These results show that 

these mutants can overcome the drift barrier to reach fixation at frequencies similar to that of 

a mutant that has the same fitness advantage by having shorter mean DTs, but the same DT 

noise. Furthermore, for natural selection to act directly on the phenotype of growth 

variability, it would have to be a genetically encoded trait. Our results suggest that there are, 

indeed, significant genetic determinants that shape the level of growth noise (Figure 6) [9]. 

We have shown that noisy single-cell growth on palatinose can be lowered by the 

overexpression of positive feedback in a catabolic gene circuit (Figure 6) [10], with 

inconsistent effects on the mean. Together, these findings suggest that the trait of increased 
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DT variation and epigenetic inheritance can, in principle, rise in frequency via natural 

selection. That said, it seems likely that selection mainly acts on the mean DT, with the 

effect of noise, at best, playing a less prominent role.

Finally, our results and model should be more generally useful for predicting the growth 

rates of populations consisting of different subgroups that have variable growth rates, where 

clonal variability and/or epigenetic effects are strong [3, 49–53]. For example, tumor growth 

is shaped by heterogeneous single-cell growth behaviors; however, the degree to which these 

traits affect population-level growth has not been quantitatively described. Our findings, 

therefore, provide a framework for more detailed models of cellular growth and help explain 

how individual-level variability affects population growth dynamics in diseases that involve 

clonal growth, such as cancer and microbial pathogenesis.

Experimental Procedures

Yeast Strains and Growth Media Used

For the time-lapse microscopy experiments, a genetically diverse set of yeast strains was 

used. We performed 12 experiments using the lab strains BY/S288c and SK1 [9, 54, 55], 14 

experiments using homozygous diploid strains derived from wild isolates (YPS606, L-1374, 

Y12, DBVPG1106, DBVPG6765, Y55, YPS128, and BC187; [55]) and 15 experiments 

using experimentally evolved isolates [9]. For the data shown in Figure 6, a set of three 

strains that are not included in the dataset were used (derived from BY/S288c). For 

construction details, refer to Supplemental Experimental Procedures. All experiments were 

performed at 30°C using YP (yeast peptone)-based media. The media that were used were 

YP supplemented with 3% and 10% glucose, 20% maltose, 2.5% galactose, 2% palatinose, 

2% glycerol, and 2% glucose + 5% ethanol. For more details on the specific combinations of 

strains and media used in the experiments, see Dataset S1.

Acquisition of Time-Lapse Movies

All strains were first pre-grown in liquid culture at low cell densities (<2 · 106 cells per 

milliliter) by serially passaging them to achieve balanced steady-state populations 

(minimally, 16 hr). These cultures were then sandwiched between an agar gel containing the 

appropriate medium and a coverslip, allowing us to track hundreds of single cells at various 

positions on the agar pad in a single experiment by periodically taking differential 

interference contrast (DIC) microscopic images [9]. See also the Supplemental Experimental 

Procedures.

Analysis of Single-Cell DTs

In concordance with previous studies [43], cells were scored either as mothers or daughters. 

By definition, all cells are born as daughters and become mothers only after finishing their 

first cell division. For details on how these DTs were scored, see Figure 1A, Movie S1, and 

Supplemental Experimental Procedures.
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Predicting Population Growth Rates Using the Stochastic Model

Population growth rates under the stochastic model are predicted using Monte Carlo 

simulations (see the Supplemental Experimental Procedures). Also, see the Results section 

and the Supplemental Information for information on the theoretical framework behind the 

model, as well as the derivation of mathematical equations used in the model.

Predicting Population Growth Rates Using the Deterministic Model

We have calculated predicted population growth using the classic model by [43], using the 

following equation: e(−popGR×μmother) + e(−popGR×μdaughter) = 1, with popGR as population 

growth rate, μmother as mean mother DT, and μdaughter as mean daughter DT (Equation 8 in 

[43]).

Supplemental Information

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell division times of yeast strains were measured in different 

conditions

• Individual cells show noise and epigenetic inheritance of division times

• For a given mean division time, noise and epigenetic phenomena increase 

fitness

• Catabolic gene expression can contribute to division time noise and 

epigenetics
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Figure 1. Measurement of Single-Cell Division Times of Mother and Daughter Cells Using Time-
Lapse Microscopy
(A) A time-lapse microscopy image series of S. cerevisiae strain BY/S288c growing in YP 

+ 3% glucose is shown to indicate how cell division events (indicated by the arrows) were 

scored. Doubling times (DTs) are determined by the time (t) difference between consecutive 

cell divisions. For daughter cells, the DT is divided into an unbudded period and a budded 

period, based on the appearance of the first bud.

(B) Mother DT (left) and daughter DT (right) distributions for ten genetically different yeast 

strains in up to seven different growth media (n = 41 experiments). The distributions 

highlighted represent Y55 (green) and BC187 (purple) growing in 2.5% galactose.
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Mother DT1, the first doubling time of the mother cell; mother DT2, the second doubling 

time of the mother cell; daughter DT1, the doubling time of the first daughter cell; daughter 

DT2, the doubling time of the second daughter cell. See also Figure S1A and Movie S1.
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Figure 2. Architecture of Individual Yeast DT Traits
(A) Mean mother and daughter DTs are linearly correlated across different yeast strains 

growing exponentially in different carbon sources.

(B) The lengths of the unbudded and budded periods are plotted against the total daughter 

DT, with each data point representing a single-cell measurement (data comprise all usable 

daughter DT measurements obtained in this study; n = 2,547 cells).

(C) DT CoV is plotted against mean mother (blue) and daughter (red) DTs. The green and 

purple fills (respectively, the strains Y55 and BC187, growing in 2.5% galactose) illustrate 

how some strains can have the same mean DT but different variance.

(D) The DT length is epigenetically inherited across closely related cells within a lineage. 

This graph shows the correlation between DTs of a mother and her most recently born 
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daughter (Z scores of mother DT1/2 versus Z scores of daughter DT1/2) across the whole 

dataset.

All error bars represent bootstrapped SDs. Mother DT1/2, the first or second doubling time 

of the mother cell; daughter DT1/2, the doubling time of the first or second daughter cell. See 

also Supplemental Experimental Procedures, Figures S1B–S1G, and Dataset S1.
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Figure 3. An Individual-Based Model to Predict Population Growth Rate
(A) All cells are born as daughter cells (originating from the dashed arrows) and become 

mothers after completion of their first bud. At birth or after the completion of a bud, each 

cell is assigned a new DT that is dependent on the DT variability and epigenetic DT 

behaviors (ModelStoch,epig). The model can also be run without taking into account 

epigenetic behaviors (ModelStoch,no-epig) or stochasticity (ModelDeterm). See also the Results 

section.
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(B) Modeled population growth rates (Modeled growth rateStoch,no-epig) versus growth rates 

measured on solid media (microcolony growth rates). Microcolony growth rates were 

measured by microscopically tracking the cell count increase of microcolonies over time.

(C) Modeled population growth rates (Modeled growth rateStoch,no-epig) versus growth rates 

measured in liquid cultures.

Error bars represent bootstrapped SDs. mDT1, the first doubling time of the mother cell; 

mDT2, the second doubling time of the mother cell; mDT1/2, the first or second doubling 

time of the mother cell; dDT1/2, the doubling time of the first or second daughter cell. See 

also Supplemental Experimental Procedures and Figures S2, S3, and S6.
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Figure 4. Heterogeneous Single-Cell Growth Affects Population-Level Growth Rates
(A) The ratio of predicted population growth rates of ModelStoch,no-epig over the 

deterministic model is plotted against the daughter DT CoV for all experiments in the 

dataset. Error bars represent bootstrapped SDs. Similar results are observed when using 

Gamma and Pearson system distributions or the empirical distributions.

(B) The predicted population growth rate depends on the variability within the mother (M) 

and daughter (D) DT distributions and the level of mother-daughter mean asymmetry. At 

each level of asymmetry, the mother DT CoV and daughter DT CoV were varied 

independently, and the ratios of the predicted population growth rates of ModelStoch,no-epig 

over the deterministic model were plotted as heatmaps. The black dots represent the CoV 

values observed in our dataset plotted on the heatmap with the closest corresponding 

mother-daughter asymmetry.

See also Supplemental Experimental Procedures and Figure S4.

Cerulus et al. Page 22

Curr Biol. Author manuscript; available in PMC 2017 May 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. Epigenetic Inheritance of Single-Cell Growth Rates Further Increases Population-
Level Growth Rates
(A) Two experimentally observed DT correlations were considered in the model: (top) 

mother DT1 versus mother DT2 and (bottom) mother DT1/2 versus daughter DT1/2. Here, 

histograms of the R2 values of these correlations are shown per experiment. The asterisk 

marks the bin that includes BY/S288c in 2% palatinose.

(B) The ratio of the growth rates of the model with epigenetics (ModelStoch,epig) and without 

epigenetics (ModelStoch,no-epig) were calculated for each experiment and sorted from low to 

high. The asterisk marks the data point corresponding to BY/S288c in 2% palatinose.

(C) The effect of epigenetic single-cell DT correlations on the predicted population-level 

growth rate is illustrated with a heatmap. Colors indicate fold increase of a given model over 

the deterministic model. The dots (I–III) are predictions of the deterministic model (I) or the 

stochastic model without (II) or with (III) epigenetics for BY/S288 growing in 2% 

palatinose.

See also Figure S5.
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Figure 6. Overexpressing the Genes Required for Growth Reduces the DT Variability and 
Epigenetic DT Inheritance
(A) Palatinose is transported into the cytoplasm by Mal11p, and broken down by Ima1p. In 

the presence of intracellular palatinose, MAL11 and IMA1 expression is induced by two 

transcriptional activators (represented here by PalR), a typical positive-feedback motif.

(B) Flow cytometry analysis of the effect of MAL11 overexpression. Shown are traces of 

IMA1 expression of the WT BY/S288c (red); a strain in which MAL11 and IMA1 have been 

fluorescently tagged (blue); and the dually tagged fluorescent strain, in which MAL11 has 

been overexpressed (green). Gene expression noise is indicated as σ2/μ2 [26].

(C) Epigenetic DT inheritance in the WT and a MAL11 overexpression strain. In this plot, 

jitter was added in both dimensions to represent better the density of the observations.
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