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Abstract

Most functional magnetic resonance imaging (fMRI) experiments record the
brain’s responses to samples of stimulus materials (e.g., faces or words). Yet
the statistical modeling approaches used in fMRI research universally fail to
model stimulus variability in a manner that affords population generalization,
meaning that researchers’ conclusions technically apply only to the precise
stimuli used in each study, and cannot be generalized to new stimuli. A direct
consequence of this stimulus-as-fixed-effect fallacy is that the majority of
published fMRI studies have likely overstated the strength of the statistical
evidence they report. Here we develop a Bayesian mixed model (the random
stimulus model; RSM) that addresses this problem, and apply it to a range of
fMRI datasets. Results demonstrate considerable inflation (50-200% in most of
the studied datasets) of test statistics obtained from standard “summary
statistics”-based approaches relative to the corresponding RSM models. We
demonstrate how RSMs can be used to improve parameter estimates, properly
control false positive rates, and test novel research hypotheses about
stimulus-level variability in human brain responses.
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LIZ757>3 Amendments from Version 1

With this revision we address several issues raised by the first
reviewer, Sophie Donnet. Principally we clarified that our goal

is not to conduct model comparison between models with and
without a random stimulus effect, but to argue that from basic
principles many designs dictate the need for a random stimulus
effect. In both the body text and supplementary file, the term
“test statistic” has been replaced with “standardized effect” to
clarify that we are not conducting null hypothesis significance
testing. Finally, the previous figures were of inferior resolution, and
have now all been replaced at a higher resolution (no change in
content).

See referee reports

Introduction

Consider two potential titles of a hypothetical neuroimaging
paper: (1) “Inferior frontal gyrus responds more strongly to the
words ‘chair,” ‘house,” and ‘tree’ than to ‘run,” ‘pay,” and ‘speak’”’;
and (2) “Inferior frontal gyrus responds more strongly to nouns
than to verbs”. These two titles may superficially appear to
describe exactly the same set of findings, since categories like
Noun and Verb are necessarily comprised entirely of individual
exemplars like ‘chair’ and ‘speak’. Yet there can be little doubt
that most neuroimaging researchers forced to choose between the
two titles above would opt for the latter, which makes a far more
interesting scientific statement. After all, we typically do not care
about individual words like ‘chair’, except insofar as they exem-
plify broader populations of items that share similar properties.
As the psycholinguist Edmund Coleman observed over 50 years
ago, “many studies of verbal behavior have little scientific point
if their conclusions have to be restricted to the specific language
materials that were used in the experiment” (Coleman, 1964; cf.
Clark, 1973). The same is no doubt true of the stimuli used in
modern neuroimaging studies.

Choosing between hypothetical titles like those above may seem
purely a matter of preference--a researcher simply decides that
she cares more about the underlying population than about the
individual stimuli, and can then proceed to describe her results as
such. But the conceptual move from stimulus-level to population-
level inference is not automatically justified. It must be explicitly
supported by appropriate statistical inference. In studies where
a sample of participants respond to a sample of stimuli, as is the
case in a vast number of fMRI studies, the correct analysis that
allows generalization to both participant and stimulus popula-
tions involves fitting a mixed-effects model with crossed random
effects of both participants and stimuli (Baayen er al., 2008;
Judd er al., 2012). This is not a hypothetical concern: in a review
of 100 random task-based fMRI articles extracted from the
Neurosynth database (see Supplementary File 1 for details), we
found that 63/100 (95% lJeffreys interval = [53%, 72%]) used
multiple stimuli in a context where generalization over stimuli
was clearly indicated. Yet while virtually every fMRI study con-
ducted over the past 15 years has modeled subject as a random
factor (Penny er al., 2003), we are aware of only two published
fMRI studies that have discussed the problem of unmodeled
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stimulus-related variance from a methodological perspective
(Bedny er al., 2007; Donnet et al., 2006), and know of no pri-
mary fMRI studies that have modeled participants and stimuli as
crossed random factors.

The consequences of this stimulus-as-fixed-effect fallacy, as
it is called in psycholinguistics (Clark, 1973), are potentially
devastating. Strictly speaking, the p-values (or other inferential
statistics) reported in the entire fMRI literature to date are valid
only for the exact stimuli used in each study. The conclusions
cannot be generalized to a broader population of stimuli without
risking inflated Type 1 error (cf. Donnet e al., 2006). Previous
work in other domains (and replicated here) demonstrates that
this inflation can be dramatic, with the Type 1 error rate frequently
exceeding 50% under realistic conditions (Judd er al., 2012;
Wickens & Keppel, 1983).

Here we develop a Bayesian mixed model (the random stimu-
lus model; RSM) that directly estimates the degree of stimulus
variability in fMRI data and properly adjusts the key parameter
estimates to account for uncertainty due to stimulus sampling. We
then apply this model to a variety of real fMRI datasets with diverse
stimulus samples and experimental designs, comparing the results
from the standard statistical model that ignores stimulus variabil-
ity to the results from the corresponding RSM. Our findings sug-
gest that an unknown but possibly large fraction of published fMRI
findings are likely to be false positives driven by unmodeled
stimulus-level variability. We demonstrate that the magnitude of
the problem can be considerably ameliorated by employing large
stimulus samples and/or presenting different subjects with differ-
ent stimuli -- in fact, in the limiting case where every participant
receives a completely unique stimulus set, the standard model
is the statistically appropriate model. Finally, we show how the
stimulus-level parameter estimates produced by RSMs can be used
to generate and test novel research hypotheses, opening up a power-
ful new method for studying the neural substrates of cognition.

Methods

fMRI datasets

All analyses used publicly available data obtained from one of
three sources. The HCP analyses used task fMRI data from the
Human Connectome Project’s “100 unrelated subject” release,
accessible via the online Connectome Workbench (http://www.
humanconnectome.org). These data were provided [in part] by the
Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1US4MH091657)
funded by 16 NIH Institutes and Centers that support the NIH
Blueprint for Neuroscience Research; and by the McDonnell
Center for Systems Neuroscience at Washington University.
All HCP analyses used the preprocessed data release (https:/
db.humanconnectome.org/data/projects/HCP_900). No further
processing of the time series was performed prior to region-based
averaging and mixed-effects modeling (see below). Methods have
been previously described in detail in (Glasser et al., 2013).

The emotion regulation dataset was obtained from OpenfMRI, and

is publicly available (accession number, ds000009; https://open-
fmri.org/dataset/ds000009/). Note that although the full dataset
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includes n = 24 subjects, only 11 subjects had preprocessed data
available. We therefore conducted analyses with the convenience
n = 11 sample, since subject sample size was irrelevant for our
purposes. Experimental design and preprocessing procedures
for this dataset have been previously described in Cohen (2009;
http://gradworks.umi.com/34/01/3401764.html).

The IAPS dataset previously used in Chang et al. (2015) was
obtained from the NeuroVault whole-brain image repository
(Gorgolewski et al., 2015). Images were downloaded via the
NeuroVault API from the corresponding image collection (http://
neurovault.org/collections/503/). The dataset contains 30 trial-level
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estimates for each of 172 participants (30 images in total). On
each trial, participants passively viewed either a negative or a neu-
tral IAPS image (15 of each). All methods have been previously
described in Chang ef al. (2015).

Statistical modeling

The standard model. Consider a hypothetical fMRI experi-
ment in which participants view 20 stimuli, half belonging to one
stimulus category and half to another (as in Figure 1), and we are
interested in the difference in neural response between these two
categories. Let Y, be the neural response of the ith subject at the
rth time point in a particular voxel or region of interest (ROI), with

A: Standard model (stimulus effects ignored)
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Figure 1.Idealized data from the standard model and the random stimulus model (RSM) for a hypothetical experiment. Stimuli belonging
to one of two conditions (nouns in red, verbs in blue) are presented in alternating blocks, with the same stimuli presented in the same order
to each participant. Both models incorporate subject-level variability in the magnitude of the category difference. For example, Participant 2
shows a small category difference while Participant 3 shows a large category difference. In the standard model (A), neural responses are
assumed to be equal in magnitude for all stimuli in a category. The RSM (B) relaxes this assumption and estimates a separate response for
each stimulus. For example, the noun “desk” elicits consistently high responses for all participants, while the noun “spoon” elicits consistently

low responses for all participants.
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all preprocessing already carried out and with each participant’s
data separately standardized. The standard statistical model used to
analyze such data is:

Yit = ﬁ() + (ﬁl +pli)Xlit + (ﬁQ +p2i)X2it + eir,

where X, and X, are the regressors representing the idealized
neural responses toward the two categories of stimuli; ) is the
fixed intercept; B, and f3, are the fixed effects of the two neural
regressors; p, and p, are normally distributed participant effects
of the neural regressors, representing stable subject-to-subject
variability in the degree of neural response toward both stimulus
types; and the e terms are normally distributed, observation-level
errors with an AR(2) covariance structure. The regressors X, and X,
are formed by summing over the idealized neural responses toward
the individual stimuli comprising each stimulus category,

10 20
X = Exi,'; and X,;, = Exijt'
=1

j=11

where x, is the idealized neural response of the ith participant
for the jth stimulus at time ¢. These idealized neural responses
are based on convolving a stimulus presentation sequence with a
hemodynamic response function (Poldrack er al., 2011).

Random stimulus model (RSM). The standard model posits
that the stimulus-level regressors are all identical in amplitude,
differing only in their presentation times (Figure 1A), a dubi-
ous assumption in most fMRI studies. In the RSM, we relax
this assumption and allow the stimulus-level regressors to have
distributions of amplitudes that are to be estimated from the data
(Figure 1B); these amplitudes are common over subjects, but vary
randomly per stimuli. To achieve this, we add a set of terms 8,X,, 10
the model, where the s, are normally distributed stimulus effects,
representing stable stimulus-to-stimulus variability in the strength
of the neural response. The resulting model is:

20
Y, =+ + i) X + (B, + Do) Xoi + Eijrjz te;
=

This model cannot be fit using standard mixed modeling statistical
packages, such as Ime4 in R or SAS PROC MIXED, because these
packages assume that each row of the dataset is associated with one
and only one level of each random factor, i.e., a single participant
and a single stimulus. (Though standard software can fit a slightly
simplified, approximate version of this model, quite similar to
what (Gelman & Hill, 2007) refer to as a “no-pooling model;” see
Supplementary File 1 for an application of this approximate
model to the (Chang er al., 2015)). However, for the RSM, the
measurements at each time point are influenced not by a single
random stimulus effect (s/.), but rather by all of the random
stimulus effects (Zs). Despite this complication, it is relatively
straightforward to fit the RSM as a Bayesian model using a proba-
bilistic programming framework, such as BUGS, JAGS, or Stan.
For the models in this paper, we used the PyMC3 Python
package (Patil er al., 2010; Salvatier er al., 2015), which is built
on the Theano deep learning package (Bastien er al., 2012;
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Bergstra er al., 2010; version 0.9.0.dev2) and implements the
state-of-the-art No U-Turn MCMC Sampler (Hoffman & Gelman,
2014). An alpha version of our NiPyMC analysis package is
available online (https://github.com/PsychoinformaticsLab/nipymc;
DOI, 10.5281/zenodo.168087; Yarkoni & Westfall, 2016). In
Supplementary File 1 we give the full statistical details of the
specific models we estimated in our reanalyses, including the
precise distributional assumptions and the variations of the basic
model that we applied to each individual dataset.

We note that there are various specification options that could be
applied to the standard model and RSM described here and in
Supplementary File 1, for example, different choices of HRF,
autocorrelation parameters, motion correction, image realign-
ment, and so on. While such options can certainly impact overall
data quality and test statistics (cf. Carp, 2012) they are extremely
unlikely to affect the central conclusions supported by the present
results. To exert a non-negligible impact on our results, these
specification options would need to have very different impacts
on the standard model and RSM (otherwise the extensions would
simply lead to the test statistics from both models increasing or
decreasing more or less in unison, leaving their relative differences
essentially unchanged). We are aware of no a priori reasons to
expect this to be the case for any of the methodological procedures
employed with any frequency in the literature, and reiterate that
comparably large decreases in test statistics have been repeatedly
observed in other domains of psychology when including random
stimulus effects (Judd er al., 2012; Wolsiefer et al., 2016).

Simulations

We conducted an extensive series of simulations in order to vali-
date and to better understand the properties of our proposed
RSM. Our first goal was to verify that the RSM could adequately
recover true parameter values. Our second goal was to identify the
conditions under which using a RSM produces the greatest attenu-
ation of standardized effects compared to the standard model. In
orthogonal, ANOVA-like designs where the appropriate RSM can
be fit in standard mixed modeling software, it can be shown that the
standardized effect for the standard model that ignores stimulus
variability will be inflated by a factor of roughly %, where
n is the number of participants, m is the number of stimuli, and
E, P, and S are, respectively, the error variance, participant vari-
ance, and stimulus variance (the exact expression depends on the
experimental design). While we cannot safely assume that the
more complicated fMRI RSM will follow a similar inflation
factor, this does give us several hypotheses about the qualitative
conditions under which we should expect the worst inflation in
fMRI data. Specifically, the degree of inflation should increase with
participant sample size, decrease with stimulus sample size, and
increase with stimulus variability. In Appendix 1 we describe the
results of our simulations in detail. Here we summarize the basic
structure of the simulations and their results.

In each run of the simulation, we generated data according to
the RSM for a block-design experiment involving participants
responding to stimuli nested in two stimulus categories. The test
of interest in these simulated experiments is the difference in the
fixed regression coefficients for the two stimulus categories (i.e.,
whether there is greater activation for one stimulus category than
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for the other). We varied three primary factors in our simula-
tions: the participant sample size (n = 16, 32, or 64), the stimulus
sample size (m = 16, 32, or 64), and the degree of random stimu-
lus variability (zero, moderate, or high). Note that when the ran-
dom stimulus effects have zero variance, the RSM is statistically
equivalent to the standard model. We included this condition
in order to investigate the performance of the RSM when the
standard model is the correct model. For each simulated experi-
ment, we fit four statistical models: the standard model, the
RSM, the standard SPM-style “summary statistics” model, and
a fourth model that we call the Fixed Stimulus Model, which we
describe in Supplementary File 1 Here we focus on comparing the
performance of the standard model and RSM (though, in practice,
the three non-RSM models all display essentially indistinguishable
behavior across all simulations).

Literature review

For our survey of the literature using task-based fMRI, we
randomly selected task fMRI papers, without replacement and with
uniform sampling probability, until 100 experiments were obtained
(each paper can contain 1 or more experiments). Four of the papers
we sampled described two experiments, one paper described three
experiments, and the rest described a single experiment, so that
the 100 experiments we sampled came from 94 unique papers. We
coded each experiment for (a) whether the stimuli were crossed
with participants or nested in participants, (b) the type of stimuli
used, (c) the total number of stimuli, (d) the number of stimulus
categories, and (e) whether the study was eligible to have applied
a RSM to the data obtained from the study. Generally speak-
ing, experiments were deemed eligible to have applied a RSM if
(1) the experiment used more stimuli than stimulus categories
(so that the individual stimulus effects are statistically identifi-
able), and (ii) the sampled stimuli could not be considered to fully
exhaust the population of stimuli over which generalization was
intended. In the handful of cases where it was not totally clear
from the text whether a RSM could have been applied, we decided
to err on the conservative side and deem the study ineligible.
A spreadsheet with the detailed study-level results of our survey
can be found at https://github.com/PsychoinformaticsLab/nipymc
(Yarkoni & Westfall, 2016). We ultimately found that 63/100 of the
experiments (95% Jeffreys interval = [53%, 72%]) were eligible
to have applied a RSM, and thus the published test statistics for
these experiments are likely inflated relative to the more appropri-
ate RSM test statistics.

Results

Simulations

For each contrast of interest, we define the standardized effect
z = p/o, where u and o are the mean and standard deviation,
respectively, of the posterior samples for the associated parameter
estimate (cf. Kruschke, 2013). When the true data generating
process contained zero stimulus variability, the standard model
and RSM yielded very similar standardized effects for the stimulus
category difference, for all participant and stimulus sample sizes.
The exception was that when the stimulus sample size was small
(m = 16), the standardized effects from the RSM were slightly
attenuated (by about 18%) compared to the standard model
standardized effects. However, this attenuation disappeared with
increasing stimulus sample size, so that at m = 32 and m = 64, the
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standardized effects from the two models were essentially identi-
cal, as should be the case given the lack of true stimulus variability.
This provides evidence that the reduced standardized effects
observed in our reanalyses of real datasets (most of which were
based on a sample of 100 participants) are not simply the result of
the RSM always yielding lower standardized effects. Instead, the
RSM tends to yield lower standardized effects when they should
in fact be lower, namely, when there is random stimulus variability
in the data that is ignored by the standard model.

When the true data generating process contained moderate
stimulus variability, the RSM yielded consistently lower standard-
ized effects than the standard model. This reduction was exac-
erbated when the stimulus sample size was small (m = 16) and
attenuated somewhat when the stimulus sample size was large
(m = 64). The opposite pattern held for the participant sample size:
the reduction in the RSM standardized effect was largest when
the participant sample size was large (n = 64) and smallest when
the participant sample size was small (n = 16). These patterns are
consistent with what has been observed in previous behavioral
work (Judd ef al., 2012). In the best case (n = 16 and m = 64) the
RSM standardized effects were still reduced by an average of 17%
compared to the standard model standardized effects. In the worst
case (n = 64 and m = 16), the RSM standardized effects were
reduced by an average of 67%. Finally, when the true data gener-
ating process contained high stimulus variability, the same quali-
tative patterns held, but the reduction in standardized effects was
even greater, ranging from 41% in the best case to 81% in the
worst case. Importantly, only the RSM correctly estimated the vari-
ability in the average condition difference across simulated data-
sets; the standard errors from both the standard model and other
simpler (but incorrect) approximations consistently underestimated
the true variance of the condition differences across simulated
datasets.

Does the amygdala preferentially respond to emotional faces?
To illustrate the scope and magnitude of the stimulus-as-fixed-
effects fallacy in fMRI, we first focus our attention on one of
the most well-established neuroimaging findings: the role of the
amygdala in affective processing. The amygdala has been shown
in hundreds of fMRI studies to increase activation in response to
biologically salient stimuli - most notably faces - and to show a
particular strong response to negative affect-provoking stimuli, such
as fearful or angry face expressions (Breiter er al., 1996; Morris
et al., 1996). However, the number of stimuli used in studies
demonstrating this effect is often small - in many cases, fewer than
10 stimuli per experimental condition. As we note above, this is
precisely the situation in which inflated statistical significance is
expected.

To quantify the effects of modeling stimulus as a random factor
on the amygdala response to emotionally salient stimuli, we used
data (n = 111 subjects) from the Human Connectome Project (HCP;
Barch ef al., 2013; Van Essen et al., 2013). In the HCP Emotion
Processing Task, adapted from an earlier task used by Hariri and
colleagues (Hariri er al., 2002), participants view blocks of faces
(20 in total) or geometric shapes (3 in total), and make an unrelated
perceptual matching judgment. The face stimuli have either fearful
or angry facial expressions (10 per condition). We first analyzed
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the data using the standard model, where subjects (but not stimuli)
were modeled as random effects. Consistent with previous reports
on this dataset (Barch er al., 2013) and the broader literature, when
analyzing the data under the standard model, we found a robust
increase in amygdala activation for face stimuli relative to shape
stimuli (z = 26), and a smaller but still notable increase for angry
faces relative to fearful faces (z = 3.3). These results are illustrated
in Figure 2 (top).

As noted above, the analysis under the standard model fails to
account for the uncertainty inherent in the fact that the effect of
stimulus category is based on a small and highly variable stimulus
sample. When we modeled the data using the RSM, we found that
the standardized effect for the face vs. shape contrast was reduced
by 89% (from z = 26 to z = 2.8) compared to the standard model,
and the standardized effect for the anger vs. fear contrast was
reduced by 78% (from z = 3.3 to z = 0.7). Depending on one’s
statistical approach and assumptions (e.g., whether and how one
corrects for multiple comparisons), one could reasonably claim
that there is still a non-negligible effect in the former case;
however, in the latter case it is unlikely that any formal model
comparison or inferential test would provide a basis for conclud-
ing that the amygdala responds differentially to angry vs. fearful
faces. Most importantly for our purposes, it should be clear that
the reduction in these effects is large enough to change how
researchers interpret the results. Thus, simply accounting for
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natural variability in the sampled stimuli was sufficient to turn a
seemingly robust and possibly scientifically intriguing finding into
a much less remarkable result that may not merit further consid-
eration. The impact of explicitly modeling the face stimulus as a
random effect is further illustrated in Figure 3.

Whole-brain analysis reveals differential stimulus sensitivity
Next, we extended the analysis to the rest of the brain, fitting the
same RSM in 100 different regions-of-interest (ROIs; we used
an ROI rather than voxel-wise approach, due to the computa-
tional demands of the RSM). As Figure 4 illustrates, the impact of
modeling stimulus as a random factor were no less dramatic than
in the amygdala for most brain regions. For the two standardized
effects (i.e., face vs. shape contrast and anger vs. fear contrast),
the median ratios of the standard model z-statistic over the RSM
z-statistic were 3.3 and 5.96, respectively, indicating reductions of
70% and 83% when random stimulus effects were added. When
thresholding brain activity at even a relatively liberal threshold of
z =3, only 2 out of 100 regions (compared to 59 out of 100 in the
classical analysis) remained statistically significant, and no region
showed a significant difference between angry and fearful faces (as
compared to 27 regions in the classical analysis).

Intriguingly, the fusiform face area (FFA; Kanwisher er al.,
1997), which showed the most robust face-related increase in the
standard model (z = 31), failed to show a significant difference

Standard model: Estimated regression coefficients

Fear Anger
faces faces

Random stimulus model: Estimated regression coefficients

30
25

20
15 Shapes

Density

10

Fear
faces

Anger
faces

-0.1 0.0 0.1

0.2 0.3 0.4 0.5

Figure 2. Posterior samples of the regression coefficients associated with each stimulus category. The results indicate the predicted
magnitude of average amygdala response in response to each category, under both the standard model and the random stimulus model
(RSM). Under the standard model, there is clear separation of the estimated amygdala responses toward all three stimulus categories, with
anger faces evoking a somewhat stronger response than fear faces, and both face stimuli evoking a much stronger response than the simple
shape stimuli. Under the RSM, the means of the regression coefficients are about the same, but they are estimated with far more uncertainty.
The result is that while the face vs. shape contrast is still clearly discernible, the anger vs. fear contrast is no longer distinguishable from

sampling/measurement error (Figure 2, bottom).
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Figure 3. Magnitude of amygdala response predicted by the standard model (panel A) and the random stimulus model (RSM) (panel B).
This is represented as subjectxstimulus matrices, where each row (111 in total) represents a unique subject and each column (23 in total)
represents a unique stimulus. Each entry of the matrix gives a (posterior mean) regression coefficient corresponding to the model’s prediction
for that subject’s amygdala response toward that stimulus. Notice that the standard model assumes that a subject has the same amygdala
response toward all stimuli in a given category - in other words, it assumes no random stimulus variability. While this may not be an entirely
unreasonable assumption for the three relatively impoverished shape stimuli (a circle and two ovals), it is a patently absurd assumption for
the faces, as a cursory visual inspection of the stimuli makes clear (panel E). When we add random stimulus effects to the standard model,
resulting in the RSM, we find that random stimulus variability (evident in the within-category variance of the column means) is in fact one of the
chief sources of variation in the data. The images in panel E are sorted within each emotion condition by their posterior sample means (panels
C and D), which are printed below the stimulus labels. (Faces images from Human Connectome Task fMRI battery, used with permission.
Copyright 2012.)
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Figure 4. Whole-brain results for five contrasts from four different datasets when modeled with either a standard approach or a
random stimulus model (RSM). Each row displays results for a different dataset and/or contrast (see main text for details). Left column:
scatter plot displaying the relationship between region-of-interest (ROI)-level standardized effects from the standard model (y-axis) and RSM
(x-axis). Each point represents a single ROI from a 100-region whole-brain clustering. Middle and right columns: axial slices displaying ROI-
level standardized effects (z statistics, defined as in the main text) from the standard and RSM analyses, respectively. Maps are thresholded
at |z| > 3.3 - comparable to using p < .001, uncorrected, in a traditional frequentist analysis - in order to illustrate the significant drop in
standardized effects in most datasets when including random stimulus effects.

between faces and shapes in the RSM. This counterintuitive result
can be understood by considering the large amount of stimulus-level
variability in FFA responses to faces (Figure 5). Since the face vs.
shape standardized effect in the RSM depends on the ratio between
the between-condition and within-condition (i.e., stimulus-level)
variances, a brain region that is extremely sensitive to different
stimuli of the same modality may counterintuitively fail to show a
consistent difference between faces and shapes precisely because it
is extremely sensitive (but differentially so) to individual faces.

Although the resulting reduction in the standardized effect may
come as an unpleasant surprise, there is an important silver lin-
ing: the ability to quantify the variance in brain activity specifically
related to individual stimuli provides a powerful tool for identify-
ing brain regions sensitive to different classes of stimuli. To illus-
trate, Figure 5 displays the stimulus-level variability captured by
the model in each brain region. Not surprisingly, stimulus-related

variability was greatest in visual cortical regions; however, a
number of other brain regions also showed considerable stimulus
sensitivity in response to faces, including motor cortex, anterior
insula (particularly for anger faces), and portions of anterior PFC.
As one might intuitively expect, the variability in responses to the
3 simple geometric shapes was muted in comparison to the
response to faces.

Generalization to other datasets

To ensure that the HCP Emotion Task was not an outlier, and that
our conclusions apply more generally, we repeated our random
stimulus analyses on several other datasets. We fit RSM models to
two other HCP functional tasks - the Social Cognition Task and the
Working Memory Task - as well as a non-HCP emotion processing
dataset (Chang ez al., 2015). These tasks differed widely in experi-
mental design, stimulus modality (video clips, images, and audio
narratives), number of stimuli (10 in the social cognition task, 96 in
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Figure 5. Model-estimated stimulus variability (standard deviation of the random stimulus effects) for the three stimulus categories in
the HCP Emotion Processing Task, separately for each region-of-interest (ROI). ROls with greater estimated stimulus variability showed
greater sensitivity to idiosyncratic stimulus differences within each stimulus category.

the WM task), and putative psychological processes. Nevertheless,
when contrasting the RSM with the classical model, standardized
effects for critical comparisons were reduced considerably in all
datasets (the median reductions across all 100 ROIs ranged from
12% to 83% in the datasets we examined; Figure 4 and Figure 6 In
general, the rank-order stability of regions was high across the two
analyses in terms of the standardized effects (mean r = 0.77). Thus,
the global pattern of activity across the whole brain was, at least in
the tested datasets, relatively conserved in the RSM, and the drop
in standardized effects largely reflected the increased variance of the
fixed-effect estimates of the experimental conditions (cf. Figure 2

The critical role of stimulus sample size

Why were the critical standardized effects from the RSM model
so small compared to the standard analysis, despite the relatively
large participant samples used in these analyses? The likely culprits
here are the relatively small stimulus sets used in these experiments.
As far as the RSM is concerned, the stimuli used in a study are
just as important as the human subjects---both ultimately represent
sources of random variation in the data that we would like to gen-
eralize over when estimating brain responses to different experi-
mental conditions. Most researchers would question the wisdom of
conducting an fMRI study that compared, say, 5 highly variable
subjects in one condition to 5 highly variable subjects in another

condition, yet many researchers routinely make essentially the
same mistake when sampling stimuli. The problem is exacerbated
in many cases, including in many of the present datasets, when
stimuli are presented in exactly the same order to all participants -
an approach that conflates order effects with stimulus effects, neces-
sarily inflating the variance seemingly accounted for by the latter.

The important silver lining to this otherwise grim analysis is that
standardized effect inflation in the classical model is related in
predictable ways to stimulus sample size (Judd er al., 2012;
Wickens & Keppel, 1983). Thus, it should be possible to minimize
the gap between the standard model and the RSM by increasing
the number of stimuli in one’s experiment. To test this predic-
tion empirically, we used two additional datasets (Figure 6 First,
we applied the RSM to the HCP language task, which included a
Math condition in which participants provided forced-choice
answers to auditorily presented mental arithmetic problems. In
contrast to the other HCP tasks, stimuli in the Math condition are
adaptively chosen from a large set of over 7,000 candidate mental
arithmetic problems based on each participant’s in-task perform-
ance. We consequently predicted that RSM estimates should be very
close to standard model estimates for this experimental condition.
This prediction was confirmed (Figure 6B) from the two models
were very similar across the brain when comparing the Math
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Figure 6. Whole-brain results for three datasets modeled with either a standard approach or a random stimulus model. The

interpretation is the same as in Figure 4

condition to the implicit resting baseline (mean |z| = 8.47 vs. 8.12;
4% reduction). This consistency across models contrasted sharply
with the large reduction observed for the Language condition (mean
|z| = 4.83 vs. 2.67; 45% reduction), which presented the same 6
stimuli to nearly all subjects. As a consequence of the loss of preci-
sion in the Language condition, standardized effects for the Math
vs. Language contrast also showed a considerable decline (mean
|z| = 13.75 vs. 5.96; 57% reduction). Figure 6C displays estimates
from the standard model and RSM for a sample region (V5/MT in
visual cortex), clearly illustrating the selective increase in uncer-
tainty in the story condition.

Second, we analyzed an unpublished emotion regulation data-
set (Cohen, 2009; http://gradworks.umi.com/34/01/3401764.
html), publicly available from the OpenfMRI.org repository
(Poldrack & Gorgolewski, 2015), in which 11 participants pas-
sively viewed either negative or neutral pictures. Importantly, each
participant viewed 60 different stimuli (from a total set of 120).
Theoretically, this “partially-crossed” design should considerably
reduce the discrepancy between the RSM and classical model
(Westfall er al., 2014), and this is precisely what we found: stand-
ardized effects from the two models were very similar across the
brain when comparing passive viewing of neutral vs. negative
images (Figure 6A: mean |z| = 2.77 vs. 2.30 for standard model
vs. RSM, respectively; median ratio = 1.18). These results confirm
that there is indeed a predictable and robust relationship between
the stimulus sampling scheme used in an fMRI experiment and the

degree of standardized effect inflation one can expect to observe
when using the standard (incorrect) model.

Stimulus-level parameter estimates as a tool for
exploration

While the primary reason to include random stimulus effects in
one’s model is to ensure that statistical inferences can be safely
generalized to new stimuli, an important secondary benefit is that
this approach facilitates data exploration and hypothesis generation.
The inclusion of a separate parameter for each stimulus allows one
to estimate the unique pattern of whole-brain activation associated
with each stimulus. Inspection of these estimates may help identify
novel features of the data or design that can be subsequently tested
formally.

To illustrate, consider the parameter estimates displayed for
individual faces in Figure 3E. Qualitatively, there appears to be a
potential trend for black faces to elicit larger amygdala responses
than white faces. To formally test this hypothesis, we obtained
race judgments of the 20 faces from 3 lab members blind to our
hypothesis and with no knowledge of the parameter estimates. When
the RSM model was recomputed with an additional fixed effect
coding stimulus race, the resulting posterior estimate was sugges-
tive of a weak race effect (z = 1.55; the other parameter estimates
were all virtually unchanged). Of course, this particular analysis is
circular, since the hypothesis was generated and tested using the
same data. The important point, however, is that even this cursory
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visual inspection of the stimulus-level estimates was sufficient to
suggest a scientifically interesting hypothesis that could be read-
ily tested using independent data. Indeed, a number of previous
studies (Lieberman er al., 2005) have reported race-related
amygdala activation patterns consistent with our conjecture (though
none included random stimulus effects, and hence the existing
evidence for race effects in the amygdala is itself very likely
overstated).

Discussion

‘We have shown that the universal failure of fMRI studies to include
random stimulus effects in statistical models can have a substan-
tial, and almost invariably deleterious, effect on reported results. At
root, the problem lies in a mismatch between researcher intent and
statistical implementation: neuroimaging researchers intend for
their statistical conclusions to generalize across populations of
stimuli similar, but not identical to, the ones they tested; however,
conventional statistical procedures only allow conclusions to be
drawn with respect to the exact stimuli used in each study. Our lit-
erature survey suggests that the ramifications of this discrepancy
between intent and praxis are likely to be very large: in a survey
of 100 articles, we found that use of a RSM was clearly indicated
in over 60% of cases. This is a conservative lower bound of the
true extent of the problem, as many of the remaining studies could
not have used a RSM due to otherwise avoidable limitations of
their experimental design (e.g., using only a single stimulus per
condition).

Given that the RSM standardized effects we obtained were
frequently reduced by 50% or more relative to those obtained using
a standard analysis, one implication of our findings is that a large
fraction of the results reported in the fMRI literature are likely
to be severely inflated. Moreover, when the true mean stimulus
effect is zero, variation in stimuli will generally exert some
non-zero influence on brain activity (as was evident in all of the
datasets we tested), which in turn will inflate Type I error. In
simulations, which we describe in detail in Supplementary File 1
we found that the Type 1 error rate for the standard model in the
presence of unmodeled stimulus variability, using a nominal
decision threshold of o = .001, ranged from about .01 to about
4, depending on the sample sizes and the level of stimulus vari-
ability. At a threshold of o = .05 (as would be common in many
hypothesis-driven ROI-level tests) the Type 1 error rate was as
high as .65, still under relatively conservative assumptions (e.g., a
maximum participant sample size of 64 and a minimum stimulus
sample size of 16).

Although its consequences are severe, the statistical argument that
we’ve presented - based on the idea that the experimental stimuli
are typically a random factor and not a fixed factor - is conceptu-
ally subtle. While the fixed vs. random distinction is not always
defined consistently (Gelman & Hill, 2007, p. 245), the classical
definition of a random factor from the literature on analysis of vari-
ance is that the levels of the factor that appeared in the experiment
(i.e., the stimuli that were used) do not fully exhaust the theoretical
population of levels that might have been used. Importantly, this
definition does not imply that the stimuli were selected haphaz-
ardly. Indeed, typically experimenters take great care in selecting
an appropriate stimulus set to be used in the study. Rather, to say
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that the stimuli are “random” is simply to say that there are, in
principle, other possible stimuli that could have served the experi-
menter’s purposes just as well as those that were in fact used. Using
this definition, our literature survey suggests that a RSM is the
most statistically appropriate model to use in a majority of task
fMRI studies. But exceptions do exist for certain special cases.
Below we list a few necessary conditions for fitting a RSM, some
more conceptual and some purely statistical.

First, the stimuli in question must be inherently discrete entities,
such as distinct words or photographs. An example of stimuli that,
on these grounds, would not be modeled as random would be the
varying doses of some drug administered to the subjects. While the
doses are nominally discrete in that only a finite number of the range
of possible doses are administered, these doses represent points on
a well-defined continuum, and would simply be treated as a fixed
predictor or covariate in the analysis. Second, and as mentioned
above, a RSM is only indicated when the stimuli used in the study
do not fully exhaust the theoretical population of stimuli that might
have been used. An example of an experiment that does not satisfy
this condition would be a study of brain responses toward single-
digit numbers, in which the study employs all possible single-digit
numbers. Third, there must be at least some degree of overlap in the
stimulus sets that each subject receives. In what is overwhelmingly
the most common case, every subject receives the same stimulus
set, and a RSM can be estimated relatively easily. Less frequent,
but not uncommon, are experiments where subjects receive
different subsets of stimuli from a larger stimulus pool, but there
is some overlap in the stimulus sets, such that at least some of
the stimuli receive responses from more than one subject. An
example would be the Math stimuli in the HCP Language task.
A RSM would generally be appropriate here as well. In the least
common case (6/100 of the experiments in our survey), every
subject receives a completely unique stimulus set, with no overlap
between sets, such that stimuli are strictly nested in participants.
In this case the standard model would be a statistically appropriate
model, and in fact subjects would need to respond multiple times
to each stimulus for a RSM to be statistically identifiable at all.

We are aware of only two previous papers that have discussed the
issue of random stimulus variability in fMRI (Bedny et al., 2007;
Donnet et al., 2006). While conceptually similar, these two papers
take different approaches than the one described here, and it is
worth noting the differences. Donnet ez al. (2006) describe a model
with random stimulus effects that are different for every subject,
so that the corresponding variance component is more akin to a
subject-by-stimulus interaction variance component than to the
stimulus variance components incorporated in our models. They
also do not discuss inference on the fixed effects of activation
magnitude. Bedny er al. (2007) do discuss inference on the fixed
effects, but they focus primarily on conducting a separate subject-
wise analysis (i.e., what we have called the standard model, which
ignores stimulus variance) and stimulus-wise analysis (i.e., the
conceptual complement of the subject-wise analysis, which
includes stimulus variance but ignores participant variance). This
approach is common in psycholinguistics, and it is certainly a
step up from running only the standard or subject-wise model,
but it is not equivalent to the full, correct model with crossed
random effects of participants and stimuli. In particular, it

Page 12 of 24



does not succeed in maintaining the nominal Type 1 error rate
(Raaijmakers, 2003; Raaijmakers et al., 1999).

What can researchers do to address the stimulus-as-fixed-effect
fallacy? Broadly speaking, there are two possible strategies. The
best practice approach to address the issue is to explicitly include
random effects in one’s model for every factor a researcher intends
to generalize over. In the present study, we used MCMC sampling
to fit our mixed-effects models; however, other approaches (based
on maximum likelihood estimation, variational inference, etc.) are
also available (Bates er al., 2015). The primary downside of an
estimation-based solution is that it is computationally intensive
and may be technically demanding. At present, no major fMRI
analysis package supports RSMs of the kind we employ here,
limiting the ability of most researchers to produce correct infer-
ences. While we have open-sourced the NiPyMC Python package
we used to fit the models reported here (http://github.com/Psych-
oinformaticsLab/nipymc; Yarkoni & Westfall, 2016), this should
be viewed as a provisional (and not particularly scalable) solution
until more robust and widely-used packages such as FSL, SPM, or
AFNI introduce support for random stimulus effects.

Alternatively, a less effective, but much simpler approach to the
problem, is to use as large a stimulus sample as is practically
feasible. In previous work, we have shown that the number of
stimuli can impose a hard cap on statistical power in the RSM:
when stimulus samples are very small, it may be impossible to
obtain statistically significant estimates of the fixed effects, no
matter how many thousands of subjects one samples (Westfall
etal.,2014). This is evident in the present findings, where standard-
ized effects from fMRI experiments with only a few stimuli (such
as the HCP Emotion and Social Cognition tasks) showed precipi-
tous drops in the RSM, whereas those generated by designs with
many stimuli are often negligible (e.g., Figure 6 The primary (and
significant) downside of a stimulus-maximizing heuristic is that
it is only a heuristic--there is no guarantee that the resulting stand-
ardized effect will closely approximate the one that would have
been obtained through the explicit inclusion of random stimulus
effects. In particular, if the degree of random stimulus variability
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is large, then a huge number of stimuli may be required before
the two sets of standardized effects closely converge. Neverthe-
less, in the absence of analysis tools capable of correctly mode-
ling multi-stimulus designs, we strongly encourage researchers to
always include as many stimuli as possible in their designs. Impor-
tantly, unlike increases in participant sample size, adding stimuli
rarely incurs any additional cost. Researchers can usually easily
increase the number of stimuli by either (a) eschewing repeated
presentation of a few stimuli in favor of single presentation of many
different stimuli, or (b) using a “partially crossed” design where
each participant responds to a different subset of stimuli (Westfall
et al., 2014). These approaches allow one to enjoy the statistical
power benefits of a large stimulus sample without increasing data
collection requirements.

Software availability
Source code for NiPyMC analysis package: http://github.com/Psy-

choinformaticsLab/nipymc/

Archived source code at time of publication: DOI, 10.5281/zen-
0do.168087 (Yarkoni & Westfall, 2016)

License: NiPyMC is distributed under The MIT License.
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In the present article, Westfall and colleagues point out a major oversight in nearly all existing GLM fMRI
analyses that attempt to make a generalization about stimuli —namely the failure to treat stimuli as
random effects. Far from being a technical shortcoming with little practical consequence, the authors
demonstrate that the failure to account for stimulus variance can markedly (and spuriously) inflate
inferential statistics, with the worst inflation occurring with large numbers of participants and small
numbers of unique stimuli. The authors present an analytic solution to this problem, as well as
recommending a number of design precepts that can ameliorate the problem even while still using the
standard fixed-effect analysis approach. This is an important issue, which is particularly timely given
growing concerns in the field about reproducibility, and the case the authors make is compelling.
However, the manuscript left us with a number of outstanding questions.

We think it would be helpful to the readers to point out that most fMRI studies are not looking to make
generalizations about classes of stimuli. For example, a memory researcher will typically use a fixed set of
stimuli (e.g., faces or words) for study. But the stimuli are typically counter-balanced or randomly
assigned across experimental conditions (e.g., studied items or non-studied items) and across subjects,
in which case, modeling random effects for the stimuli is not necessary. It’s only in limited cases in which
generalizations about stimuli are being claimed (e.g., greater activity for nouns compared to verbs) that it
becomes necessary. The authors do mention in the introduction that a “review of 100 random task-based
fMRI article extracted from the Neurosynth database . . . used multiple stimuli in a context where
generalizations over stimuli was clearly indicated.” [the authors indicated that details about this procedure
could be found in the supplementary materials, but we could not find them] However, this strikes us as not
representative of published fMRI studies. In any case, we think the authors should make it clear that the
concerns they raise only apply to those studies that make generalizations about classes of stimuli.

The biggest issue that was not addressed in the current manuscript is how the stimulus-as-fixed-effect
issue impacts analytic approaches other than the standard mass univariate GLM. (Indeed, the authors
occasionally seem to ignore the existence of other approaches, as when they claim there is a “universal
failure of fMRI studies” to acknowledge stimulus variability.) For example, it would seem that many
applications of representational similarity analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008 ') are not
affected by this issue. Relatedly, it is not uncommon for researchers to include various parametric
regressors that may vary across stimuli within the same class; does such an approach do anything to
address the stimulus-as-fixed-effect issue, and conversely, is the authors’ proposed RSM approach
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compatible with the use of parametric regressors?

Similarly, a recent report by Abdulrahman and Henson 2 addressed the question of variability, not just at
the stimulus level, but at the trial level. Indeed, although that paper was primarily concerned with
multivariate approaches, they somewhat surprisingly found that trial-level methods (namely, the
“least-squares separate” and “least-squares all” methods of Mumford, Turner, Ashby, & Poldrack, 2012°)
could sometimes outperform traditional approaches even in the context of the GLM. Westfall and
colleagues should explain whether (and if so, how) the stimulus-as-fixed-effect issue impacts alternative
analysis approaches like RSA and the use of parametric regressors, and whether they would expect
trial-level methods to play any role in ameliorating (or exacerbating) the issue.

There were also some details which were glossed over or not reported, which would be very useful to
readers. Some of these might require additional work, but others should be readily available from what the
authors have done already. For example, the discussion of the simulation results was very cursory.
Likewise, although the authors allude to the computational demands of their RSM approach, it would be
useful to quantify exactly what these demands are, for example by providing an estimate of how long
some fixed number of analyses, involving some number of stimuli or number of TRs, takes on a particular
system with particular specs. Among information that might require additional analyses but would be
useful to researchers, the most pressing need relates to defining what “completely unique stimulus set”
means—that is, is there some parametric relationship between the degree to which each participant’s
stimulus set is unique and how suboptimal the standard fixed-effect approach is? E.g., in a study of 30
participants, is it unique enough if each participant sees a random subset of 99% of the stimuli in some
larger corpus? 75%7? 50%7?

The last concern has to do with being careful in defining the scope of the proposed RSM approach. While
the entire paper reflects the high degree of importance the authors place on drawing valid inferences, we
nonetheless felt that the section “Stimulus-level parameter estimates as a tool for explanation” should
emphasize the need for caution to an even greater degree than it already does. This is a particularly
exciting possible application of the approach, but it is also one that seems particularly prone to abuse,
especially by researchers who are looking for an upside to counteract the “downside” of smaller effect
sizes that this approach will bring. The authors are obviously statistically sophisticated enough that they
leave implicit the dangers associated with this sort of exploratory approach; they should be explicit.
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Is the rationale for developing the new method (or application) clearly explained?
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Is the description of the method technically sound?
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Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Referee Report 19 April 2017

doi:10.21956/wellcomeopenres.11977.r21481

?

Robert Leech , Romy Lorenz
Division of Brain Sciences, Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL),
Imperial College London, London, UK

This is a very well-written and easy to follow paper, convincingly demonstrating the fallacy of not
modelling stimulus variability. The paper conveys an important message, which has been completely
overlooked in the neuroimaging field to date and is likely to become influential over time, especially as
practical guidelines are provided and the code has been made publicly available.

We have a number of queries and suggestions detailed below:

Main points:

Introduction

There appear to be two related issues in the paper: one is not modelling structured noise in the data,
inflating standardised effects; this is the case when comparing the standard model which doesn’t model
stimulus variability to the RSM and other models. This may be wrong even in the situation where the
researcher was agnostic as to whether the results apply in general to categories of stimuli or just the
stimuli tested. The second issue is fixed versus random effect modelling of the stimuli which is presented
as the main focus of the paper. If this is the case, it might be worth making the distinction clearer.

It would be beneficial to introduce to the reader that you will focus on a particular example in your result
sections, e.g., amygdala response to emotional faces; it was slightly surprising to us when we

approached the Results section.

Methods
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In the simulations, is stimulus-to-stimulus variability kept constant across subjects? The ground truth of
this isn’t known, but is this plausible? What is the effect of relaxing this, is it similar to increasing the
number of stimuli tested? How does it interact with the number of participants and inflation of
standardised effects? It would be helpful to justify this and consider its implications in the discussion.

P.2 | Section fMRI dataset: Please list the tasks and specific contrasts you chose from the HCP dataset to
be included in your analyses as it seems that you focused on a sub-selection (Figure 4 and Figure 6).
While all information are mentioned in the text, it might be clearer to create a table summarizing sample
size and number of stimuli for each dataset (not just HCP) or include this information in the two figures,
n=Y, and m=X.

P. 5| Section Simulations: You mention that you fitted four different models, which are also explained in
detail in the Supplementary File you provide. However, it would be helpful to state in the main text that the
standard model, the fixed stimulus model, and the random stimulus model are implemented as Bayesian
models to facilitate comparison (as differences in results can be solely linked to the inclusion of no, fixed,
or random stimulus effects in the model), while the SPM model is used to compare results against the
main software in the field (but here the implementations differs).

Results
Some explicit details about the computational demand for model fitting would be interesting to provide.

Discussion

The empirical studies used for comparison had sample sizes N=100, N=72, and N=11. The study with the
small sample size (N=11) however included many different stimuli types (M=60). In this respect, no study
was included that had a sample size commonly found in the field (N=20-30) while also having a relatively
small number of stimuli as also common in the field as outlined in your Introduction. This kind of study
though would have been the best when making inferences about a “large fraction of the results reported in
the fMRI literature”. Considering that the problem of reduction in standardized effects is the highest for
studies with large sample sizes, the conclusion that a “large fraction of the results reported in the fMRI
literature are likely to be severely inflated” (p.11) may be too strong given the empirical studies employed
for this study.

You may want to discuss that when the data contained zero stimulus variability, the RSM model yielded
attenuated effects compared to the standard model (by 18%) for small stimulus sample size. While this
may not be of practical relevance (as zero stimulus variability is highly unlikely), it would be important to
reflect on this from a statistical point of view.

Are there other similar effects that might be affecting the FMRI literature? For example, what about
stimulus presentation order? Both cognitive and neural processes likely have a large systematic temporal
effect. Despite having large influence on the BOLD signal, this is normally not modelled, and so could also
affect standardised effect sizes and interpretation. It may not be comparable, but it might be worth
speculating on other potential problems, which could have similar effect, such as temporal order, in the
discussion.

Currently, you take a statistician’s point of view as the main focus of the paper. However, one potential
implication of the work that could be discussed is that stimuli selection based on classic psychology

theory may be not completely accurate. For example, while it could be that psychology informed stimuli
selection would group stimulus A and stimulus B in the same category, they may not be represented in
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the brain that way; the neural system may be more sensitive to stimuli perturbations than could be
assessed using 'traditional' psychological tools (derived from questionnaire or behavioural data). Equally,
different representations of stimuli in the brain could result in similar behavioural responses. This points
towards the need for a neurally-informed cognitive taxonomy rather than relying purely on psychological
definitions, that were developed largely blind to the underlying functional organisation of the brain.

Minor points/typos

® P.2:When referring to the literature review, please also point to the Method section besides the
Supplementary File 1 as it may not be clear to the reader that methodological details about the
simulations are provided in the method section of the main text and not in Supplementary File 1.

® P.4| Section Simulations: You are referring to the Appendix | where it should state Supplementary
File 1 instead.

® p.5| Section Literature review: Please refer that main results were presented in Introduction and
more details are provided in Supplementary File 1. Otherwise, readers may miss results of this
analysis in the Result section of the main paper.

® p. 5] Section Simulations: Please refer to Supplementary File 1 as overview of results is provided
there.

® Pp.2-5: Please consider re-ordering the subsections in the Method section. From a reader’s point of
view, we would suggest the following order: Statistical Modeling, Simulations, fMRI datasets,
Literature Review

® p.9:Missing closing bracket and full stop at end of first paragraph, i.e., (cf. Figure 2).

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Referee Report 28 March 2017
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Sophie Donnet
University of Paris-Saclay, Paris, France

The authors mainly answered to my comments.
Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 20 January 2017

doi:10.21956/wellcomeopenres.11091.r19186

X

Sophie Donnet
University of Paris-Saclay, Paris, France

In this paper, the authors claim that the conclusions of several studies would be modified if a statistical
models taking into account the variability of the presented stimuli had been considered.

Although the problem is interesting, | am not completely convinced by the conclusions and the statistical
tools used to assess the results.

First of all, the authors argue that, due to the complexity of the new model, the authors can not use the
standard numerical tools to perform the statistical inference (R or SAS) and so will prefer a Bayesian
inference, making this choice quite opportunist. However, besides the fact that they use a Bayesian
inference (including prior distribution), they base their conclusions on frequentist arguments (comparing
test statistics). To my point of view, this is quite confusing. If a Bayesian framework is considered, then
the hypothesis testings should be perform using Bayes Factor or any other tools taking into account the
prior distribution.

Moreover, when proposing a new model, the first thing to do is to compare the old model and the new
model for any given dataset (using statistical tools such as hypothesis testing, in a frequentist or Bayesian
framework). | could not see such a test in the paper. The mixed effects model involves much more
parameters for the same amount of observations. Before deriving conclusions on the new model, it should
be interesting to put in competition the fixed effects model and the mixed effects models, to be sure that
the use of the more complex model is supported by the data.

Besides, in a Bayesian context, the greater posterior variance observed on the regression parameters
was completely expected (Figure 2) (more parameters for the same quantity of information leads to more
incertitude a posteriori). However, without objective criteria (such as Bayes factor or hypothesis testing), |
am not able to decide whether the difference between fear faces and anger faces is significant or not.
(caption for Figure 2). It is not clearly stated in the paper how the authors were able to do so (even though
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| could find clues in the simulation section?).

| am aware of the fact that Bayes factor are quantities difficult to estimate and that frequentist hypothesis
testing in mixed effects models can be a tough issue. However, if the authors want to prove that the
conclusions of statistical testing are modified when using mixed effects models, then they should perform
the adequate and rigorous statistical testings.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to state that |
do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Thomas Nichols, University of Warwick, UK

We’d like to thank Dr. Donnet for taking the time to consider our paper carefully. For ease of
reading we've pasted in her comments as boldface, bulleted text.
® |n this paper, the authors claim that the conclusions of several studies would be
modified if a statistical models taking into account the variability of the presented
stimuli had been considered.
® Although the problem is interesting, | am not completely convinced by the
conclusions and the statistical tools used to assess the resulits.
® First of all, the authors argue that, due to the complexity of the new model, the
authors can not use the standard numerical tools to perform the statistical
inference (R or SAS) and so will prefer a Bayesian inference, making this choice
quite opportunist.
We regret that the choice to use a Bayesian model created confusion. We noted in the Methods
section that the fMRI random stimulus model “cannot be fit using standard mixed modeling
statistical packages, such as Ime4 in R or SAS PROC MIXED, because these packages assume
that each row of the dataset is associated with one and only one level of each random factor, i.e., a
single participant and a single stimulus.” Hence, we were forced to develop a custom model, and a
Bayesian one developed with PyMC3 was the most convenient approach.

We note that most of the datasets we analyzed could in principle also have been fitted using a
modified (and approximate) version of the standard “summary statistics” model; however, this
would have required extensive additional analysis, as we would have needed to fit a separate
first-level model for each individual subject (adding individual regressors for each individual
stimulus and temporarily omitting existing condition regressors, which in the classical formulation
are non-identifiable in the presence of the stimulus effects); and then fit a mixed model at the
second level that models the individual stimulus effects as random effects. The former steps would
have been extremely time-consuming relative to our strategy of fitting a single large model, and the
latter step (i.e., modeling stimulus as a random effect) is currently not supported in any existing
fMRI package, so we would have had to develop a custom model anyway. Moreover, as we noted
in the supplement, “This [summary statistics] model is only an approximate version of the full RSM,
as it ignores the varying degrees of uncertainty in the stimulus-level coefficients estimated at the
first level (due in particular to factors such as differences in how often the stimuli were presented
and how collinear the stimulus-level regressors were for each subject)”.

We also note that we did in fact use the summary statistics approximation to obtain estimates for
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the Chang et al. (2015) dataset (see supplement for details). This was not by choice, and we would
have preferred to fit the full RSM; however, as we explain in the supplement, this dataset was
available in a form amenable only to the summary statistics approach (i.e., because pre-computed
estimates for each individual trial were provided).
® However, besides the fact that they use a Bayesian inference (including prior
distribution), they base their conclusions on frequentist arguments (comparing test
statistics). To my point of view, this is quite confusing.
We do not believe that our conclusions are based on frequentist arguments. Notably, we have not
computed any p-values nor refer to any z-scores. In the section “Does the amygdala preferentially
respond to emotional faces?” we write: “we define a test statistic z = /o, where p and ¢ are the
mean and standard deviation, respectively, of the posterior samples for the associated parameter
estimate”. The use of “test statistic” was a bit careless, as we are not “testing hypotheses”; we
simply needed a convenient summary of the posterior. We admit that this choice of terminology
could be confusing, so in our revision we have renamed this statistic the posterior standardized
effect.

Another important point is that our argument is fundamentally qualitative and not quantitative; we
focus on how uncertainty surrounding the estimate of interest (denominator of our standardized
effect) increases dramatically in most cases. We present this increase in terms of standardized
effect because that’'s what most people are familiar with, but nothing would change if we instead
talked about the relative increases in the variances of the estimates.
® |f a Bayesian framework is considered, then the hypothesis testings should be
perform using Bayes Factor or any other tools taking into account the prior
distribution.
Bayes Factors in this setting are not trivial, and any rate would not serve the broad audience, who
would like to know: How severe is the random stimulus effect problem? Again, we could have
measured this directly in terms of variance inflation, but since users are most familiar with
signal-to-noise ratio, we felt that this was the best metric.
® Moreover, when proposing a new model, the first thing to do is to compare the old
model and the new model for any given dataset (using statistical tools such as
hypothesis testing, in a frequentist or Bayesian framework). | could not see such a
test in the paper. The mixed effects model involves much more parameters for the
same amount of observations. Before deriving conclusions on the new model, it
should be interesting to put in competition the fixed effects model and the mixed
effects models, to be sure that the use of the more complex model is supported by
the data.
The reviewer is correct that no formal model assessment was used. This was intentional, as
(crucially) we are not testing a hypothesis about the relative fit of different models. Rather, we’re
pointing out a fundamental mismatch between the conclusions researchers typically draw (which
almost invariably involve assuming that it is safe to generalize conclusions over a population of
stimuli) and the inferences that are actually licensed by the statistical model (which, in the absence
of a variance component reflecting the random sampling of levels from some factor, are only valid
for the specific levels used in the experiment). Our position is that it is the design of the experiment
and the goals of the analyst--not the observed data--that determine which random effects should
be included in the model. This position is consistent with the arguments of Barr, Levy, Scheepers,
and Tily (2013).

It may be useful to draw an analogy to a random subject effect in a multi-subject model. No
reasonable investigator would test for the significance (or BF-based evidence) for a subject
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random effect; while such tests may come up negative sometimes, we know our subjects are a
random sample from a larger population, a population to which we wish to generalise. Likewise, it
is now generally accepted that meta-analyses should treat study as a random effect irrespective of
formal tests of heterogeneity (Borenstein, et al., 2010).

Hence our paper is not focused on the question “Is there statistical evidence for random stimulus
effects?” but rather the assertion “Some stimuli are random, and such stimuli should be so
modeled.” This is a widely noted point in many other disciplines, as we have referenced in the
introduction; our contribution is to raise awareness of this issue in neuroimaging, and provide
easy-to-interpret measures of the impact of neglecting random stimulus effects.
® Besides, ina Bayesian context, the greater posterior variance observed on the
regression parameters was completely expected (Figure 2) (more parameters for
the same quantity of information leads to more incertitude a posteriori).
Our reanalysis of the Emotion Regulation dataset and our simulation results both speak to the
contrary. The Emotion regulation dataset featured a relatively large number of stimuli with small
estimated stimulus variance; consequently the standardized effects (what we called the test
statistics in the manuscript) from the RSM and standard models are essentially identical, despite
the fact that the RSM technically contains many more parameters. Consistent with this general
finding, in the Method subsection describing our simulation results we wrote: “When the true data
generating process contained zero stimulus variability, the standard model and RSM yielded very
similar [standardized effects] for the stimulus category difference, for all participant and stimulus
sample sizes. The exception was that when the stimulus sample size was small (m = 16), the
[standardized effects] from the RSM were slightly attenuated (by about 18%) compared to the
standard model [standardized effects]. However, this attenuation disappeared with increasing
stimulus sample size, so that at m = 32 and m = 64, the [standardized effects] from the two models
were essentially identical, as should be the case given the lack of true stimulus variability.” Note
that as the stimulus sample size increases, the number of parameters in the RSM technically
increases as well, but this actually causes the posterior for the category difference to become more
narrow, not more wide. We believe that these analyses sufficiently highlight the conditions under
which the RSM does and does not give overly pessimistic posterior estimates of the category
difference.
® However, without objective criteria (such as Bayes factor or hypothesis testing), |
am not able to decide whether the difference between fear faces and anger faces is
significant or not. (caption for Figure 2). It is not clearly stated in the paper how the
authors were able to do so (even though I could find clues in the simulation
section?).
We were careful not to claim that the difference was or was not statistically significant, but rather,
that there appears to be at most a small effect. In Bayesian estimation terms, this amounts to
saying that the posterior distributions for the effects of fearful and angry faces mostly overlap. We
have updated the text to clarify these points (see updated section beginning with “Depending on
one’s statistical approach and assumptions...”).
® | am aware of the fact that Bayes factor are quantities difficult to estimate and that
frequentist hypothesis testing in mixed effects models can be a tough issue.
However, if the authors want to prove that the conclusions of statistical testing are
modified when using mixed effects models, then they should perform the adequate
and rigorous statistical testings.
As expanded on above, we do not think model comparison is necessary or helpful in this context.
Our argument is not predicated on the idea that a model with random stimulus effects fits the data
better (although we strongly suspect that it often will), but rather on how the experimental design
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and the desired inferences demand such a model.

REFERENCES

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory
hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3).
https://doi.org/10.1016/j.jml.2012.11.001

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to
fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2),
97-111. http://doi.org/10.1002/jrsm.12

Competing Interests: No competing interests to report.

Page 24 of 24



