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Emergence of topological semimetals in gap closing in
semiconductors without inversion symmetry
Shuichi Murakami,1,2* Motoaki Hirayama,1,2 Ryo Okugawa,1 Takashi Miyake3

Abandgap for electronic states in crystals governs variousproperties of solids, suchas transport, optical, andmagnetic
properties. Its estimation and control have been an important issue in solid-state physics. The band gap can be
controlled externally by various parameters, such as pressure, atomic compositions, and external field. Sometimes,
the gap even collapses by tuning some parameter. In the field of topological insulators, this closing of the gap at a
time-reversal invariant momentum indicates a band inversion, that is, it leads to a topological phase transition from a
normal insulator to a topological insulator. We show, through an exhaustive study on possible space groups, that the
gap closing in inversion-asymmetric crystals is universal, in the sense that the gap closing always leads either to aWeyl
semimetal or to a nodal-line semimetal. We consider three-dimensional spinful systems with time-reversal symmetry.
The spacegroupof the systemand thewave vector at the gap closing uniquely determinewhich possibility occurs and
where the gap-closing points or lines lie in the wave vector space after the closing of the gap. In particular, we show
that an insulator-to-insulator transition never happens, which is in sharp contrast to inversion-symmetric systems.
INTRODUCTION
In electronic band theory of crystals, degeneracy at eachwave vector k is
understood in terms of symmetry. A dimension of an irreducible repre-
sentation (irrep) of a k-group at a given k point is equal to degeneracy at
the k point considered. For example, a fourfold degeneracy of valence
bands at the G point in cubic semiconductors comes from cubic sym-
metry. Meanwhile, proposals of topological semimetals have shown us
other possibilities for band degeneracies, stemming from topology. In
this topological semimetal, a band gap closes at generic k points, and
this closing of the gap originates not from symmetry, but from topo-
logical reasons. There are various topological semimetals, such asWeyl,
Dirac, and nodal-line semimetals. In Weyl semimetals (WSMs) (1–4),
the band structure has three-dimensional (3D) nondegenerate Dirac
cones. There are various proposals of materials for WSMs (2, 5–13),
some of which have been experimentally confirmed, such as TaAs
(14–16). Because of topological properties of Weyl nodes (1, 17, 18),
characteristic surface states called Fermi arcs arise (2, 19–21). As another
example of topological semimetals, a nodal-line semimetal (22–35) has
line nodes along which the band gap closes. Because the emergence of
topological degeneracy is accidental, the search for candidate materials
realizing topological semimetals is still elusive.

Here, we consider physics of topological semimetals from anew per-
spective. We focus on the evolution of a band structure of a general
inversion-asymmetric insulator by changing a single parameter, m,
which can be any parameter in the Hamiltonian. We suppose that
the gap closes at some value of the parameterm. We then prove that
after a further change of the value of m (Fig. 1A), the system always
becomes either (i) a nodal-line semimetal (Fig. 1B) or (ii) a WSM
(Fig. 1C). We show that the space group of the crystal and the wave
vector at the gap closing uniquely determines which possibility is
realized and where the gap-closing points or lines are located after
the closing of the gap. Here, we restrict ourselves to 3D spinful
systems with time-reversal symmetry, that is, nonmagnetic systems
with nonzero spin-orbit coupling (SOC). In particular, we find that
an insulator-to-insulator (ITI) phase transition never occurs in any
inversion-asymmetric systems. It is in sharp contrast to inversion-
symmetric systems.

This work is motivated by the universal phase diagram (Fig. 2A) be-
tween a topological insulator (TI) and a normal insulator (NI) in three
dimensions (1). Our result in the present paper indicates that when in-
version symmetry is broken at a transition between differentℤ2 topological
numbers (36, 37), that is, between a strong topological insulator (STI)
and an NI [or a weak topological insulator (WTI)], a WSM phase al-
ways appears, as was expected byMurakami (1). This theory can be ap-
plied to any inversion-asymmetric crystals, such as BiTeI under high
pressure (6) and Te under pressure (34).
RESULTS
Setup of the problem
We consider a Hamiltonian matrix H(k, m), where k is a Bloch wave
vector andm is an external parameter controlling the gap. Furthermore,
we assume that a space group of the system remains the same for any
values ofm. To see how the gap closes, we assume that form <m0, the
system is an insulator, and that atm=m0, the gap closes at awave vector
k = k0. We assume the Hamiltonian to be analytic with respect to k and
m. Then, we expand theHamiltonian in terms ofm−m0 and q≡ k− k0,
and retain some terms of lower order to see the evolution of the band
structure form>m0. For the purpose of application to realmaterials, we
consider all the 138 space groups without inversion symmetry. For each
space group, there are various k points, such asG,X, and L. Each k point
is associated with a k-group (little group), which leaves the k point
unchanged. To focus on the closing of the gap, we retain only the
lowest conduction band and the highest valence band, whose irreps of
thek-groupat k0 are denoted byRc andRv, respectively. In our analysis,
we use the complete list of double-valued irrepsofk-groupsbyBradley and
Cracknell (38).

Varieties of 138 space groups, k points for each space group, and
irreps at each k point lead to numerous possibilities. Our theory in this
paper exhausts all the cases; we can substantially reduce the number of
possible cases by the following considerations. First, we can exclude
cases with dimRv≥ 2 or dimRc≥ 2, that is, the cases where the valence
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or the conduction band at k0 has degeneracy; it is because the gap does
not close at k0. The reason is the following: If dim Rc ≥ 2 at k0, the
energy of the conduction band does not have a minimum at this k0
point, because the degenerate states at k0 will split linearly away from
k0 along a generic direction (see Fig. 3A). Therefore, the gap does not
close at k0. A similar argument applies to the valence band. Thus, we can
safely restrict ourselves to the cases with dimRv = dimRc = 1; hence, the
effective model is described by a 2 × 2Hamiltonianmatrix, which dras-
tically simplifies our analysis. In particular, amongpossiblewave vectors
Murakami et al., Sci. Adv. 2017;3 : e1602680 12 May 2017
k0, we exclude the time-reversal invariant momenta (TRIM), because
the bands at the TRIM always have Kramers degeneracies.

Various cases of gap-closing events classified by symmetry
Next, we determine theHamiltonianmatrixH(k,m) for each case from
Rv and Rc. Resulting behaviors of the closing of the gap are then
classified in terms of Rv and Rc. All the cases for the 138 space groups
are summarized in the tables in the Supplementary Materials. Here, we
briefly explain some representative cases of k-groups, and their details
are given in Materials and Methods. In this analysis, in addition to
point-group elements of a k-group, we have to consider symmetry
operations of a form QO, where Q is a time-reversal operator and O
is a point-group element.
(i) No symmetry
We consider a generic k point having no special symmetry; namely, a
k-group consists only of an identity operation. The band gap can close
there, and the closing of the gap always accompanies a pair creation of
Weyl nodes, as shown by Murakami and Kuga (1, 39). This occurs
because Weyl nodes are topological, having quantized monopole
charges q = ±1 for the k-space Berry curvature; this topological prop-
erty allows for pair creation ofWeyl nodes with q = +1 and −1.We call
this case of Weyl-node creation “1,” where 1 represents a number of
monopole-antimonopole pairs (Fig. 3B).
(ii) C2 symmetry
Suppose the k-group consists only of the twofold (C2) symmetry. Then,
there are two 1D irreps with opposite signs of the C2 eigenvalues. Con-
sequently, we have two cases: (ii-1) Rc = Rv and (ii-2) Rc ≠ Rv. For (ii-1)
Rc = Rv, the gap cannot close by changingm because of level repulsion.
On the other hand, for (ii-2) Rc ≠ Rv, the gap can close because there is
no level repulsion at k0, and we find that the closing of the gap accom-
panies the creation of a pair of Weyl nodes. When m is increased, the
twoWeyl nodes (amonopole and an antimonopole)move along theC2

axis, as shown in Fig. 3C.We call this case “1a,”where 1 represents the
Fig. 1. Setup of themain problem of band evolution in an inversion-asymmetric
semiconductor. (A) Band evolution toward gap closing. Schematic illustrations for two
classes of band evolution into (B) a nodal-line semimetal, that is, semimetal with a gap
closing along a loop, and (C) a WSM.
Fig. 2. Universal phase diagram for ℤℤℤℤ2 topological phase transitions and evolutions of the band structure upon the transition. (A) Universal phase diagram for ℤ2
topological phase transitions. It is shown as a function of an external parameter, m, and a parameter d controlling a degree of inversion symmetry breaking (1). The horizontal
dashed line is the inversion-symmetric line. (B and C) Evolutions of bulk band structure with a change of the parameter m for inversion-symmetric (B) and inversion-
asymmetric (C) cases, respectively. The blue and the red arrows in (A) correspond to the cases (B) and (C), respectively. DSM represents a Dirac semimetal.
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number of monopole-antimonopole pairs and ameans “axial,” that is,
the relative direction between the two Weyl nodes is along a high-
symmetry axis.
(iii) C2 and QC2 symmetries
The problem becomes more complicated when the time-reversal
operatorQ is involved. Here, we consider a systemwith twoC2 symme-
tries C2y and C2z, whose rotational axes (y and z) cross perpendicularly.
We focus on a k0 point lying on theC2z axis, but not on theC2y axis; the
k-group thus consists ofC2z andQC2y. There are two eigenvalues ofC2z

with opposite signs, yielding two irreps, and Rc and Rv can take either of
these two irreps. We consider two cases, (iii-1) Rc = Rv and (iii-2) Rc ≠
Rv, separately. For (iii-1)Rc =Rv, the closing of the gap leads to creations
of two monopoles and two antimonopoles, and their trajectories are
shown in Fig. 3D. As compared to (ii-1), the additionalQC2y symmetry
suppresses level repulsion at k0, and therefore the gap can close. In our
discussion, this behavior is called 2a, where 2 means the number of
monopole-antimonopole pairs and ameans that the relative orientation
between the two monopoles (and likewise, the two antimonopoles) is
fixed to be along high-symmetry axes. For (iii-2) Rc≠ Rv, a pair ofWeyl
nodes is created, and theymove along theC2z axis as in (ii-2) (Fig. 3C). It
is written as 1a.
(iv) Mirror symmetry M
We consider the k-group consisting only of a mirror symmetry or a
glide symmetry. There are two representations with opposite signs of
mirror (or glide) eigenvalues. In the case (iv-1) Rc = Rv, the gap can
close, leading to a creation of a pair of Weyl nodes. The trajectory of
the monopole and that of the antimonopole are mirror images of each
other. We call this pattern 1sa, representing that the direction between
Murakami et al., Sci. Adv. 2017;3 : e1602680 12 May 2017
the two Weyl nodes are always perpendicular to the mirror plane
(Fig. 3E). The symbol s means that all the Weyl nodes are related by
symmetry operations, and therefore, they are at the same energy. On
the other hand, for (iv-2) Rc ≠ Rv, the gap closes along a loop (that is,
nodal line) within the mirror plane in k space. We call this case 1ℓ,
where ℓ stands for “loop” and 1 represents the number of loops. This
degeneracy along the loop occurs because on the mirror plane, there is
no level repulsion between the valence and the conduction bands
belonging to the different irreps.

One hundred thirty-eight inversion-asymmetric
space groups
We can similarly calculate band structure evolution after the closing of
the gap for all the high-symmetry points and lines for the 138 space
groups without inversion symmetry. A complete list of all the cases is
lengthy and is summarized in the tables in the Supplementary
Materials. In Fig. 4, we summarize possible patterns for positions
where the gap closes in k space for m > m0, that is, after closing of
the gap at k0. In the figure, the individual patterns are represented as
1sp, 1ℓ, and so on, and their notations are explained as follows. The
numbers in Fig. 4 (B toQ) represent the number of pairs ofWeyl nodes,
except for 1ℓ, 2ℓ, 3ℓ, 4ℓ, and 6ℓ, where the number represents the num-
ber of loops (nodal lines). The symbol ℓmeans that there are nodal lines
where the gap is closed. These nodal lines always appear onmirror planes
and only when the valence and the conduction bands have different
mirror eigenvalues. The symbol a (axial) denotes that the relative
directions between the Weyl nodes are fixed to be along certain high-
symmetry lines; meanwhile, the symbol p (planar) denotes that these
directions are not confined along high-symmetry axes, but confined
within high-symmetry planes. The symbol c (coplanar) denotes that
all the monopoles and antimonopoles lie on the same high-symmetry
plane.This symbol c is usedonlywhen there aremore thanonemonopole-
antimonopole pairs. The symbol t (tetrahedral) appears only for a
few cases with tetrahedral or cubic symmetries. It means that four
monopoles and four antimonopoles form eight vertices of a cube, whose
center is a high-symmetry point, and four monopoles form a tetrahe-
dron. The symbol s (symmetric) denotes that all themonopoles and the
antimonopoles are related to each other by symmetry operations. In
these cases, they are energetically degenerate, and it is possible to locate
all the Weyl nodes on the Fermi energy. Otherwise, these monopoles
and antimonopoles may not necessarily be at the same energy.

From this analysis, we conclude that there are only two possibilities
after the closing of the gap in inversion-asymmetric insulators with time-
reversal symmetry: nodal-line semimetals and WSMs. The nodal-line
semimetals are denoted by nℓ (n = 1, 2, 3, 4, and 6) (see Fig. 4A). Here,
n is the number of nodal lines on mirror planes on which the highest
valence and the lowest conduction bands have different mirror eigen-
values. The other possibility is the WSM, shown in Fig. 4 (B to Q). In
some k with high symmetry, Weyl nodes and nodal lines are simulta-
neously generated. Remarkably, an ITI transition never occurs in the
closing of the gap of the inversion-asymmetric insulators.

Materials realization
This universal result applies to any crystalline materials without inver-
sion symmetry: Our first example is tellurium (Te), which has been the-
oretically shown to become aWSM at high pressure (7). Tellurium is a
narrow-gap semiconductor without inversion symmetry, with its space
group no.152 (P3121) or no.154 (P3221), which are mirror images of
each other. At higher pressure, the gap closes and eventually a pair of
Fig. 3. Behavior of Weyl points at closing of the band gap in inversion-
asymmetric insulators. (A) Schematic band structure for the case with dim Rc = 2
and dim Rv = 1. The gap does not close at k0 in this case. (B) Trajectory ofWeyl nodes in
the case (i) after pair creation atk0. (C) Trajectory ofWeyl nodes in (ii-2) and in (iii-2). The
Weyl nodes move along the C2 axis. (D) Trajectory of Weyl nodes in the case (iii-1)
viewed from different angles. The k0 point is on the C2z axis away from a TRIM Gi.
(E) Trajectory of Weyl nodes in the case (iv-1). In (B) to (E), yellow and green spheres
denote monopoles and antimonopoles in k space, respectively, and they are both
Weyl nodes.
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Weyl nodes is produced at each of the four P points on the K-H lines.
TheWeyl nodes then move along the threefold screw axes (K-H lines).
According to our table, the only possibility of the gap closing is 1a, in
agreement with the above result. Moreover, this 1a at the P points is
allowed only when the C3 eigenvalues of the valence and conduction
bands are different; it was confirmed by the ab initio calculation (7).

The second example is HgTexS1−x under strain, which has been
shown to become a WSM (10). It has a zinc blende structure (space
group no. 216, F�43m), but a strain along the [001] direction reduces
the space group to no.119 (I�4m2). In this case, when x is increased
from x = 0, the gap closes at four points on the G-K lines (S points) on
the (110) and the (1�10)mirror planes, and then four pairs ofWeyl nodes
are created. The eightWeyl points thenmove within the kz = 0 plane by
a further increase of x until they mutually meet at S points and dis-
appear after ±p/2 rotation around the [001] axis (10). According to
our table, the gap closing at each S point corresponds to 1sa, meaning
that the Weyl nodes move perpendicularly to the (110) or the (1�10)
mirror planes, which agrees with the previous work (10).

Because degeneracies in topological semimetals are accidental, an ef-
ficient and systematic search of topological semimetals is difficult.
Moreover, these degeneracies occur at generic k points; therefore, they
may easily be overlooked in ab initio calculations, where band structure
is usually calculated only along high-symmetry lines. Thus, a search of
topological semimetals is an elusive issue.

Our results can be used for the search of topological semimetal
materials. For example, we find that HfS has nodal lines near the Fermi
Murakami et al., Sci. Adv. 2017;3 : e1602680 12 May 2017
level.HfS has a valley of the density of states near the Fermi level because
of the following two reasons: One is that due to covalent bonds from S 3p
orbitals, valence electrons in p orbitals tend to make a gap at the Fermi
level to lower the total energy; it is prominent for atoms with large elec-
tronegativity. The other is an open shell of Hf 5d orbital (5d2) having
strong SOC. The structure of HfS is the same as that of tungsten carbide
(WC) (Fig. 5A), with the space group no.187 (P�6m2) (40). Figure 5B
shows the electronic band structure of HfS. If the SOC is neglected, Dirac
nodal lines exist around theKpoints on the kz=0plane. The SOC lifts the
degeneracy of the Dirac nodal lines, andWeyl nodal lines appear instead,
near the K points on the mirror plane kz = 0. By applying pressure (Fig.
5C) or by atomic substitution from S to Se, the nodal lines become
smaller. At 9 GPa, the nodal lines shrink to points (T points) on the K-G
lines, and then the gap opens above 9 GPa. This evolution of the band
structure corresponds to 1ℓ in our table.

Next, we show LuSI as aWSM under pressure. The conduction and
the valence bands originate from Lu 6s + 5d orbitals and S 3p (and I 5p)
orbitals, respectively. The structure type of LuSI is GdSI (Fig. 5E), with
the space group no.174 (P�6) (41). Each type of atom constitutes a
distorted trigonal lattice, which displaces the gap away from theG point.
Figure 5F shows the electronic structure of LuSI having a very narrow
gap (<0.04 eV) near theM point. It becomes aWSM under pressure, as
shown in Fig. 5G, with details shown in Materials and Methods. Six
monopoles and six antimonopoles exist at the same energy because they
are related by symmetry. By applying pressure, the band gap first closes
at six generic points on the kz = 0 plane, related to each other by sixfold
Fig. 4. All the patterns of locations of gap-closing points after parametric closing of the gap. (A) A line node for a nodal-line semimetal. Although the figure
shows the case with a single line node, the number of line nodes can be 1, 2, 3, 4, or 6. (B to P) All the patterns of Weyl nodes after parametric gap closing at k0. Yellow
and green spheres denote monopoles and antimonopoles in k space, and they are both Weyl nodes. Solid lines denote high-symmetry directions. In (G) to (O) and (Q), the
z axis, taken to be perpendicular to the plane, is parallel to a high-symmetry axis. q ≡ k − k0 is the momentum measured from k0. In (I), (L), (M), and (N), all the Weyl nodes
are coplanar with k0, whereas in (G), (H), (J), (K), (O), and (Q), the Weyl nodes are mutually displaced along the z direction.
4 of 8
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symmetry. It corresponds to 1sa because of the mirror symmetry Mz,
belonging to the case (iv-1).

We show another example, MgPt, as a material havingWeyl nodes.
MgPt has the FeSi-type structure (Fig. 5I), having the space group
no.198 (P213) (42). Figure 5 (J and K) shows the electronic structure
of MgPt. The band near the Fermi level originates from Pt 5d orbitals
having strong SOC.Weyl nodes w1 andw2 exist at general k points with
no symmetry.

Topological phase transitions and ℤℤℤℤℤ2 topological number
Let us turn to ℤ2 phase transitions in three dimensions, that is, STI-NI
(or STI-WTI) phase transitions. In the universal phase diagram (Fig.
2A) between an STI and an NI (or an WTI), there should be a finite
region of a WSM phase when inversion symmetry is broken, as shown
in the previous works (1, 39); nevertheless, in its derivation (1), crystal-
lographic symmetries, except for inversion symmetry, are not
considered. The result in the present paper shows that this conclusion
of existence of the WSM phase in the ℤ2 phase transition holds true in
general, whenever inversion symmetry is broken.One of the remarkable
conclusions here is that an ITI transition never occurs in inversion-
asymmetric crystals. This is in strong contrast to inversion-symmetric
systems, where a transition between different ℤ2 topological phases al-
ways occurs as an ITI transition (that is, at a single value ofm), as seen in
TlBi(S1−xSex)2 at around x ∼ 0.5 (43, 44).
Murakami et al., Sci. Adv. 2017;3 : e1602680 12 May 2017
We apply this theory to BiTeI, which lacks inversion symmetry (45),
having the space group no.156 (P3m1). BiTeI is an NI at ambient pres-
sure and has been proposed to become an STI at high pressure (46, 47).
Subsequently, ab initio calculations in previous work (6) showed exis-
tence of a WSM phase between the NI and the STI phases in a narrow
window of pressure, which had been overlooked in some previous
works (46, 47). When the pressure is increased, the gap first closes at
six S points on the A-H lines, and then six pairs of Weyl nodes are cre-
ated. The six monopoles and six antimonopoles move in opposite
directions; subsequently, they annihilate each other at generic points
on three mirror planes, leading to the STI phase (6). Combination of
all the trajectories of the Weyl nodes yields a loop around the TRIM
point (A point); it means that a band inversion occurs at the A point
between the low-pressure NI phase and the high-pressure STI phase
and results in a subsequent change of the ℤ2 topological number
(1, 39). From our table, the space group no.156 at six S points gives
1sp, meaning that immediately after the pair creations, they move
perpendicularly to theA-H line, which is in agreementwith the previous
work (6).

Other examples are LaBi1−xSbxTe3 and LuBi1−xSbxTe3, which have
been proposed to undergo an NI-WSM-TI phase transition by changing
x (6). The space group is no.160 (R3m), lacking inversion symmetry. By
increasing x, the band gap closes at six generic points, corresponding to
creation ofWeyl nodes (6). The resulting 12Weyl nodesmove in k space
Fig. 5. Examples of proposed inversion-asymmetric topological semimetals found using the present theory. (A) Crystal structure of HfS. (B and C) Electronic
band structure of HfS. (C) The phase transition of HfS under pressure. T1 and T2 are the points of the intersection of the nodal line with the K-G line. (D) Brillouin zone of
HfS. (E) Crystal structure of LuSI. (F) Electronic band structure of LuSI. (G) Band structure of LuSI under pressure, where the lattice constant c is multiplied by 0.945. (H) Positions
of the Weyl nodes of LuSI under pressure on the kz = 0 plane. (I) Crystal structure of MgPt. (J and K) Electronic band structure of MgPt. (L) The Brillouin zone of LuSI and MgPt.
The energy is measured from the Fermi level.
5 of 8
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until they are annihilated at the sixB (≡S) points. In our table, theB point
corresponds to1sp, that is, thepair annihilationoccurs between twoWeyl
nodes, which are moving perpendicularly to the normal direction of the
mirror planes. It agrees with the previous work (6).
DISCUSSION
To summarize, we investigate the evolution of the band structure after
parametric closing of the band gap in inversion-asymmetric crystals. We
found that only twopossibilities occur.Onepossibility is theWSMphase,
and closing of the gap corresponds to monopole-antimonopole pair
creations ofWeyl nodes. Distribution of theWeyl nodes in k space after
the closing of the gap is uniquely determined by symmetry. The other
possibility is a nodal-line semimetal, with a gap closed along loops on
mirror planes. From these results, we show that in any topological phase
transitions with different ℤ2 topological numbers (without inversion
symmetry), there should be a WSM phase between the two bulk-
insulating phases. These results give us a systematic way to search
materials for topological semimetals.
MATERIALS AND METHODS
Details of the first-principles calculation
The electronic structure was obtained from the local density approx-
imation (LDA) of the relativistic density functional theory (DFT). Cal-
culation of the electronic structure was performed using OpenMX
code (www.openmx-square.org/) based on localized basis functions
and norm-conserving pseudopotentials. We used 12 × 12 × 12 k-point
sampling for HfS, HfSe, and MgPt, and 6 × 6 × 12 k-point sampling
for LuSI. We used the experimental lattice parameters of these
materials at ambient pressure (40–42). Lattice optimization for HfS
under pressure is based on the LDA and was carried out using Quan-
tumMAterials Simulator (QMAS) code (http://qmas.jp/) based on the
projected augmented-wave method. We used 12 × 12 × 12 k-point
sampling and 40 rydberg as a plane-wave energy cutoff in the lattice
optimization. We also checked dynamic stability of HfS under pres-
sure in the LDA of the density functional perturbation theory (DFPT)
using Quantum ESPRESSO code (www.quantum-espresso.org/). We
used 7 × 7 × 7 k-point sampling for the DFT and the DFPT calcula-
tions at ambient pressure and under 20 GPa. The structure is at least
metastable up to 20 GPa, because there is no imaginary frequency in
the phonon dispersion, as shown in the Supplementary Materials.

In LuSI, numerical error in the structural optimization is larger than
the energy scale around the Weyl point at ambient pressure because of
the extremely small energy gap of LuSI at ambient pressure. Therefore,
in our calculation, we simply multiplied the lattice constant c by 0.945
instead of structural optimization. A realistic value of the transition
pressure to the WSM phase is an open question. Nevertheless, because
of the extremely small gap of LuSI at ambient pressure, the transition
pressure was expected to be small; therefore, the lattice structure should
remain stable even in the WSM phase.

Details of the effective-model calculation
It is convenient in the following analysis to expand the Hamiltonian as

H(q,m) =∑
3

i¼1
ai(q,m)si, wheresi (i= x, y, z) are Paulimatrices,q=k−k0,

and sz = +1 and −1 correspond to the conduction and the valence band,
respectively.Here,we omitted the termproportional to an identitymatrix
because it does not affect the gap-closing event. Because the gap closes at
Murakami et al., Sci. Adv. 2017;3 : e1602680 12 May 2017
m=m0,q=0,we had ai(q=0,m=m0) = 0,where i=1, 2, 3.We assumed
that when m < m0, the gap is open. In each case presented below, we
examined whether the gap can close or not by counting a codimension,
dc, that is, the number of parameters to be tuned to close the gap. If the
codimension is equal or lower than the number of tunable variables, the
gap can close there; otherwise, the gap does not close.
(i) No symmetry
When there is no special symmetry at the k point, the Hamiltonian is
not restricted by symmetry. The gap of the 2 × 2 Hamiltonian closes
when ax = ay = az = 0; this condition determines a curve in the 4D space
(q,m). This curve goes through the point (q= 0,m=m0), but it does not
exist in them <m0 region by assumption, and therefore, the curve has a
minimum value ofm atm =m0 (Fig. 6A). Therefore, as the value ofm
increases, the gap-closing point appears at q = 0 form =m0, and then it
splits into two points (Weyl nodes) whenm is further increased. It is a
pair creation of a monopole and an antimonopole.
(ii) C2 symmetry
Suppose k is invariant only by a twofold (C2) rotation taken to be
around the z axis. For (ii-1) Rc = Rv, the 2 × 2 Hamiltonian satisfies
H(qx, qy, qz, m) = H(−qx,−qy, qz, m), where q ≡ k − k0. In particular,
at k = k0, the above equation becomes trivial, imposing no constraint
on the Hamiltonian. Therefore, the gap cannot close by changing a
single parameter, m, because three conditions [ai(q = 0, m) = 0, (i =
x, y, z)] cannot be simultaneously satisfied in general.

On the other hand, for (ii-2) Rc ≠ Rv, the opposite signs of the C2

eigenvalues lead to an equationH(qx, qy, qz,m) =szH(−qx,−qy, qz,m)sz.
In particular, for qx = qy = 0, we obtained H(0, 0, qz, m) = az(qz, m)sz,
whose gap closeswhen az(qz,m) = 0. Fromour assumption, it is satisfied
when qz = 0, m = m0 but is not for m < m0. Hence, the value of m
satisfying az(qz, m) = 0 as a function of qz should have a minimum at
qz= 0 (Fig. 6B). It leads to bifurcation into two solutions on the qz axis as
m increases acrossm0, and it describes a monopole-antimonopole pair
creation of Weyl nodes. Therefore, two Weyl nodes are created at m =
m0, and they move along the C2 axis. We call this case “1a.”
(iii) C2 and QC2 symmetries
Suppose the wave vector k is invariant under C2z and QC2y. There are
two eigenvalues of C2zwith opposite signs, yielding two irreps. For (iii-1)
Rc = Rv, the Hamiltonian satisfiesH(qx, qy, qz,m) =H(−qx, −qy, qz,m) =
H∗(qx, −qy, qz, m), where “∗” represents complex conjugation. These
equations lead to ax = fx(qx

2, qy
2, qz, m), ay = qxqyfy(qx

2, qy
2, qz, m),

and az = fz(qx
2, qy

2, qz, m). As m is increased, it describes creations of
Fig. 6. Valuesofm for closing of the gap as a function of q. (A)m=m(qx, qy, qz) as a
solution of ai(qx, qy, qz,m) = 0 (i= x, y, z) in (i). (B)m=m(qz) that satisfies az(0, 0, qz,m) = 0
in (ii-2). (C) m = m(qx, qy) as a solution of az (qx, qy, 0, m) = 0 in (iv-2).
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twomonopoles and two antimonopoles atq=0,m=m0. Form>m0, two
monopoles are at (±~qx, 0,~qz) on the xzplane and twoantimonopoles are at
(0, ±~qy, ~qz′), where ~qx, ~qy, ~qz, and ~qz′ depend onm (or the positions of the
monopoles and antimonopoles might be exchanged). Notably, in con-
trast to (ii-1), where the level repulsion prohibits closing of the gap, in
the present case (iii-1), the additional QC2 symmetry gives rise to addi-
tional constraints and suppresses level repulsion. In our list, this behavior
in (iii-1) is represented as 2a.

For (iii-2) Rc ≠ Rv, the Hamiltonian satisfies H(qx, qy, qz, m) =
szH(−qx, −qy, qz,m)sz =H∗(qx, −qy, qz,m). The similar discussion as in
(iii-1) leads to the results ax= qx fx(qx

2, qy
2, qz,m), ay = qyf y(qx

2, qy
2, qz,

m), and az = fz(qx
2, qy

2, qz, m). Therefore, for qx = qy = 0, ax and ay
identically vanish, and the remaining condition az(0, 0, qz,m) = 0 de-
scribes a pair creation ofWeyl nodes at q = 0 andm =m0 as in (ii-2). It
is written as 1a.
(iv) Mirror symmetry M
Let the z axis denote the direction normal to themirror plane. Because a
square of the mirror operatorM is equal to −1 for mirror symmetry or
an identity operator times a k-dependent factor for glide symmetry,
there are two representations with opposite signs of mirror eigenvalues.
For (iv-1) Rc = Rv, the Hamiltonian satisfies H(qx, qy, qz,m) =H(qx, qy,
−qz,m). This equation is automatically satisfied on themirror plane qz=
0. Thus, closing of the gap on themirror plane imposes three conditions
[ai(qx, qy, 0,m) = 0, i= x, y, z] for three variables qx, qy, andm. This set of
equations can have solutions on themirror plane, and this closing of the
gap accompanies a pair creation of Weyl nodes, which will then move
symmetrically with respect to themirror plane.We call this pattern 1sa.

On the other hand, for (iv-2) Rc ≠ Rv, we obtainedH(qx, qy, qz,m) =
szH(qx, qy,−qz,m)sz. Hence, within the qz= 0 plane, theHamiltonian is
expressed as H(qx, qz, 0, m) = az(qx, qy, 0,m)sz. Closing of the gap im-
poses only one condition, az = 0 (that is, dc = 1), for three variables (qx,
qy, andm); therefore, the gap can close by changingm. By assumption,
the gap-closing condition az(qx, qy, 0,m) = 0 does not have solutions for
m <m0, but has a solution at qx = qy = 0,m =m0. Therefore, the value of
m as a function of qx and qy has a minimum at qx = qy = 0, as shown in
Fig. 6C. When m is larger than m0, the gap closes along a loop (nodal
line) within the qz = 0 plane. We call this case 1ℓ.
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