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The consumption of tea (Camellia sinensis) has been correlated with a low incidence of chronic pathologies, such as cardiovascular
disease and cancer, in which oxidative stress plays a critical role. Tea catechins and theaflavins are, respectively, the bioactive
phytochemicals responsible for the antioxidant activity of green tea (GT) and black tea (BT). In addition to their redox properties,
tea catechins and theaflavins could have also pharmacological activities, such as the ability to lower glucose, lipid and uric acid
(UA) levels. These activities are mediated by pharmacological mechanisms such as enzymatic inhibition and interaction with
transporters. Epigallocatechin gallate is the most active compound at inhibiting the enzymes involved in cholesterol and UA
metabolism (hydroxy-3-methyl-glutaryl-CoA reductase and xanthine oxidase respectively) and affecting glucose transporters.
The structural features of catechins that significantly contribute to their pharmacological effect are the presence/absence of the
galloyl moiety and the number and positions of the hydroxyl groups on the rings. Although the inhibitory effects on α-
glucosidase, maltase, amylase and lipase, multidrug resistance 1, organic anion transporters and proton-coupled folate transport
occur at higher concentrations than those apparent in the circulation, these effects could be relevant in the gut. In conclusion,
despite the urgent need for further research in humans, the regular consumption of moderate quantities of GT and BT can
effectively modulate their antioxidant capacity, mainly in people subjected to oxidative stress, and could improve the metabolism
of glucose, lipid and UA.
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Introduction

The consumption of tea (Camellia sinensis) has been corre-
lated with low incidence of chronic pathologies, such as car-
diovascular disease and cancer (Tang et al., 2015). However,
although the molecules involved in this effect have been
shown to have anti-inflammatory and antioxidant effects,
and to improve endothelial function, no clear-cut conclusion
has been reached on their mechanism of action. The health
benefits ascribed to the consumption of teas are thought to
be associated with their high content of bioactive ingredients
such as polyphenols. The latter are secondary plant metabo-
lites and include the subclasses of flavonoids, flavones, flavo-
nols, flavanols, isoflavones, flavanones and anthocyanidins
(Del Rio et al., 2013). Within the polyphenols, the tea
flavanols, catechins and theaflavins, have been identified as
the bioactive phytochemicals of green tea (GT) and black
tea (BT) respectively, and shown to be responsible for their
antioxidant activity (Serafini et al., 2011). The antioxidant
properties of GT and BT in humans were discovered in 1996
(Serafini et al. 1996), where in healthy subjects, the non enzy-
matic antioxidant capacity (NEAC) of plasma was shown to
significantly increase after the ingestion of 300 mL of either
BT or GT (Serafini et al. 1996). However, whenGT and BTwere
consumed with milk, the antioxidant activity was drastically
reduced or totally inhibited (Serafini et al., 1996).

Apart from their antioxidant activity, tea flavanols could
also have other activities of pharmacological interest, such
as the ability to lower glucose (Liu et al., 2013; Zheng et al.,
2013), lipid (Zheng et al., 2011; Hartley et al., 2013; Onakpoya
et al., 2014) and uric acid (UA) (Peluso et al., 2015a) concen-
trations. These activities could be mediated by their effects
on various enzymes and transporters (Peluso et al., 2015b).
One of themost importantmechanisms of food–drug interac-
tions has been suggested to be mediated by effects on trans-
porters (Shang et al., 2014; Werba et al., 2015). With the
increasing interest in the health promoting properties of
tea, in this review we have evaluated the role of teas in

modulating oxidative stress in humans and the mechanisms
involved in the pharmacological effects of tea flavanols.

Flavanols in teas and their
pharmacokinetics in humans
GT and BT are the two types of tea mostly consumed
throughout the world, and they contain different phyto-
chemicals endowed with biological activities, such as
flavanols (Serafini et al., 2011). The processing or harvesting
times of the leaves of C. sinensis leads to the different compo-
sition of flavonoids between GT and BT (Serafini et al., 2011).
In the case of GT, the leaves are steamed quickly after
harvesting. Home tea preparation has also an impact on the
flavonoid content of tea; brews of 5 min at temperatures of
100°C result in infusions with greater antioxidant capacity
than teas with a shorter brewing time (2 min) at lower tem-
peratures (60–80°C) (Sharpe et al., 2016).

The major active flavonoids in GT are epicatechin (EC),
epicatechin gallate (ECG), epigallocatechin (EGC) and epi-
gallocatechin gallate (EGCG), as displayed in Table 1. The
structure of EGCG includes a benzenediol ring joined to a
tetrahydropyran moiety, a pyrogallol ring and a galloyl
group (with the pyrogallol ring) (Figure 1) (Serafini et al.,
2011). ECG lacks a hydroxyl group on the pyrogallol ring;
while in EGC, the galloyl group is replaced by a hydrogen
atom (Figure 1). These flavonoids are present in lower
amounts in BT where they are in part converted, during
the enzymatic fermentation process driven by polyphenol
oxidase, to complex condensation products, such as
theaflavins (Figure 1) and thearubigins (Serafini et al., 2011;
Stodt et al., 2014). The latter are known to be heterogeneous
polymers, but their formation and characterization have yet
to be elucidated, whereas the former possess a characteristic
benzotropolone moiety that is produced by condensation
between a catechol-type ring of EC and a pyrogallol-type
ring of EGC (Tanaka et al., 2009).

Tables of Links

TARGETS

Enzymesa Glucosidase Transportersb

Amylase Glutathione reductase GLUT1

COX-1 HMGR MDR1

Cytochrome p450 1 Lipase OAT

Cytochrome p450 2 Maltase OCT1

Cytochrome p450 3 Xanthine oxidase OCT3

DNA
methyltransferase

PCFT

DNA polymerase SGLT1

LIGANDS

Epigallocatechin gallate (EGCG)

Uric acid

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016) and are permanently archived in the Concise Guide
to PHARMACOLOGY 2015/16 (a,bAlexander et al., 2015a,b).
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Oolong tea (OT) also originates from C. sinensis and is pro-
duced using a shorter fermentation time than BT and con-
tains fewer flavanols (35.72 mg · 100 mL-1 infusion) than BT
and GT (76.46 mg ·100 mL-1 GT infusion, 82.6 mg ·100 mL-1

BT infusion) (Table 1). In addition, a new group of polymeric
oxidized flavanols have been isolated and identified from OT
and are known as theasinensins (Weerawatanakorn et al.,
2015). Theasinensins are quinone dimers of EGC and EGCG
produced by these two catechin quinone monomers and
have been suggested to contribute to biological activities of
OT (Weerawatanakorn et al., 2015) despite there being no
data available on their content and absorption.

At present the data published on the absorption of green
tea phenolics vary considerably and are controversial
(Manach et al., 2005). Analytical limitations have drastically
biased the identification and characterization of flavan-3-ol
catabolites, but also a lack of available pure standards for each
specific catabolite has significantly reduced the quality of ab-
sorption studies. The liver and intestines play a major role in
the first-pass metabolism and absorption of catechins (Feng,
2006). After ingestion of GT, ECG is generally absent from
plasma, whereas EGCG, EGC and EC are found in various
forms, free or conjugated with glucuronide, sulfate or methyl
groups (Table 2). Williamson et al. (2011), Clifford et al.
(2013) and Del Rio et al. (2013) reviewed the pharmacokinetic
data of the consumption of GT in humans (Table 2).

Although the F values of bioavailability were not esti-
mated in humans, after the consumption of a cup of GT con-
taining 112 mg of EGCG, 51 mg of EGC and 15 mg of EC in
200 mL, the predicted peak-plasma concentrations (Cmax)
values (total free and sulfate/glucuronide conjugates) are
125, 181 and 76 nM, respectively, together with 94 nM
methyl-EGC and 51 nM methyl-EC (Williamson et al.,
2011); these Cmax values occurred 1.3–2.7 h after ingestion
(Table 2). After the ingestion of 500 mL of GT, the reported
t1/2 of flavanols’ conjugates ranged between 1 and 3.1 h
(Clifford et al. (2013).

The serummetabolites of GT (GTM, sulfates/glucuronides
of EC, EGC, ECG and EGCG: 32.47, 33.29, 0.13 and 0.40 μM
respectively), prepared from rats given an infusion of GT, sig-
nificantly inhibited the activity of the organic anion trans-
porters (OAT) in CHO cells expressing OAT1 and in HEK293
cells expressing OAT3 (Peng et al., 2015).

Urine collected 0–24 h after GT ingestion contained
flavan-3-ol metabolites similar to those detected in plasma
(Del Rio et al., 2013). The percentage of metabolites excreted
in urine range from 8.1 to 28.5% of the ingested GT flavanols
(Del Rio et al., 2013).

Only limited data are available on the pharmacokinetic of
theaflavins in humans: after the consumption of 700 mg
theaflavins, equivalent to about 30 cups of black tea, themax-
imum concentration detected in blood plasma was around
1.0 μg·L�1 in a sample collected after 2 h and also the concen-
tration in urine peaked after 2 h at 4.2 μg·L�1 (Mulder et al.,
2001), as shown in Table 2.

In addition to the intestinal or hepatic metabolites, me-
tabolites derived from colonic bacteria have been identified
(Sang et al., 2008). In particular, the action of the microbiota
results in their conversion to C-6-C-5 phenylvalerolactones
and phenylvaleric acids, which undergo side-chain shorten-
ing to produce C-6-C-1 phenolic and aromatic acids thatTa
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enter the bloodstream and are excreted in urine in amounts
equivalent to 36% of flavanol intake (Clifford et al., 2013). It
has recently been observed that the microbial metabolite
5-(3′,5′-dihydroxyphenyl)-γ-valerolactone (EGC-M5) and
the 5-(3′,5′-dihydroxyphenyl)-γ-valerolactone-3′-O-glucuro-
nide (EGC-M5-glucuronide) significantly increase CD4+ ac-
tivity (ATP level), having immunostimulatory activity,
whereas EGC and EGCG decreased the CD4+ activity (Kim
et al., 2016).

Most polyphenols present in tea undergo drastic modifi-
cations due to the action of human and microbial enzymes
leading to a wide array of metabolites. Moreover, as the gut
micro flora vary significantly among subjects, this could
result in different microbial catabolism and, consequently,
diverse biological effects.

Antioxidant activity
The structural features of GT catechins that significantly con-
tribute to their antioxidant action are the presence/absence
of the galloyl moiety and the number and positions of the hy-
droxyl groups on the rings. The latter determine their ability
to interact with biological matter through hydrogen bond-
ing, or electron and hydrogen transfer processes within their
antioxidant activities. In fact, the antioxidant mechanism

implies hydrogen atom transfer or single electron transfer
reactions, or both (Lambert and Elias, 2010). Tea catechins
are thought to display antioxidant activity, scavenging
lipid alkoxyl and peroxyl radicals by acting as chain-
breaking antioxidants (Lambert and Elias, 2010). In vitro, a
stoichiometric factor n of 4.16 ± 0.51 was obtained for
EGCG, which is considered to be responsible for most of
the antioxidant activity of GT (Khan et al., 2006). In con-
trast, a factor of 2.20 ± 0.26 was found for EGC, during
the reaction with peroxyl radicals generated by thermolysis
of the azo initiator 2,2′-azobis(2,4-dimethylvaleronitrile)
(Valcic et al., 2000).

Despite the large body of evidence for the antioxidant
effect of flavanols in vitro, the results from human trials are
inconsistent and are related to ingested dose, measured
biomarkers and the extent of oxidative stress in the subjects.
As observed for healthy subjects (Serafini et al., 1996; van het
Hof et al., 1997) the consumption of GT, but not BT, in-
creased NEAC in subjects with risk factors. In particular,
Bertipaglia de Santana et al. (2008) found increased of NEAC
levels in hypercholesterolaemic subjects (n = 25) who con-
sumed 500 mL of GT for 90 days. In contrast, the long-term
consumption of five cups (21 days) (Davies et al., 2003) or
900 mL (28 days) (Widlansky et al., 2005) of BT did not in-
crease plasma NEAC either in mildly hypercholesterolaemic
subjects (Davies et al., 2003) or in patients with coronary

Figure 1
Chemical structures of bioactive ingredients in green and black tea. TF, theaflavins; TF3G, theaflavin 3-O-gallate; TF3′G, theaflavin 3′-O-gallate;
TFDG, theaflavin 3,3′-O-digallate.
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artery disease (Widlansky et al., 2005). In a randomized cross-
over study that investigated the dose–response effect of
500 mL of GT with different solid contents (1.4, 1.6, 1.8 and
2.0 g·L�1), a linear increase in NEAC was observed when the
amount of tea solids present in GT was increased. This
highlights the presence of a linear association between the
amount of flavonoids ingested and the extent of the antioxi-
dant response in humans (Pecorari et al., 2010). Only one
human study has investigated the ability of a ready-to-drink
OT to modulate plasma antioxidant status; it showed that
ingestion of 500 mL of OT significantly increased plasma
and urinary NEAC levels (Villaño et al. 2012).

The picture is even more complicated if we select inter-
vention studies looking at isoprostanes (IsoP), a reliable
marker of oxidative stress. The consumption of BT, GT, green
tea extract (GTE) or catechins did not change IsoP levels
either in healthy subjects or in disease patients (Table 3). Of
the 17 interventions, from 13 studies, only one reported a
decrease in plasma and serum IsoP after 4 weeks consumption
of BT (500 mL·day�1) in 12 healthy volunteers, whereas no

effect was observed after acute drinking of a single dose
(Wolfram et al., 2002). The consumption of GT (Müller
et al., 2010) or catechins (Loke et al., 2008) did not change
the levels of IsoP in an acute intervention study, despite the
increase in NEAC and/or markers of absorption of polyphe-
nols (Table 3). Similarly, Braga et al. (2012) found increased
levels of NEAC after 2 days of GTE consumption in pancreatic
cancer patients, whereas IsoP levels were unchanged. No
changes in IsoP levels were observed after the repeated con-
sumption of GT, GTE or catechins (7–112 days) in either
healthy (Table 3) or hypertensive subjects (Hodgson et al.,
2002a), even when consumed in association with onions
(O’Reilly et al., 2001) or lutein (Li et al., 2010). Moreover,
there is a clear discrepancy between effects on antioxidant
capacity and on oxidative stress markers, as demonstrated in
Table 3. The effect of teas on plasma NEAC was described in a
meta-analysis by Lettieri-Barbato et al. (2013), who investi-
gated the antioxidant effect of plant food ingestion in
humans. The main result from the 17 interventions
showed that tea consumption induced a similar increase in

Table 2
Pharmacokinetics of tea flavanols and their plasma metabolites in humans

Ingested dose Detected compound Cmax Tmax (h) References

GT EGCG 63–328.5 mg EGCG 55–711 nM 1.3–2.7 http://phenol-explorer.eu/,
Williamson et al., 2011;
Clifford et al., 2013;
Del Rio et al., 2013

GT EGC 32–306 mg EGC 40–1791 nM 1.3–2.2 http://phenol-explorer.eu/,
Williamson et al., 2011;
Clifford et al., 2013;
Del Rio et al., 2013

GT EC 12–113 mg EC 29–655 nM 1.4–1.8 http://phenol-explorer.eu/,
Williamson et al., 2011;
Clifford et al., 2013;
Del Rio et al., 2013

GT flavanols 32–154 mg Methyl-EGC 62–5300 nM 2–2.3 http://phenol-explorer.eu/,
Williamson et al., 2011;
Clifford et al., 2013;
Del Rio et al., 2013

GT flavanols 12–17 mg Methyl-EC-sulfate 14–90 nM 1.3–1.7 http://phenol-explorer.eu/,
Williamson et al., 2011;
Clifford et al., 2013;
Del Rio et al., 2013

GT Flavanols 648 μM
in 500 mL

EC-glucuronide 29 nM 1.7 http://phenol-explorer.eu/,
Williamson et al., 2011;
Clifford et al., 2013;
Del Rio et al., 2013

EC-sulfates 89 nM 1.6

EGC-glucuronide 126 nM 2.2

Met-EGC-glucuronide 46 nM 2.3

TFs 700 mg dissolved in
150 mL hot water:

Theaflavins ≈1 μg·L�1 2 http://phenol-explorer.eu/,
Mulder et al., 2001

TF 123.9·700 mg�1 DW

TF3G 222.6·700 mg�1 DW

TF3’G 116.9·700 mg�1DW

TFDG 219.8·700 mg�1DW

Cmax, peak-plasma concentrations; DW, dry weight; TF, theaflavin; TF3G, theaflavin 3-O-gallate; TF3′G, theaflavin 3′-O-gallate; TFDG, theaflavin 3,3′-
O-digallate; Tmax, time at which the Cmax is observed.
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plasmaNEAC after both acute and chronic ingestion (Lettieri-
Barbato et al., 2013) and that GT had a stronger antioxidant
effect than BT (Lettieri-Barbato et al., 2013). When partici-
pants were divided into healthy subjects and subjects ex-
posed to oxidative stress-related risk factors (OSRRF), in the
beverage category including teas, an effect on plasma NEAC
was clearly detected in the OSRRF category, whereas no
changes in plasma NEAC were observed in healthy subjects
(Lettieri-Barbato et al., 2013). Biomarkers of oxidative stress
such as isoprostanes increase significantly only when an on-
going oxidative stress is present, following that, antioxidant
modulation might occur only if levels are significantly high;
unfortunately, there are no data available on the physiologi-
cal level of isoprostanes in healthy humans. Moreover, NEAC
represents the overall molecular antioxidant defences of
plasma and, despite being regulated endogenously, might be
more liable to increase after the consumption of tea or plant
food supplements compared with the reducing markers of
oxidative stress. In intervention studies, it is highly recom-
mended that different markers of oxidative stress, antioxi-
dant status and redox enzymes should be measured in order
to have a complete picture of the phenomenon and define
the results according to the different aspects of the redox
mechanism. Overall, it is possible that the antioxidant activ-
ity of teas is strictly associated with the presence of chronic
oxidative stress, when an increase in antioxidant activity
from dietary sources is required to improve the antioxidant
defences. In this regard, more evidence is needed to identify
differences in the level of markers of oxidative stress and
antioxidants status between healthy and pre-pathological
conditions.

Enzymatic inhibition

In vitroGTE, black tea extract (BTE), catechins and theaflavins
have been shown to inhibit various enzymes involved in
glucose and lipid metabolism, such as amylase, maltase,
glucosidase and lipase and the enzyme involved in choles-
terol synthesis hydroxy-3-methyl-glutaryl-CoA reductase
(HMGR). As shown in Table 4, the IC50 values range between
10�8 and 10�5 M. In the majority of the cases, GTE, BTE,
catechins and theaflavins inhibit the enzymes in a non-
competitive manner with respect to substrate concentration.
EGCG potently inhibits the in vitro activity of HMGR (Ki in
the nanomolar range) by competitively binding to the
co-factor site of the reductase (Cuccioloni et al., 2011). In
contrast, EGCG interacts with Val21, Glu188 and Glu220 of
lipase, inducing conformational alterations and decreasing
the enzyme’s catalytic activity (Wu et al., 2013). The galloyl
moiety seems to be involved in the inhibitory effect on pan-
creatic lipase, because theaflavins and catechins without
galloyl moieties did not inhibit this enzyme (Ikeda et al.,
2005; Kobayashi et al., 2009).

However, the results in humans are contrasting as
highlighted by different meta-analyses on human interven-
tions with GT, BT or catechins. In particular, Zheng et al.
(2013) and Liu et al. (2013) found decreased glucose levels,
whereas no significant effects on glucose were observed in a
recent meta-analysis (Khalesi et al., 2014; Li et al., 2016). Sim-
ilarly, a different meta-analysis reported a reduction in cho-
lesterol levels (Zheng et al., 2011; Hartley et al., 2013;
Khalesi et al., 2014; Onakpoya et al., 2014), but this was not
confirmed by Li et al. (2016) and Zhao et al. (2015).

Table 3
Human intervention studies with BT, GT, EC and EGCG: effect on absorption of IsoP, NEAC and polyphenols

Subjects Dose day�1 (n° days) IsoP NEAC PC§ Reference

BT 10 (mildly dyslipidaemic) 10 g in1250 mL (28) ↔ – – Hodgson et al., 2002b

BT 12 500 mL (1) ↔ – – Wolfram et al., 2002

BT 12 500 mL (28) ↓ – – Wolfram et al., 2002

BT 13 (hypertensive) 10 g in 1000 mL (7) ↔ – – Hodgson et al., 2002a

BT 15 (mildly dyslipidaemic) Five cups (21) ↔ ↔ – Davies et al., 2003

BT 22 (mildly dyslipidaemic) 10 g in 1250 mL (28) ↔ – – Hodgson et al., 2002a

BT 66 (coronary artery disease) 900 mL (28) ↔ ↔ – Widlansky et al., 2005

BT + Onions 32 300 mL + 150 g of onion cake (14) ↔ – – O’Reilly et al., 2001

GT 13 (hypertensive) 10 g in 1000 mL (7) ↔ – – Hodgson et al., 2002a

GT 22 6.3 g in 700 mL (14) ↔ – ↑ Hirano-Ohmori et al., 2005

GT 33 600 mL (1) ↔ ↑ ↑ Müller et al., 2010

GTE 20 3 g (28) ↔ – – Freese et al., 1999

GTE 36 (pancreatic cancer) 1000 mg (2) ↔ ↑ – Braga et al., 2012

GTE 9 844 mg (catechins) (14) ↔ – – Donovan et al., 2005

GTE + lutein 40 200 + 12 mg lutein (112 days) ↔ – ↔ Li et al., 2010

EC 12 200 mg (1) ↔ – ↑ Loke et al., 2008

EGCG 12 200 mg (1) ↔ – ↑ Loke et al., 2008

IsoP, isoprostanes; NEAC, non-enzymatic antioxidant capacity; PC, polyphenols concentration, §reported as the plasma or urinary concentrations of a
single cathechin, total catechins or total phenols or their metabolites; ↔, unchanged; ↑, increased; ↓, decreased.
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As shown in Table 4, theaflavins and catechins inhibit
xanthine oxidase (XO) activity and UA production in vitro:
theaflavin 3,3′-O-digallate (10�6 M) and EGCG (10�7 M) act
as competitive inhibitors (Aucamp et al., 1997; Lin et al.,
2000). Despite the effect of theaflavins and catechins as XO
inhibitors, in a meta-analysis reviewing human intervention
studies that measured UA after tea products, no significant
differences were observed between BT, GT and GTE (Peluso
et al., 2015a). However, it must be taken into account that
many studies had UA as secondary outpoint and did not con-
sider the fact that the normal range of UA differs in males and
females. Only the study of Bahorun et al. (2010) had UA as
primary outpoint and BT as a treatment and reported data
for men and women separately, stratifying them according
to baseline levels. It showed a decrease of UA only in subjects
with high baseline levels and in men with baseline UA
concentrations above 80 mg·L�1, with the latter lowered after
washout (BT 73 ± 17 mg·L�1 and water 80 ± 20 mg·L�1)
suggesting an inhibitory effect on XO that persists after
discontinuation of consumption (Bahorun et al., 2010). In
accordance with the hypothesis of a persistent inhibitory ef-
fect on XO, in an uncontrolled trial, GTE (164 mg tea cate-
chins) decreased UA after 7 days of washout, subsequent to

7 days of supplementation (Kimura et al., 2002). Panza et al.
(2008) reported a decrease in UA levels after 7 days of inges-
tion of GT (600mL) and an inhibition of the exercise-induced
activation of XO. Moreover, in an uncontrolled trial,
decreases in UA after 9 weeks of GT (100 mg·day�1 of total
catechins) and increases in UA with catechin-enriched GT
(400 mg·day�1 of total catechins) were observed, but these
effects were not statistically significant (Sone et al., 2011).
Furthermore, treatments of 2 weeks with GT (1.5 g, three
times a day with total catechins 183 mg·g�1: 823.5 mg·day�1)
(Gomikawa et al., 2008) or 16 weeks with GTE (200mg·day�1)
plus lutein (12 mg·day�1) (Li et al., 2010) were unable to
change the UA concentration. Therefore, longer or higher
consumptions of tea catechins do not seem to be associated
with a greater effect, in contrast to the results of Kimura
et al. (2002).

As shown in Table 4, catechins and theaflavins inhibit
glutathione S-transferase (GST) and thioredoxin reductase
(TrxR) with IC50 values between 10�6 and 10�5 M (Table 4).
However, catechins are also able to stimulate the transcrip-
tion of antioxidant enzymes, including SOD, catalase,
glutathione peroxidase, glutathione reductase and GST,
through the nuclear factor-erythroid 2-related factor 2

Table 4
Inhibitory effect in vitro of tea flavanols on selected enzymes

Enzyme IC50 or Ki References

GTE α-glucosidase, maltase or 2.82 μg·mL�1 Forester et al., 2012; Nguyen et al., 2012;
Simsek et al., 2015; Yang and Kong, 2016.BTE amylase 2.25 μg·mL�1

EGCG 10�5 M

BTE Lipase 0.9–1.3 μg·mL�1 Grove et al., 2012; Kobayashi et al., 2009;
Wang et al., 2014; Yuda et al., 2012.TFDG, EGCG 10�6 M

EGCG HMGR 10�8 M Cuccioloni et al., 2011.

BTE XO 5.8% Aucamp et al., 1997; Lin et al., 2000;
Dew et al., 2005.TFDG 10�6

–10�5 M

EC, EGC 10�5 M

ECG 10�6 M

EGCG 10�7 M

EGC, GCG and EGCG GST 10�6 M Boušová et al., 2012.

GTE TrxR 256 μg·mL�1 Wang et al., 2008; Du et al., 2009.

EGCG, ECG 10�5 M

TF3G, TF3′G and TFDG 10�5 M

EGCG COX-1 10�6 M Lee et al., 2013.

EGC and ECG DNA-pol 10�4 M Mizushina et al., 2005.

EGCG 10�6 M

ECG > Met- DNMT 10�6
–10�5 M Fang et al., 2003; Rajavelu et al., 2011.

EGCG > EGC > Di-Me-

EGCG > EC

EGCG 10�7
–10�6 M

TFDG 10�5 M

GTE RNase A 10�4 M GAE Ghosh et al., 2004.

EGCG 10�5 M

TF, theaflavin; TF3G, theaflavin 3-O-gallate; TF3′G, theaflavin 3′-O-gallate; TFDG, theaflavin 3,3′-O-digallate; DNA-pol, DNA-polymerase; GAE, gallic
acid equivalents.
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(Nrf2)/antioxidant responsive elements pathway (Na and
Surh, 2008). In particular, it has been suggested that some
derivatives of catechins can oxidize highly reactive cysteine
thiol groups of kelch-like ECH-associated protein-1,
resulting in disulfide bond formation and Nfr2 release (Na
and Surh, 2008). In mice, a repeated (5 days) non-lethal
toxic dose (55 or 75 mg·kg�1) of EGCG decreased the expres-
sion of Nrf2 in the cytosol and increased it in the nucleus.
As a result, mRNA expression and activities and/or protein
levels of Nrf2-target genes including GST and TrxR were
increased (Wang et al., 2015).

Regarding the reported inhibition of COX-1 activity in
platelets (Lee et al., 2013; Table 4), this effect is not supported
by the results of a human study conducted byHirano-Ohmori
et al. (2005). After the consumption of seven cups of GT a day
for 2 weeks by healthy subjects, no significant changes in the
aggregation of platelets were observed, despite a significant
decrease in the serum low density lipoproteins (MDA-LDL).

Some catechins inhibited mammalian DNA-polymerase,
DNA-methyltransferase (DNMT) and ribonuclease A (RNase
A) (Table 4), with EGCG being the strongest inhibitor with
IC50 values ranging between 10�7 M (DNMT9) and 10�5 M
(RNase A). Among these enzymes, DNMT is involved in the
hypermethylation of the promoter regions, which is an
important mechanism for silencing the expression of many
significant genes in cancer (Yiannakopoulou, 2015). How-
ever, data from meta-analyses provided contrasting results
and indicated that the associations differ according to sex,
ethnicity, cancer and tea types (Zeng et al., 2014; Ma et al.,
2015; Zhu et al., 2015; Huang et al., 2016; Zhou et al., 2016).

Flavanols are substrates of cytochrome p450 (CYP450)
and are well-known to interfere with the pharmacokinetics
of drugs in humans (Shang et al., 2014; Werba et al., 2015).
However, only one case report has documented the interac-
tion between GT and an immunosuppressant (tacrolimus), a
substrate for CYP3A4. This case involved a 58-year-old male
kidney transplant recipient, genotyped as ‘poor metabolizer’
and treated with a low dose of tacrolimus (i.e. 1 mg · 24 h-1).

After GT ingestion, an increase in tacrolimus levels was ob-
served, and a positive dechallenge of tea was performed
(Vischini et al., 2011). In healthy volunteers, who received a
cocktail of CYP450 metabolic probe drugs, including caf-
feine, dextromethorphan, losartan and buspirone for
assessing the activity of CYP1A2, CYP2D6, CYP2C9 and
CYP3A4, respectively, after 4 weeks of EGCG (800 mg)
consumption, only a significant increase in the concentra-
tion of buspirone was found, suggesting a reduction in
CYP3A4 activity (Chow et al., 2006). In contrast, despite
GTE (844 mg · day-1 for 14 days) inducing an increase in
EGCG in plasma (1.3 ± 1.8 μM 2 h after treatment), no effect
on CYP3A4 activity was found when alprazolam was used as
the probe drug in healthy subjects (Donovan et al., 2004).
Therefore, the interaction of tea catechins with CYP450 de-
pends on the substrate present.

Interaction with transporters
Catechins interact with transporters of the phase III drug de-
toxifying system, mainly the multidrug resistance 1 (MDR1),
OAT and organic cation (OCT) transporters (Table 5). These
transporters are characterized by low substrate specificity,
and mediate the uptake of numerous drugs and xenobiotics
into cells (Ayrton and Morgan, 2001). They are also involved
in the absorption of flavonoids in the gastrointestinal tract
and their subsequent tissue distribution (Passamonti et al.,
2009), as well as the extrusion of catechins (Vaidyanathan
and Walle, 2003).

It is important to note that OAT (Sekine et al., 2006;Wang
et al., 2010; Hu et al., 2012) plays an important role in the re-
nal excretion of urate. Therefore, the concentration of uric
acid can be affected by the consumption of tea not only by
its inhibition of XO (Table 4) but also its interaction with
OAT (Table 5).

A recent review of the experimental studies in humans
and/or clinical observations about interactions between GT

Table 5
Inhibitory effect in vitro of tea flavanols on selected transporters

Transporter IC50 or tested concentration References

GT MDR1 1% (v.v�1) Kitagawa et al., 2004; Knop et al., 2015;
Mei et al., 2004; Qian et al., 2005;
Wang et al., 2002.

GT polyphenols 40 μg·mL�1

EGCG 10�5
–10�6 M; 10 μg·mL�1

GT OAT 0.39–2.6% (v.v�1) Fuchikami et al., 2006; Knop et al., 2015;
Misaka et al., 2014; Roth et al., 2011;
Zhang et al., 2013.

EGCG 10�6
–10�4 M

ECG 10�5 M

GT OCT1/OCT2 1.4–7.0% (v.v�1) Jaiyen et al., 2015; Knop et al., 2015.

GTE 1–3 mg·mL�1

EGC 10�3
–10�4 M

EGCG 10�4 M

EGCG PCFT 10�6 M (competitive) Kissei et al., 2014.

ECG GLUT1 /SGLT1 10�7
–10�3 M (competitive) Johnston et al., 2005; Kobayashi et al., 2000;

Naftalin et al., 2003.EGCG 10�7
–10�3 M (competitive)

GLUT, sodium-independent glucose transporter; SGLT, sodium-dependent glucose transporter.
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and cardiovascular drugs only yielded data for simvastatin
and nadolol (Werba et al., 2015). The authors suggested that
these effects could be due to the inhibition of MDR1 and
OAT exerted by GT catechins. Accordingly, the in vitro IC50

of tea flavanols on transporters, shown in Table 5, was lower
for MDR1 and OAT than for OCT. Jaiyen et al. (2015) sug-
gested that the consumption of GT could not interfere with
cationic drugs secreted via renal OCT2 in humans because
he found the interaction of GTE and ECG with OCT2 to be
weak and reversible.

Kitagawa et al. (2004) reported that the effect of EGCG on
MDR1 was more significant than that of verapamil (a well-
known substrate for this transporter). The interaction of
EGCG with MDR1 is at the level of the ATP-binding site
(Wang et al., 2002), in particular the ATP-binding site of the
carboxyl-terminal nucleotide binding domain (Qian et al.,
2005), and it has been suggested that GT polyphenols and
EGCG can reverse multidrug resistance through modulation
of the ATPase activity of MDR1 (Mei et al., 2004). Moreover,
it has been suggested that the absorption of methotrexate
can be reduced if it is consumed with GT, due to competitive
inhibition of the proton-coupled folate transporter (PCFT)
(Kissei et al., 2014) (Table 5). However, while there are no data
on this type of food and drug interaction, in an open-labelled
randomized crossover study in healthy volunteers, it has
been reported that GTE and BTE (0.3 g extract . 250 mL-1) de-
crease the bioavailability of the vitamin folic acid (0.4 and
5 mg), reducing the Cmax of serum folate by 30–40%
(Alemdaroglu et al., 2008).

The glucose uptake pathways include sodium-
independent (GLUT1) and sodium-dependent (SGLT1) trans-
porters. Johnston et al. (2005) expressed both transporters in
Caco-2 cells and showed that GT polyphenols (100 μM) de-
crease glucose uptake both in sodium-containing and
sodium-free medium. It has been suggested that the
antidiabetogenic effects of GT are, at least in part, due to the
inhibition of the glucose transporter GLUT1 (Naftalin et al.,
2003). ECG and EGCG have high affinities for GLUT1 and
competitively inhibit the uptake of glucose (ECG 0.14 μM;
EGCG 0.9 μM) (Table 5). In particular, EGCG competitively
inhibits the binding of glucose onto the external face of
the carrier (Naftalin et al., 2003). In contrast, the ungallated
catechins, EC and EGC have only weak effects on glucose
transport (Naftalin et al., 2003). Similar results, but at higher
concentrations compared with GLUT-1 inhibition, were
obtained on SGLT1-mediated glucose transport that was
competitively inhibited by ECG (390 μM) and EGCG
(1 mM), whereas the inhibitory effects of EC and EGC were
not significant (Kobayashi et al., 2000) (Table 5). These data
imply that a galloyl ester group may be important for
blocking glucose uptake.

Potential adverse effects
The Dietary Supplement Information Expert Committee (DSI
EC) have systematically reviewed the safety information for
GT products and indicated that the consumption of GTE
could induce liver damage (Sarma et al., 2008). In fact, there
is an increasing number of case reports of hepatoxicity associ-
ated with the intake of GT dietary supplements (Schönthal,

2011, Stickel et al., 2011, Teschke et al., 2012, Mazzanti
et al., 2015). The patients showed clinical symptoms of differ-
ent severity, ranging from a mild increase in serum amino-
transferase levels to fulminant hepatitis requiring a liver
transplant (Di Lorenzo et al., 2015). The types of preparation
responsible for these adverse effects were plant food supple-
ments based on GTE, among these were a hydroalcoholic
extract and an aqueous extract of GT consumed as tea or
in capsules (Di Lorenzo et al., 2015). The dose of the tea sup-
plement ingested ranged between 320 mg·day�1 catechins
(710 mg·day�1 polyphenols) for the decaffeinated extract
and 1 g·day�1 catechins for the micronized powder (Mazzanti
et al., 2015). For patients who consumed the GTEs as infu-
sions, the ingested dose ranged from two cups to 3 L·day�1,
corresponding to about 186 and 1395mg polyphenols ·day�1

(Mazzanti et al., 2015). The components most frequently
indicated as responsible for hepatotoxicity are catechins
and in particular EGCG supplements (Bunchorntavakul and
Reddy, 2013, Di Lorenzo et al., 2015).

Discussion and conclusion
In recent years, the attention of the scientific community has
been focused on understanding the mechanisms of action of
tea flavanols, due to evidence that the consumption of tea has
beneficial effects on health (Serafini et al., 2011). In addition
to conventional antioxidant properties (Serafini et al., 1996;
Lettieri-Barbato et al., 2013; Table 3), there is evidence from
in vitro experiments that antioxidants in tea may act by phar-
macological mechanisms, such as inhibiting various enzymes
and interacting with transporters (Tables 4 and 5). In this
context, some considerations should be taken into account.
Firstly, the biological effect of flavanols depends on their
absorption, which tends to be low in humans (Table 2). Sec-
ondly, once ingested, they are extensively metabolized into
molecules with different chemical structures and activity
compared with the ones originally present in the teas. There-
fore, differences in microbiota (van Duynhoven et al., 2014)
and genetic polymorphism of metabolizing enzymes (Hursel
et al., 2014) could play a role in the inter-individual variabil-
ity in the response to treatment. This implies that wemust ex-
ercise caution when speculating about the effects of a cup of
tea from in vitro data and results obtained in animals. Further-
more, the poor of absorption of flavonoids and the extensive
metabolic activity they undergo during absorption lead to
very low plasma concentrations and to the presence in the
blood stream of a wide variety of known and lesser-known
metabolites (Del Rio et al., 2013). Also most of the in vitro
evidence for the beneficial effects of flavonoids has been
obtained with pure compounds, which are present at low
concentrations in humans (Table 2). However, EGCG at con-
centrations similar to its Cmax (10�8–10�7 M, Table 2) after
the consumption of a cup of GT, can effectively inhibit the
enzymes involved in cholesterol and UAmetabolism (HMGR:
IC50 10

�8 M; XO: IC50 10
�7 M, Table 4) and the glucose trans-

porters (IC50 10
�7 M, Table 5). The structural features of cate-

chins that significantly contribute to their pharmacological
effect are the presence/absence of the galloyl moiety and
the number and positions of the hydroxyl groups on the
rings. This also accounts for the higher antioxidant activity
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of GT than BT, both in vitro (Serafini et al., 1996) and in hu-
man intervention studies (Lettieri-Barbato et al., 2013).

At a pharmacological level, although the inhibitory effect
on α-glucosidase, maltase, amylase and lipase, as well as on
MDR1, OAT and PCFT, occurs at higher concentrations
(IC50 10�6–10�5 M, Tables 4 and 5) compared to circulating
levels (Table 2), these effects could be relevant in the gut. In
particular, in humans, the GTE-induced decrease in the diges-
tion and absorption of carbohydrates (Lochocka et al., 2015)
and lipids (Lisowska et al., 2015) have been confirmed by
the starch 13C breath test and the 13C-labelled mixed triglyc-
eride breath test.

It has been suggested that the food–drug interactions with
cardiovascular drugs could be due to the inhibitory effects of
GT catechins onMDR1 and OAT (Werba et al., 2015) and that
their ability to reduce the bioavailability of the vitamin folic
acid could be due to competitive inhibition of PCFT
(Alemdaroglu et al., 2008). Furthermore, as flavanols are sub-
strates of CYP450, they interfere with the pharmacokinetics
of many drugs in humans (Vischini et al., 2011; Shang et al.,
2014;Werba et al., 2015). Their extensive hepatic metabolism
could also account for the case reports of hepatoxicity associ-
ated with an intake of GTE in humans. However, in a recent
systematic review, it was found that liver-related adverse
events were only reported in four out of the 34 trials exam-
ined (Isomura et al., 2016). A meta-analysis of these four trials
gave a summary odds ratio for liver-related adverse events in
subjects who received green tea intervention versus placebo
of 2.1 (Isomura et al., 2016) and it was concluded that liver-
related adverse events after the consumption of GTE are likely
to be rare.

The antioxidant effect of tea ingestion requires more evi-
dence to unravel the mechanism of action and the ingredi-
ents involved. Despite there being no convincing evidence
from long-term intervention studies in humans, tea flavanols
are still considered to be the major candidates involved in the
biological activity of teas. Possible mechanisms of action,
such as the induction of an endogenous redox pathway or di-
rect effects of polyphenol metabolites, should be elucidated
so that the molecules responsible for the effect can isolated
and clear-cut evidence can be obtained from long-term inter-
vention studies.

In conclusion, despite the urgent need for further research
in humans, the regular consumption of moderate quantitities
of GT and BT can effectively modulate the antioxidant capac-
ity of individuals, mainly of people experiencing conditions
of oxidative stress, and could improve glucose, lipid and UA
metabolism.
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