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Abstract The International Affective Picture System
(TIAPS; Lang, Bradley, & Cuthbert, 2008) is a stimulus
database that is frequently used to investigate various
aspects of emotional processing. Despite its extensive
use, selecting IAPS stimuli for a research project is not
usually done according to an established strategy, but
rather is tailored to individual studies. Here we propose
a standard, replicable method for stimulus selection based
on cluster analysis, which re-creates the group structure
that is most likely to have produced the valence arousal,
and dominance norms associated with the IAPS images.
Our method includes screening the database for outliers,
identifying a suitable clustering solution, and then
extracting the desired number of stimuli on the basis of
their level of certainty of belonging to the cluster they
were assigned to. Our method preserves statistical power
in studies by maximizing the likelihood that the stimuli
belong to the cluster structure fitted to them, and by
filtering stimuli according to their certainty of cluster
membership. In addition, although our cluster-based
method is illustrated using the IAPS, it can be extended
to other stimulus databases.
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Introduction

It is now widely accepted that emotion plays a critical role in
human psychology and is inextricably entwined with behavior
and cognition. Yet, a major challenge that emotion researchers
face is conceptualizing the relationship between various kinds
of emotions and mapping their collective impact on other psy-
chological processes (e.g., Ito, Cacioppo, & Lang, 1998; Lane
etal., 1997; LeDoux, 1996). Perhaps the most widely used tool
in this pursuit is the International Affective Picture System
(IAPS; Lang, Bradley, & Cuthbert, 2008), which consists of
1,182 images and is designed for the experimental study of
affective processing. It is based on the PAD model, involving
pleasure/valence arousal, and dominance—a three-
dimensional framework for measuring emotions (Mehrabian,
1996; Russell & Mehrabian, 1977). The validity of this theo-
retical model has accumulated a wealth of empirical evidence
over time, and the number of citations for the database and
instruction manual is now approaching 3,300, indicating a
continued and robust research community surrounding it.
Using the IAPS database is particularly attractive due to the
large variety of stimuli offered, as well as the chance to repli-
cate and compare findings more easily between studies.
Following the PAD model, each complete IAPS case is asso-
ciated with normative (average) ratings for pleasure/valence
(i.e., how positive or negative an image is), arousal (i.e., how
alerting or calming an image is), and dominance (referring to
the viewer’s perceived amount of control in relation to the
stimulus displayed). To exploit the flexibility offered by such
a large number of stimuli, several typical approaches for im-
age selection have been used, with some of the most common
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being discussed below. However, it is important to note that
most of these methods rely on assumptions about the under-
lying multidimensional structure of the database, and that vi-
olations of those assumptions can have profound conse-
quences with respect to what inferences may be drawn from
experiments using these stimuli. Specifically, if those assump-
tions are unsustainable, then some of the conclusions from the
emotion literature may be questionable.

Establishing group cutoff points

This method consists of selecting cutoff values, which usually
divide one of the three continuous PAD distributions into dif-
ferent categories. For instance, Mikels, Fredrickson, et al.
(2005) distinguished between positive and negative stimuli
on the basis of which IAPS images had valence ratings
above or below 5, respectively, given the rating scale used to
measure PAD dimensions in the TAPS contains nine points.
Similarly, Xing and Isaacowitz (2006) considered the images
with valence scores between 1 and 4 to be negative, those
between 4 and 6 to be neutral, and those over 6 to be positive,
with images very close to these cutoff points being excluded
(Xing, personal communication, June 6, 2015).

A variant of using group cutoff points is selecting extreme
groups of images. This consists of retaining the first » most
negative/positive images (or an upper and lower group of
images), as well as a group with minimal distances from what
is considered a “neutral” score. For instance, one of the four
types of emotion induction used in Zhang, Hui, and Barrett’s
(2014) study consisted of a combination of images and music,
with some of the images being selected from the IAPS stimuli
according to their rank (most positive, most negative, or most
neutral).

Another extension of the cutoff point method was used by
Lithari et al. (2010), who combined it with graphical presen-
tation and selected images on the basis of how they were
organized within a 2-D space. Four quadrants were formed
through the crossing of the valence and arousal nine-point
axes at a score of 5, and each quadrant was considered to
represent a separate group of stimuli.

The cutoff point approach is best suited to research ques-
tions that focus on only one dimension of the PAD model.
Although carefully chosen combinations of cutoff points
may be adequate when a study focuses on only one or two
dimensions, this strategy becomes unwieldy when researchers
intend to systematically vary all three dimensions at the same
time. Moreover, the use of cutoff points in this fashion tacitly
assumes that the noncontrolled dimension(s) has (have) no
effect on information processing or behavior that is relevant
to the researchers’ interests—an assumption that is risky at the
best of times. Finally, another implicit assumption, for which
there appears to be no clear evidence, is that the groups formed

using the cutoff points can approximate the internal structure
of the IAPS data correctly.

Discretization and crossing/controlling dimensions

This method refers to cutting the continuous PAD dimensions
associated with the IAPS into n categories. Subsequently,
within one such category, one may repeat the procedure on
the basis of the remaining dimensions. For example, after
cutting valence ratings into three categories, one may then
attempt to find images of varying levels/categories of arousal
within, for example, the most pleasant valence category.
Alternatively, one may attempt to control one dimension with-
in another—for example, finding one category with relatively
constant arousal within the most pleasant valence category.

For instance, Tomaszczyk, Fernandes, and MacLeod
(2008) chose TAPS stimuli on the basis of their valence rat-
ings, but in addition attempted to cross different levels of
arousal within the valence categories (see also Anderson,
Siegel, & Barrett, 2011). Similarly, Aguilar de Arcos,
Verdejo-Garcia, Peralta-Ramirez, Sanchez-Barrera, and
Pérez-Garcia (2005) selected five categories of images for
eliciting emotional experiences, including one neutral valence
category with low arousal, and positive and negative valence
categories, each with either a lower or a higher arousal level.
Finally, Perri et al. (2014) divided the IAPS stimuli into pos-
itive, negative, and neutral categories based on their valence
scores, with the first two of these categories presenting high
levels of arousal. The neutral-valence pictures were selected to
present low arousal.

If attempting to cross PAD dimensions in a factorial design
in this manner, the assumption is made that the PAD dimen-
sions are orthogonal (i.e., uncorrelated), which is not what the
IAPS data suggest (Bradley & Lang, 2007). Similarly,
attempting to control dimensions assumes that groups of im-
ages exist within the IAPS that vary in terms of one dimen-
sion, but not another. This is also generally not feasible, given
that the correlated PAD dimensions tend to vary fogether.
Finally, as is the case when using cutoff points, this method
cannot easily accommodate the use of all three PAD dimen-
sions simultaneously, usually resulting in dominance scores
being ignored. Although it is correlated with the other two
PAD dimensions, dominance represents a distinct entity with-
in the model, and thus can itself account for some variation in
affective ratings (Bradley & Lang, 1994). Therefore, if dom-
inance scores are ignored, this variation would be excluded
from the image selection process, which poses risks for its
validity.

Content selection

This type of stimulus selection based on content is usually
combined with one of the previously discussed methods. For

@ Springer



898

Behav Res (2017) 49:896-912

instance, Bernat, Patrick, Benning, and Tellegen (2006) select-
ed erotic and adventure scenes as pleasant, and violent or
threatening images as unpleasant stimuli. Neutral images were
chosen to portray common objects or inactive people, and so
on. In addition, this strategy was combined with dimension
discretization/crossing, leading to groupings of pleasant and
unpleasant images with low, medium, or high arousal levels
(see also Tomaszczyk et al., 2008). In another study, Hamann,
Ely, Hoffman, and Kilts (2002) selected IAPS images on the
basis of their content: Pleasant pictures were chosen to depict
erotic scenes, food, or agreeable animals and children.
Negative images were selected thematically to include muti-
lated bodies, violence, and so forth. In parallel, high-interest
images included exotic parades and surrealistic scenes, and
low-interest images included plants or household scenes.

In addition, Eizenman et al. (2003) emphasized the themat-
ic selection of IAPS images: Four categories were selected to
include images considered neutral, dysphoric, threatening, or
socially themed. However, the authors also relied on valence
ratings to guide their selection procedure, so that neutral im-
ages were selected to have valence scores close to 5,
threatening/dysphoric images ranged between valence scores
of 2 and 4, and the social themes presented a range between 6
and 8 on the same scale. They also aimed to control variations
in arousal levels by allowing maximum differences of two
points across the images in each of the four categories. The
content selection method does not place strong assumptions
on the data on its own; however, it is usually used conjointly
with the content selection, discretization and crossing/
controlling dimension methods, which do.

An alternative image selection method based on cluster
analysis

The present work offers an alternative strategy for image se-
lection based on clustering algorithms, which can be used with
all three PAD dimensions simultaneously. To our knowledge,
such algorithms have been used to categorize participant re-
sponses from individual studies (e.g., for classifying brain
regions with differential response patterns to disgusting vs.
neutral images—Deen, Pitskel, & Pelphrey, 2011; or for
grouping participants in terms of their risk for alcohol abuse,
on the basis of heart rate variability in response to IAPS emo-
tional stimuli—Mun, von Eye, Bates, & Vaschillo, 2008), but
not to group or select images on the basis of normative data.

In this article, we argue that clustering methods constitute a
valuable means for creating experimental stimulus groups
based on the IAPS normative data, by ensuring that group
formation is optimized according to various measures (e.g.,
maximizing the distances between the different groups or the
likelihood that cases belong to a certain group). This can boost
the level of statistical power achieved in studies, since the
larger the differences between levels of the treatment, the
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higher the chances of finding significantly meaningful effects
(see Hallahan & Rosenthal, 1996, p. 495).

In addition to using more objective criteria for group for-
mation, relative to entirely “manual” methods, clustering al-
gorithms can also capture the particular structure of the IAPS
data, and thus provide image classifications that are more em-
pirically principled. This can allow experimenters to guard
against confounds in the form of heterogeneous, systematical-
ly underpopulated, or “artificial” categories of stimuli, which
cannot be adequately supported by the IAPS database. For
instance, IAPS images are often divided into three groups
based on valence. However, if this three-group structure is
not an adequate fit for the IAPS normative data, images may
be grouped inappropriately. Thus, if multiple types of negative
material exist within the IAPS, creating only one category of
negative images would risk blending these together, with un-
predictable consequences for study results and the validity of
any inferences based on them.

In addition, without consulting the structure of the IAPS
data (which clustering methods are sensitive to), it might be
tempting to resort to a factorial design combining three or-
dered levels of valence (low, neutral, and high) with as many
levels of arousal. In this situation, it would be difficult to find
enough images populating the intersection between low va-
lence (i.e., negative images) and low arousal (i.e., relaxing
images), due to the correlation between these two dimensions.
Indeed, such a category could thus be deemed “artificial,” as it
would ignore the essential correlations between PAD
dimensions.

Consequently, clustering methods can provide information
on both the quantity and quality of stimulus categories that can
realistically be supported by the structure of the IAPS norma-
tive data. Although such algorithms can be flexibly adapted to
extract a predetermined number of groups, usually they are
allowed to follow an exploratory strategy constrained by the
overall structure of the data set. That is, they will find the
“best” number of stimulus clusters/groups, subject to some
optimization constraints. This is a point of departure from
the typical selection methods discussed above, in which a
top-down process is often used to identify three image cate-
gories fitting the notions of “negative,” “neutral,” or
“positive.” Finally, clustering algorithms can limit the amount
of labor associated with stimulus selection, especially when
research hypotheses involve more than one feature being tak-
en into account at the same time (i.e., dominance, as well as
valence and arousal). Indeed, by minimizing this difficulty, the
method we propose below allows researchers to expand the
scope and complexity of their hypotheses, and thus more eas-
ily test their theories.

Our hypothesis is that the IAPS data present a discernible,
meaningful structure that can be capitalized upon by using
cluster analysis to produce stimulus groups for experimental
use. Here we tested several clustering approaches against one
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another, and propose a stepwise strategy for filtering and clas-
sifying IAPS images for subsequent experimental use. The
family of clustering algorithms (or data-mining techniques)
is extremely diverse and easily warrants entire books dedicat-
ed to them (for more detailed discussion, see Jain & Dubes,
1988; Kantardzic, 2011; and Kaufman & Rousseeuw, 2005).
However, due to their widespread use and popularity, we fo-
cus on several approaches in particular. We will now briefly
describe each of these approaches; readers interested in a more
in-depth coverage may refer to the supplementary material.

The first approach is k-means clustering, which involves
selecting k£ random seeds (i.c., random points in the space
defined by the dimensions of the stimuli) and assigning the
closest cases to them, leading to the formation of & groups.
Afterward, the group mean (i.e., centroid) is computed, and
cases are reassigned to groups on the basis of closeness to this
value. This process will reiterate until the classification has
settled into a stable solution (i.e., when the data points no
longer change their memberships after the centroid computa-
tion). This is a hard partitioning method, meaning that all cases
are included in their respective clusters with a probability of 1,
and it does not provide a direct indication of the number of
clusters existing in the data (Hartigan & Wong, 1979;
MacQueen, 1967; Xu & Wunsch, 2009). Instead, various sub-
sequent indices are used to suggest the number of clusters that
would be appropriate for a given dataset. However, these do
not take parsimony into account, and so may show little con-
sistency or be prone to inflating the number of clusters. In order
to establish clusters of images that could later be used as the
levels of an “emotional content” independent variable, we
tested k-means clustering because of its efficiency, simplicity,
and wide use (Jain, 2010).

Another popular option is hierarchical clustering. This is
an agglomerative method whereby individual cases begin by
being designated as their own cluster (i.e., clusters of one data
point each; Borcard, Gillet, & Legendre, 2011; Xu & Wunsch,
2009). Using one of multiple linkage methods, cases get
merged progressively into ever-larger clusters, until all of the
cases belong to just one, overarching cluster. Similarly to -
means, no indication is given about the suitable number of
clusters in the data, so that with the aid of various statistical
criteria (again not considering parsimony, and possibly con-
flicting in their recommendations), it is largely up to the re-
searcher to decide where along this progression to stop and
retain the corresponding number of clusters. Hierarchical clus-
tering is also a hard clustering method, in which each case is
assigned to one cluster exclusively, rather than being assigned
a probability of membership.

A third option that is gaining in popularity is model-based
clustering. This represents a form of hierarchical clustering that
also involves an expectation-maximization (EM) procedure
(for a primer on EM, see Do & Batzoglou, 2008). Unlike k-
means, or hierarchical clustering per se, this is a soft clustering

method, whereby cases are assigned to clusters with a certain
probability (uncertainty) of membership. This can allow re-
searchers to systematically control for the degree of typicality
a stimulus exhibits in terms of the clustering dimensions used:
A stimulus with higher uncertainty will be less representative
of its cluster, and may introduce additional noise into experi-
mental results. Also, in contrast with the two previous ap-
proaches, model-based clustering simultaneously provides
both a clustering solution for the data and a straightforward
method for determining the optimal number of clusters k. For
this purpose, model-based clustering (implemented in the
mclust R package: Fraley & Raftery, 2006) provides
Bayesian Information Criterion (BIC) values and considers
the optimal number of clusters for a given dataset to be which-
ever value of k maximizes' this criterion. Therefore, one of the
distinctive features of this method is that it takes parsimony
into account in the attempt to reduce the unnecessary inclusion
of components (clusters) into the model.

To summarize, in this article we focus on three types of
clustering—namely k-means, hierarchical, and model-based
clustering—each of which differs in the approach taken to
assigning case membership (and whether that membership is
probabilistic or absolute). Moreover, the first two approaches
do not intrinsically provide a clear criterion for determining
the final number of clusters, and so admit a variety of methods
for deciding this (see below and in the supplementary
material). We tested each of these methods on the IAPS data
in order to: (a) gain more insight into the internal structure of
the database; (b) identify any common patterns in clustering
solutions across the different algorithms; (c) select the most
suitable algorithm of the three and retain its clustering solu-
tion, and lastly; (d) extract a fixed number of representative
IAPS images from the final clustering solution for use in fur-
ther experiments.

Subsequently, we employed various validation techniques,
to select one clustering method as the most appropriate for the
IAPS dataset. After selecting one such clustering algorithm,
we extracted the best exemplars from each resulting cluster,
which we then propose as the final selection of stimuli that
researchers may wish to use in subsequent work.

Method
Dataset characteristics

In this study, we focused on the IAPS normative data gathered
from both male and female participants, in which PAD ratings
were collected using three (nonverbal) 9-point Likert scales

! The formula employed by Fraley and Raftery (2006) uses the negative
of deviance, so that BIC here needs to be maximized rather than mini-
mized, which is more common.
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(using the Self-Assessment Manikin, or SAM; Bradley &
Lang, 1994; Lang, 1980) and a sample of approximately 100
US students, depending upon the image. In our analysis, we
included all three PAD dimensions that are available within
the TAPS data, to create stimulus groups that account for the
maximum amount of variance in participant responses
(Bradley & Lang, 1994). Despite the large correlations be-
tween dominance and the other two PAD dimensions (see
Fig. 1), dominance did not perfectly overlap with them (e.g.,
if » > .9) either empirically or theoretically, further justifying
its inclusion in subsequent analyses.

Duplicates

We evaluated the univariate distributions available within the
stimulus database, and identified 12 duplicate cases within the
normative data (overall including N = 1,194 cases, but with N
= 1,182 unique cases), each associated with different scores on
the PAD model (see Table 1 for a listing). These images were
likely normed twice, as part of different image sets (Lang
et al., 2008). As a consequence, we replaced these duplicated
pairs with a single entry containing the averaged valence
arousal, and dominance across the duplicates.

Missing values

In terms of missing values, only the valence and arousal di-
mensions contained complete data. However, of the two dom-
inance distributions (“Dom1” and “Dom2”)? included in the
database, depending on which SAM rating scale was used in
the measurement (Lang et al., 2008), “Dom2” contained con-
siderably more missing data than “Dom1.” Thus, we retained
only the “Dom1” scale for further use,’ to benefit from its
more complete data. We reduced the overall dataset accord-
ingly, leading to a sample size of N = 942.

Results
Preliminary analyses

Outliers Given the variety of emotional material included
within the IAPS database, we employed a form of outlier
identification as an objective means to filter out images ex-
ceeding the emotional intensity of stimuli expected in daily
life, which could prove overly stressful for participants.

2 «“Doml” refers to the “classic” SAM dominance scale, whereas
“Dom?2” refers to a version of the dominance scale on which the SAM
icon with the highest control presented a more assertive and dominant
facial expression/posture than in the classic version.

3 The correlation between “Dom1” and “Dom2” was remarkably high (»
=.98), for the N = 60 cases measured on both versions of the dominance
scale. Thus, we were able to safely use only “Dom1” in our analyses.
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Fig. 1 Correlations between the pleasure/valence arousal, and
dominance dimensions, with deviations from linearity that give rise to
the specific shapes of the relationships

Outliers might also distort the clustering solutions (e.g., for
k-means and model-based approaches), thus constituting an
additional reason to identify and remove them. Specifically,
outliers used with the model-based clustering might lead to a
different number of clusters and/or alter the cluster member-
ships, without necessarily nesting outliers into a cluster of
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Table 1  IAPS duplicates and their valence arousal, and dominance
ratings (devised using the Stargazer R package; Hlavac, 2013)

Description Image Code  Valence Arousal Dominance Set
Spider 1230 4.09 4.85 458 1
Spider 1230 4.61 4.03 5.60 2
Horse 1590 7.18 4.74 5.54 2
Horse 1590 7.24 4.80 5.62 3
Rabbit 1610 7.82 3.08 6.77 1
Rabbit 1610 7.69 3.98 6.52 2
Coyote 1640 6.27 5.13 522 1
Coyote 1640 6.16 5.18 491 2
Cow 1670 6.81 3.05 6.53 1
Cow 1670 5.82 3.33 5.63 2
NeutFace 2210 438 3.56 5.03 1
NeutFace 2210 4.70 3.08 5.23 2
Mutilation 3000 1.45 7.26 2.99 1
Mutilation 3000 1.59 7.34 2.73 4
Mutilation 3010 1.71 7.16 2.88 2
Mutilation 3010 1.79 7.26 2.88 3
EroticFemale 4220 8.02 7.17 533 2
EroticFemale 4220 6.60 5.18 5.90 3
EroticMale 4520 7.04 5.48 5.48 2
EroticMale 4520 6.16 4.80 5.73 3
AimedGun 6200 2.71 6.21 3.35 1
AimedGun 6200 3.20 5.82 3.49 2
Exhaust 9090 3.56 3.97 451 2
Exhaust 9090 3.69 4.80 4.72 3

their own (Fraley & Raftery, 2002; Hautamiki,
Cherednichenko, Kérkkiinen, Kinnunen, & Frinti, 2005;
Wu, 2012; Xu & Wunsch, 2009).

Using the R language (R Development Core Team, 201 5),
all three univariate distributions were found to be nonnormal
according to the Shapiro—Wilk test, so any method of deter-
mining outliers that was based on averages would probably be
inappropriate (since the averages would not adequately repre-
sent the distribution). Hence, we opted for a more robust in-
dicator: the Median Absolute Deviation (MAD; Leys et al.,
2013).5 Therefore, images that were more than 2.5 MADs
away from the median, in either direction, were removed be-
fore further analyses could be conducted. No outliers could be
identified using this method in the valence or arousal distribu-
tions, but interestingly, 32 images® were flagged as outliers

* The R code for our analysis is available at www.github.com/CaterinaC/
IAPSClustering2016.

> According to this method, acceptable values should lie between the
median + (x * MAD), where we opted for x = 2.5.

® JAPS codes: 3000, 3001, 3010, 3015, 3053, 3059, 3063, 3064, 3080,
3102, 3131, 3170, 3266, 3500, 3530, 6230, 6231, 6250, 6250.1, 6260,
6263, 6300, 6350, 6510, 6520, 9075, 9252, 9410, 9413, 9600, 9908, and
9940

due to their dominance scores, and were thus removed. This
was done to avoid distorting the clustering solutions subse-
quently, and also to filter out potentially harmful material, in
an empirically principled, replicable manner.

Representativeness/precision of measures Additionally, we
implemented a measure to ensure the precision of the stimuli
to be used: building 95 % confidence intervals (CIs) around
the normative image ratings, to give an indication of how
precisely the population means could be estimated, on the
basis of the sample averages from the approximately 100 par-
ticipants rating each image. We selected stimuli with Cls span-
ning no more than one point in total around the normative
rating, which we considered to be sufficiently narrow, given
that the three dimensions were measured on 9-point Likert
scales. Using this criterion, 61 cases that were judged too
imprecise were removed, since they could subsequently affect
the inferences in our study; 46 images were removed due to
the width of their CI on one dimension, 13 due to their CI
width on two dimensions, and finally, two cases with CIs too
wide on all three PAD dimensions simultaneously. After we
had removed cases on the basis of both outlying values and CI
widths, the sample size was reduced to N = 849.

Clustering techniques

After employing the filtration methods described above, three
clustering procedures—=k-means, hierarchical, and model-
based clustering—were used to produce a set of coherent
clusters that could be used in later primary research. For the
reasons explained previously, the clusters were built on the
basis of the normative ratings for all three available measures
associated with the IAPS: valence arousal, and dominance.

K-means clustering When using this method, various in-
dices were consulted to identify what the appropriate
number of clusters (k) should be, including the
Calinski—Harabasz Index (Calinski & Harabasz, 1974),
the Ball Index (Ball & Hall, 1965), and the Hartigan
Index (Hartigan, 1975), which are all based on with-
in-/between-cluster sums-of-squares calculations (i.e.,
minimizing the former and/or maximizing the latter to
ensure cluster compactness and/or the separation be-
tween clusters), as well as the Simple Structure Index
(SSI; Dimitriadou, Dolnicar, & Weingessel, 2002;
Dolnicar, Grabler, & Mazanec, 1999), and others. The
general trends shown by some of these indices are pre-
sented in Fig. 2, where the nature of the dataset is such
that various clustering indices detect different character-
istics of the data and do not converge on any simple
answer as to the “correct” number of clusters that
should be extracted. For further details on these and
other indices, please see the supplementary material.
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Calinski Hartigan
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Ball SSI

Index value
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k k

Fig. 2 Various clustering indices indicate different “optimal” values for
k. These graphs may change slightly with every run of the clustering
algorithm, due to the random seeds that k-means uses. As such,
100,000 repetitions were run on the k-means clustering algorithm each
time, with a range for £ from 2 to 8, and with the values of the Calinski,
Ball, Hartigan, and SSI criteria computed each time (with the Ball
criterion having to be minimized, unlike the other three criteria, which
must be maximized). The average values for these criteria were then
computed across all of the repetitions and indicated (left to right, and
top to bottom) that three, eight, eight, and three clusters should be
extracted, respectively

On the one hand, it may seem surprising that a subset of
over 800 IAPS images may have several k-means clustering
criteria peak for the number of only two’ or three clusters,
considering the amount of variation in both the content and
scores of the IAPS images. However, this could be accounted
for theoretically by the emergence of a dichotomous “Positive
and Negative Affect” structure (PA/NA, developed more in
the Discussion), sometimes accompanied by the natural emer-
gence of an additional neutral cluster. In Fig. 3, both clustering
solutions are displayed using color coding for each cluster in
the 3-D space, and are shown to cover extensive areas of the 3-
D space.

On the other hand, higher values for £ might be more suit-
able for the data, as is suggested in Fig. 4, which shows that as
the number of clusters increases, so does the amount of ex-
plained dissimilarity between the cases (calculated as 1 — un-
explained dissimilarity or 1 — within-cluster dissimilarity).
Thus, as the number of clusters increases, within-cluster ho-
mogeneity also increases. However, k-means does not penal-
ize for the increasing number of clusters (unlike model-based

7 Please refer to the supplementary material for more details on the mea-
sures of Connectivity and Average Silhouette Width that suggested this
value.
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3D structure of IAPS data
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Fig. 3 Data structure of the IAPS images. It is worth noting that large
portions of the 3-D space remain unpopulated, signaling either that the
TIAPS does not cover those combinations between valence arousal, and
dominance, or that photographic material in general would have difficulty
with this

Amount of dissimilarity explained by clusters

Dissimilarity accounted for

k

Fig. 4 The amount of dissimilarity (as computed using the R package
clue: Hornik, 2005) between cases is accounted for by ever-increasing
values for k&
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clustering), so that, conceivably, the total amount of dissimi-
larity would only be explained when the number of clusters
equaled the number of cases. In other words, there is no single,
definitive cutoff to determine which value of & best fits the
data.

Since there may be arguments against using either a very
small (e.g., k= 2 or even k = 3, with too many heterogeneous
cases blended in the same group, as shown in Fig. 3) or a very
large number of emotional categories (e.g., k> 8, leading to a
very fragmented and unparsimonious structure, with relatively
few cases per cluster), we now turn to the other clustering
methods for additional solutions.

Hierarchical clustering Jointly testing various linkage
methods (i.e., strategies for progressively merging clusters,
described in more detail in the supplementary material) and
distance metrics allowed us to find the combination yielding
the clustering solution with the highest degree of similarity to
the original data (or matrix containing the distances between
every pair of IAPS cases). We found that Average Linkage
(i.e., merging clusters based on the average distance between
their points) paired with correlation-based distances (i.e.,
assigning cases to clusters on the basis of correlations) pro-
duced the results most similar to the original distance matrix
(cophenetic correlation, 7 = .91). Consequently, this combina-
tion was the most suitable for the IAPS data, and shows how
essential PAD relationships are when determining how to
group the IAPS images. The next best result was attained by
Single Linkage (in which cluster-merging depends on the dis-
tance between the closest points belonging to different clus-
ters), again combined with correlation distances (r = .87).
Thus, after having reconfirmed the importance of the PAD
correlations and identified the most suitable hierarchical ag-
glomeration method for this dataset, we proceeded to deter-
mine the most appropriate number of clusters in the data.

In terms of connectivity, average silhouette widths, and
Mantel optimality (briefly described within the
supplementary material), a number of two clusters was sug-
gested, whereas the Dunn Index indicated three. This corrob-
orates the findings from some of the k&-means indicators, and
suggests the overall strength of the PA/NA structure within the
IAPS, with or without an additional neutral cluster. However,
as with k~-means, some variability was to be found; for exam-
ple, when using the elbow method for partitioning variance
into clusters (using the GMD R package; Zhao & Sandelin,
2012), the optimal number of clusters (also based on average
linkage) indicated was seven. Other clustering indices sug-
gested nine clusters; however, still others provided more dis-
crepant results, indicating numbers ranging from four to 15, or
as many as 30 clusters. Overall, the most endorsed options
were two (perhaps three), or nine clusters. For more informa-
tion, please see the supplementary material.

Model-based clustering Model-based clustering yielded a
mixture model containing five clusters of varying Volumes,
Equal (ellipsoidal) shapes, and Varying orientations (VEV).
This model/configuration was optimal in terms of BIC values:
BIC =-6,341.11, relative to the global minimum BIC value®
for other cluster numbers and configurations, BIC =—8,671.93
(for one spherical cluster, with either equal or variable volume,
and the configurations abbreviated as EII and VII, respective-
ly). The second best BIC value achieved was —6,343.72, for a
VEV model with four components (clusters). Full details re-
garding the BIC values for all the models considered can be
found in the supplementary material.

The five-cluster solution proposed by the algorithm is de-
scribed in Table 2, in terms of cluster centroids, sample sizes,
mixing proportions (i.e., proportion of the mixture/overall
sample that has been assigned to each cluster), and average
uncertainties. By-cluster boxplots are also displayed in Fig. 5,
comparing the relative spreads of the clusters’ valence arousal,
and dominance univariate distributions. In addition, given the
cluster centroids presented in Table 2, it is apparent that this
clustering solution presents a symmetrical format: two nega-
tive clusters (one more so than the other), one neutral cluster,
and two positive clusters (one more so than the other).

Finally, we assessed whether the assumption of multivariate
normality held for these clusters, and found that, overall, the clus-
ters presented ellipsoid shapes consistent with this assumption,
with some further evidence also added by various multivariate
normality tests. Please see the supplementary material for details
on testing the assumptions required for model-based clustering.

Validating the clustering solutions

After having employed three candidate methods—+#-means, hi-
erarchical, and model-based clustering—we proceeded to com-
pare them on the basis of various validation techniques (full
details are in the supplementary material), to select just one
for further use. Given that variations were observed in terms
of the “optimal” number of clusters suggested for k~-means and
hierarchical clustering by each clustering index, we deemed it
appropriate to emphasize and pursue model-based clustering,
which proved less affected by these issues, and also provided
more information about the classification in the form of mem-
bership uncertainties. For a more meaningful comparison be-
tween the methods, parsimonious clustering solutions were
formed using each of the three algorithms for a number of
k=5 clusters, as was suggested by model-based clustering.

Finding a stable structure within the data, across methods
Assuming that the IAPS data present a clear, discernible struc-
ture, all of the clustering algorithms should in principle be able

8 Mclust() seeks to maximize BIC values, given that it uses the negative of
deviance.
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Table 2

IAPS cluster centroids, cluster sample sizes, mixing

proportions (or the proportion of total cases assigned to each cluster),
and average uncertainties, extracted using model-based clustering

Cluster Valence Arousal Dominance N  Mixing Average
Prop. Uncertainty

1 3.56 5.18 434 244 29 .09

2 7.27 4.69 5.96 71 .08 26

3 227 5.87 3.55 71 .08 24

4 5.05 3.31 5.84 152 .18 .17

5 6.44 4.82 5.90 311 .37 .14

to identify this structure despite their computational differ-
ences. To check this, we assessed the extent to which model-
based clustering yields membership assignments that overlap
with those from the other two competing methods.

Dimensions broken down by cluster
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Fig. 5 Cluster boxplots, for each dimension. The boxplots indicate, for
each cluster (coded by colors), the spread of cases assigned to it, in terms
of valence arousal, and dominance. The boxplot widths are proportional
to the cluster sample sizes
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The Variation of Information criterion (VI; Meila, 2007) sug-
gests that not much information is to be gained/lost when mov-
ing from one classification to another (i.e., there is considerable
similarity between partitions of five clusters, regardless of the
algorithm used to produce them), with the normalized VI be-
tween model-based and A-means clustering = .176 and the VI
between model-based and hierarchical clustering = .217 (please
see the supplementary material for details). This finding was
corroborated by the relatively strong association found between
partitions using Cramer’s ¢ (between the k&-means and model-
based classifications, ¢ = .704, and between the model-based
and hierarchical classifications, ¢ = .516). Therefore, on the
basis of the VI and Cramer’s ¢, there is considerable similarity
between the five-cluster solutions provided by the different al-
gorithms. However, for further results, including those based on
the Adjusted Rand Index (ARI; Hubert & Arabie, 1985), please
refer to the supplementary material. Thus, on the whole these
results constitute moderate evidence that a specific data structure
can be identified in the IAPS, given the level of agreement
between the clustering methods.

Evaluating the stability of the model-based clustering so-
lution We assessed the stability of the clustering solutions
using various criteria, including split-half validation (i.e.,
dividing the TAPS data into two random halves and com-
puting the level of association between the partitions cre-
ated independently on these halves of the data) and jack-
knife validation (i.e., removing 10 % of the IAPS data
randomly across a few thousand repetitions and assessing
changes in the structure of the clustering solutions).
Overall, model-based clustering performed well, with a
high degree of association present between how the ran-
dom halves of the data were clustered, suggesting that
the stimulus groups identified were well-supported. In
terms of stability after the random removal of 10 % of
the data points, model-based clustering also
outperformed both k-means and hierarchical clustering,
for which typically only one cluster was then identifiable
in the data (i.e., no grouping of the data points could be
achieved after the removal of data points using these
methods). For more details on these and further analyses,
please refer to the supplementary material.

Selecting equal numbers of cases from each cluster

Given that the five clusters provided by model-based cluster-
ing differed in size, a procedure was required to sample equal
numbers of cases from each cluster that would represent their
respective cluster to the highest degree. Since levels of cer-
tainty are also provided for each image during the model-
based clustering process, these could be used to create a hier-
archy in terms of how likely it was for each image to belong to
the cluster it was assigned to.
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Fig. 6 Bivariate scatterplots showing the default classifications of cases
and the uncertainties provided by Mclust() in R. The uncertainties are
coded using one of three symbols: ringed black dots for candidates with
a high certainty of cluster membership; orange (light gray) asterisks for

Consequently, a given number of images could be selected
according to their rank in this hierarchy (i.e., the first » most
likely cluster members). Figure 6 shows the default distinction
made by Mclust(): Cases with uncertainties below the 75th
percentile are considered acceptable, uncertainties between
the 75th and 95th percentiles are risky candidates, and those
over the 95th percentile should not be used, as they do not
show clear membership to a given cluster. We made the same
distinction in our final results, available online for download
in the repository at www.github.com/CaterinaC/
IAPSClustering2016, where we indicate which IAPS images
were assigned to which cluster, as well as the level of
uncertainty associated with this classification—particularly,
which uncertainties were above or below the 75th percentile
(i.e., whether or not they should be sampled for research).
These results are suitable for researchers to use in most
research contexts.

In our example, only the first 20 cases in the hierar-
chy of uncertainties were retained for closer inspection.
These can be judged as the best representatives for each
given cluster, and are portrayed in Fig. 7, with the first
five of each cluster also displayed in Fig. 8, where they
are shown to be meaningfully related to one another.

-1.0

T T T T T
-1.0 -05 0.0 0.5 1.0

less clear cluster memberships; and red (dark gray) squares for cases to
avoid using as stimuli, with very unclear memberships. Point size is an
additional indicator for the level of classification uncertainty, with larger
points indicating higher uncertainty

A comparison between our method and ad-hoc
approaches to selecting IAPS stimuli

Studies relying on more typical, ad-hoc methods for sampling
IAPS stimuli may face several risks. On the basis of a Google
Scholar search for “IAPS images,” we selected a small

Valence

Fig.7 Selection of the 20 most likely IAPS cases per cluster, forthe k=5
clustering solution. The color coding was chosen to be consistent with
Fig. 8 below
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Scatterplot of best 5 representatives from each cluster
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Fig. 8 Selection of the five most likely IAPS cases per cluster, for the k=
5 clustering solution, along with IAPS image codes. The color coding was
chosen to be consistent with Fig. 7 above

number of studies randomly from several pages of results.
However, we only retained articles that also specified the
IAPS image codes used, rather than simply the average PAD

values for the images selected. We then assessed how the
categories used in these studies matched our own.

First, as is shown in Table 3, the images intended to
represent different affective categories in these studies
sometimes share the same clusters that our model-
based clustering uncovered. For instance, in the Glenn,
Blumenthal, Klonsky, and Hajcak (2011) study, four im-
ages considered neutral and ten images considered
pleasant all belong to one of our positive clusters (i.e.,
Cluster 5; see also Table 2 for cluster descriptions).

Second, the negative or positive stimulus groups used in
studies tend to pool together stimuli that our method has dis-
tinguished as reflecting two types of positive or of negative
material. For example, the Koenigsberg et al. (2010) study
used a group of stimuli wholly considered to be negative;
however, our method divided these between two separate
clusters—one that is mildly negative and moderately arous-
ing, and one that is more negative and more arousing, and with
lower dominance than the former cluster.

In some cases, a single stimulus category (i.e., neutral, on
the basis of the research reviewed in Table 3) may spread
across three or four of our clusters. For instance, in the study
by Most et al. (2005), the neutral category in fact included
eight mildly negative images, 27 neutral images, and 20

Table 3  Stimulus groups used in various studies, redistributed according to our method

Study Stimulus Total No. Image Codes Stimulus Redistribution According to Our Method, According To:
Categories Stimuli ~ Unaccounted
Used Used per For Missing Outliers WideCI Cl C2 C3 C4 C5

Category Dominance Excluded Excluded (-) (++) (—-) () )
Score
Excluded

Glenn et al., 2011 Pleasant 18 - - - 3 - 5 - - 10
Neutral 18 - 1 - - - - - 13 4
Unpleasant 18 - - 6 3 4 - 5 - -

Mikels, Larkin, et al., 2005 Pleasant 80 17 - - 10 - 22 - - 31
Neutral 80 8 - - - 7 5 - 41 19
Unpleasant 80 - - 3 2 71 - 4 - -

Most et al., 2005 Neutral 55 - - - - 8 - - 27 20
Negative 39 - - 11 6 5 - 17 - -

Stins & Beek, 2007 Neutral faces 14 - 1 - - 2 - - 10 1
Neutral household items 15 - 1 - - - - - 14
Erotic 17 - 1 - 7 - - - -9
Family scenes 12 - 1 - 2 - 8 - - 1
Mutilation 11 - - 6 - - - 5 - -
Fear 18 - 1 5 1 9 - 2 - -

Koenigsberg et al., 2010 Negative 47 - 6 7 4 13 - 17 - -
Neutral 49 - 10 - - 4 - - 25 10

The clusters from one through five are represented by C1, C2, C3, C4, and C5, and refer to those described in Table 2. For the same columns, between
parentheses we have included concise information about the valence of our clusters, ranging from very positive (++) to very negative (— —). This has been
done merely to aid interpretation of this table; however, as we previously stated, all three of the PAD dimensions were important in determining how the

IAPS stimuli were assigned to these clusters, not only valence.
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mildly positive images, according to our method. Another
example is the study by Mikels, Larkin, Reuter-Lorenz, and
Carstensen (2005), in which a category of neutral images
intended to differ only in brightness actually belonged to four
different emotional clusters within our own classification.

In addition, from Table 3, it is also apparent that without
filtering images on the basis of 95 % ClIs, less reliable image
stimuli can be included in studies. For instance, in the case of
the Stins and Beek (2007) study, seven less reliable (in terms
of confidence interval widths) images were included in the
group of erotic stimuli. Similarly, images have also been se-
lected without taking into consideration dominance—includ-
ing some images we excluded precisely because their norms
for dominance were missing. Finally, IAPS data outliers have
also been included in studies, which could pose some ethical
risks, due to their emotional intensity, and warrant closer
inspection.

Discussion

A variety of research areas rely on stimulus databases for
experimental use. The IAPS is one such widely used database,
having currently amassed approximately 3300 citations in
Google Scholar (April, 2016). Yet, despite its extensive use,
a standard stimulus selection strategy from the IAPS has yet to
be devised—one that can easily take into account all three
PAD dimensions simultaneously, and provide a stimulus
grouping that is both empirically principled and optimal in
terms of various statistical measures.

In this article, we proposed such a method based on the
following sequence of steps: filtering out stimuli that consti-
tute outliers or duplicates, and those with CIs wider than a
preset criterion; creating stimulus categories using different
clustering algorithms; and finally, validating these categories
against several measures. Within the procedure we propose,
we placed special emphasis on model-based clustering, an
inferential method that provides not only a classification of
the stimuli, but also an uncertainty estimate for each stimulus
assigned to a cluster. Examining these uncertainty estimates
allows researchers to control for how well stimuli reflect their
underlying category and to select only those stimuli that
reflect their cluster in the most meaningful way.

Filtering out stimuli prior to clustering

As a first step toward creating a selection of stimuli for
experimental use, the MAD has proved to be a useful
tool for identifying stimuli that may be ethically ques-
tionable, due to their violent or threatening nature. In
addition, Grithn and Scheibe (2008) found that IAPS
ratings for negative images tend to get more extreme
with age. Thus, as a precautionary measure, filtering

out outliers using the MAD might have to be consid-
ered more carefully depending on what sample/
population the stimuli are aimed at, as the same IAPS
image might be more distressing for one category of
participants than another.

Using the MAD, we were able to exclude 32 images due to
their particularly low dominance scores (i.e., in the case of high-
ly violent images, with an average valence level of 1.98—e.g.,
image 3001, a headless body; 3131, mutilation; 3170, a baby
with a tumor; etc.). Interestingly, these same cases were not
flagged as outliers given their scores on the other dimensions.
This provides further evidence that dominance scores reflect a
different process of emotional evaluation and should be consid-
ered more frequently when selecting IAPS images. Relatedly,
dominance is believed to be more easily distinguishable from
the other two dimensions in social situations (rather than
photographic material; Bradley & Lang, 2007, p. 32), further
supporting its general inclusion in stimulus selection proce-
dures, as an additional contributor to emotional experiences.

The large standard deviations associated with the ratings
for most stimuli from the IAPS have usually resulted in wide
95 % Cls (spanning more than one point on the nine-point
Likert scale used for ratings). However, within our overall
approach based on CIs, other (more or less conservative)
criteria may also be applied regarding the width of these Cls,
depending on researchers’ specific aims. This type of verifi-
cation has proven to be highly useful either for deciding which
stimuli to retain for the subsequent clustering procedure, and
for a better appreciation of the amount of variability in the
individual TAPS ratings leading to the normed means.
Although we are unable to give an exact reason why some
of the stimulus norms were insufficiently precise, on the basis
of our criterion, these results clearly suggest a verification as
simple as this should become a more standard practice when
selecting stimuli from stimulus databases.

We would stress that it is possible for any emotional stimuli
database to present these same concerns. This is because emo-
tional stimuli are conceivably very subjective, thus leading to
the large standard deviations observed, and implicitly, the lower
degree of certainty as to how they may be perceived by individ-
ual participants (e.g., image “EroticFemale” 4210 registered the
highest standard deviation of all IAPS images, suggesting that
reactions to it varied considerably). On the other hand, it is also
possible these characteristics might be specifically related to the
features of IAPS, but not of other emotional stimuli collections;
thus, image quality and historic context, ecological validity, and
so forth, may also be involved. Future work will be necessary to
address this research question.

Clustering the stimuli

When using k-means and hierarchical clustering to classify
IAPS images, the repartition of cases between clusters
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represents a separate step from choosing the “appropriate”
number of clusters existing within the data. Our analysis
showed that it is difficult to discern a clear cluster structure
within the IAPS data. For example, in the case of k-means, the
optimal value for k oscillated between two, three, or eight,
depending on the clustering index used, and on the total num-
ber of clusters tested. Similarly, for hierarchical clustering, a
number of two, three, seven, or nine clusters was indicated as
suitable for the IAPS data, also depending on the index and
number of clusters. It may seem surprising that a number of
clusters as low as two, or even three, could be suggested by
both k-means and hierarchical clustering, for a sample size as
large as N = 849 images, varying considerably in terms of
valence arousal, and dominance scores. However, the emer-
gence of these solutions is understandable, for theoretical rea-
sons and/or due to the shape of the IAPS data.

First, the £ = 2 solution carries theoretical significance by
corroborating principles used in the construction of the
Positive and Negative Affect Schedule (PANAS; Watson
et al., 1988), since the two emerging clusters can be
interpreted as matching the Positive and Negative Affect com-
ponents of the scale, which measure the corresponding affec-
tive moods with adequate reliability and validity. This similar-
ity directly indicates that clustering methods can provide
meaningful results, which can be validated against current
practices and/or theory.

Second, the nonlinear (“U” shaped) relationship be-
tween valence and arousal can easily be split into three
sectors, a characteristic that carries over into 3-D space,
when dominance is added. Thus, one cluster is negative
with higher arousal, another is neutral with lower arousal,
and the third is positive, again with higher arousal.
Although this three-cluster solution may appear similar
to those from typical image selection practices (cutoff
points and/or factorial designs, centered on selecting
three valence groups: negative, neutral, and positive), it
differs from these approaches in that it accommodates all
three PAD dimensions simultaneously with ease, and also
takes the structure of the data into account, without im-
posing unsustainable assumptions (i.e., independence of
the PAD dimensions). In fact, even if hierarchical clus-
tering did not provide the final classification of the IAPS
data, it did reveal most clearly the importance of the PAD
relationships, since using correlation-based distances al-
ways yielded the highest correlations with the original
data for this clustering method. This suggests that the
PAD correlations should always be taken into account
when selecting stimuli from the IAPS, whereas using fac-
torial designs without concern for them may simply lead
to inappropriate groupings of stimuli, and subsequent
experimental results that are difficult to interpret.

However, both of these solutions (k=2 and k = 3) focus on
the creation of just a few, large clusters, which would thus
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cover considerable portions of the 3-D affective space within
the PAD model. As such, one large negative cluster would, for
instance, include images with both moderate and higher arous-
al, or both moderate and lower dominance—Ileading to a low-
er degree of experimental control.

On the other hand, from a practical standpoint, the larger
numbers of clusters (seven, eight, or nine) indicated by -
means and hierarchical clustering may be as intractable as
the lower numbers, but for different reasons. Rather than
blending together too many heterogeneous cases, when using
a larger number of small clusters—the more clusters are ex-
tracted, the closer their centroids necessarily become and thus
their “best representatives” are also drawn nearer. This can
result in a potential reduction in statistical power. Also, more
clusters (or treatment levels) would generally signify longer
testing times and study expenses, which is not always feasible.
Finally, smaller cluster sizes would be less useful for experi-
ments requiring larger numbers of stimuli of the same type
(i.e., from the same cluster).

In contrast to the previous two methods, model-based cluster-
inguses a soft clustering approach, which provides an estimate for
the degree of cluster membership (uncertainty) associated with
each image. This allows for finer-grained control over stimuli
used in experiments, which in turn can help make research infer-
ences stronger. This method also provides additional flexibility in
terms of adaptively distinguishing a variety of cluster configura-
tions, thus being capable of a closer fit to the original data. In
contrast, k-means would, for instance, favor spherical clusters in
particular (Jain, 2010). Finally, unlike for &~-means or hierarchical
clustering, the optimal number of clusters in model-based cluster-
ing is assessed using the BIC, which penalizes for large numbers
of clusters, and simplifies the process of choosing which number
of clusters to extract from the data.

In our case, a number of five clusters was suggested, which
also represents a good compromise from a practical stand-
point. In addition, the clusters were determined to be of
Varying volumes, Equal shapes (i.e., ellipsoidal, rather than
spherical), and Varying orientations within the 3-D space. The
cluster centroids also suggest that for participants, “neutral”
images present medium levels only on the valence scale, rath-
er than in the whole PAD model, as might have been assumed.
Thus, neutral IAPS images tend to be somewhat lower in
arousal and higher in dominance: For instance, a picture of a
mug (IAPS code 7035) intuitively seems “neutral,” but this
translates into medium values only on the valence dimension
(norm = 4.98), whereas the lower arousal (norm = 2.66) sug-
gests a more calming influence, and the higher dominance
(norm = 6.39) suggests very unchallenging content.

Equally, we have shown that two forms of negative and
positive material exist, rather than one of each, which is the
typical grouping used in research. For instance, we found that
very negative content (e.g., “Mutilation”, TAPS code 3030)
presents very low valence (as expected) but, uniquely, higher
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arousal and lower dominance. Thus, collectively, these three
components (and not just valence) seem to form what is usu-
ally perceived as “very negative” content. A second, milder,
type of negative content was identified, as well, which still
presents valence values below the scale midpoint, but less
extreme arousal and dominance values (e.g., “Cigarettes”,
IAPS code 9832). Similarly, positive content can also be di-
vided into two subtypes using our method: positive, more
arousing content (e.g., “Erotic Couple”, IAPS code 4693)
and very positive, more serene/less arousing content (e.g.,
“Nature”, IAPS code 5220)—with both of these categories
being fairly similar in their mean-level dominance.

This five-cluster option generally benefits from empirical
support based on the methods we employed to verify this. We
first noted a moderate overlap between how the images were
classified into five groups by k-means, hierarchical, and/or
model-based clustering, depending on the measure used to
assess the overlap. Although no structure is unanimously ac-
cepted within the IAPS data, measures such as the Variation of
Information (VI) or Cramer’s ¢ both suggested that £k = 5 is
relatively well-supported, even if each clustering method can
shed its own perspective on the data (i.e., the amount of
overlap was not maximal, which we discuss in more detail
in the supplementary material).

Subsequently, to ensure that model-based clustering is indeed
the most suitable algorithm for use with the IAPS data, we
removed 10 % of cases randomly across a few thousand repeti-
tions (using jack-knife validation), each time assessing how the
optimal number of clusters changed. Ideally, if a robust cluster-
ing solution was found using a certain clustering algorithm, the
removal of 10 % of the values should make little difference. In
the case of &-means and hierarchical clustering, this frequently
resulted in only one all-encompassing cluster being identified in
the data, which was deemed inappropriate. In contrast, model-
based clustering showed more stability, and most often sug-
gested k = 3 (followed by k = 4) as the optimal solution in this
case. However, cross-tabulations showed that these model-
based solutions were very closely correlated to the &£ = 5 solution
achieved on the full dataset, and did not present any deeply
concerning changes such as the cluster structure collapsing en-
tirely (i.e., when we found just one cluster using the other two
methods). Therefore, the differences seen in the values of k£ most
likely reflect the fact that one or two clusters from the £ = 5
solution were collapsed due to the induced data attrition
(=10 %), but that similarities between the solutions nevertheless
remained robust.

Finally, when predicting the clustering structure of a ran-
dom 50 % of values based on that of the other 50 % (using
split-half validation), and comparing this prediction to the ob-
served model-based classification of the target half, the two
matched very closely. On the basis of all these indicators, we
concluded that the five-cluster mixture model is well-
supported by the IAPS data.

Method summary and recommendations for use

As an outline for our method, we recommend first inspecting
the IAPS images and filtering out duplicates, outliers, and
images with ClIs larger than a preset criterion (we opted for
one point in total, on the Likert scales used for the IAPS
norms, but researchers may be more conservative if they have
specific reasons for this). Subsequently, on the basis of the
findings detailed above and in the supplementary material,
we recommend resorting to a model-based clustering algo-
rithm, which will nest the remaining images into five clusters,
while also taking into account arousal and dominance in the
creation of these clusters, even if researchers may only be
explicitly interested in, for instance, valence.

Regarding any more practical issues that may arise, we
recommend maintaining this well-supported, five-cluster
structure even if researchers may be interested in comparing
fewer categories. For instance, assuming that a study is aiming
to compare the effects of positive versus negative valence on
an outcome variable, just two of the five clusters may be used,
which are farthest apart on this dimension, rather than altering
the clustering solution to provide just two clusters in total.

Given that model-based clustering is a soft clustering meth-
od, cases were also assigned a level of certainty for belonging to
their cluster. Unequal cluster sizes (with some of them being
perhaps too large to be used in an experiment in their entirety)
led to cases being sorted in descending order of their certainty of
membership. This enabled us to select a constant number of
images per cluster for subsequent use in an experiment—those
at the top of the hierarchy formed (i.e., with the highest certainty
of membership, or equivalently, with the lowest uncertainty).
Besides providing the ability to flexibly tailor this constant to
the requirements of individual studies, these stimuli can also act
as the best representatives of their respective clusters.

For illustrative purposes, five to 20 cases per cluster were
sampled in the order of their certainty of belonging to their
given cluster. This resulted in groups that are intuitively mean-
ingful, with one very negative cluster including death-related
scenes (e.g., hospital, cemetery, dying man); a second nega-
tive cluster including dangerous agents, which was higher in
dominance than the former one (e.g., snake, bear, shark); one
neutral cluster that was low in arousal and higher in domi-
nance (e.g., spoon, shoes, basket); one positive cluster includ-
ing arousing scenes (e.g., erotic scenes, gym); and finally,
another very positive cluster including less arousing “natural”
scenes (e.g., hippo, jaguar, galaxy).

Depending on the number of stimuli required per cluster for
individual studies, researchers may also wish to know how
many stimuli can safely be sampled from the clusters, in their
order of membership certainty. One solution could be to use
the criteria from the default Mclust() (Fraley & Raftery, 2006)
graphical output in R, which considers images with uncer-
tainties below the 75th percentile to be appropriately
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clustered. Of course, more conservative cutoffs could be se-
lected, should the amount of data support it, the number of
stimuli required be relatively small, or the study imply high
stakes (e.g., in clinical research).

If, on the other hand, researchers require larger numbers of
images per cluster than, for instance, those having uncer-
tainties below the 75th percentile, or even more than the size
of the smallest clusters extracted (e.g., N = 71, in our case),
several solutions exist. First, one can relax the reliance on
uncertainties when excluding images, but nevertheless retain
the uncertainties for use as statistical weights in models, after
experimental data have been collected. This would ensure that
better cluster representatives would count more when deter-
mining the research results, making images with higher uncer-
tainties still usable. A second alternative could be to resort to
sampling additional photographic stimuli from other data-
bases. To the extent that PAD ratings/norms exist or can be
obtained for such images, it would be trivial to determine their
cluster memberships with regard to the present results.

Finally, it is also possible for researchers to modify our
method to suit their aims—for instance, in terms of the criteria
used for the CI widths, or the level of uncertainty used to
determine clear cluster memberships—as long as there is good
justification for doing so and deviating from the standard
approach (e.g., in clinical research with high stakes).

A comparison between our method and ad-hoc
approaches to selecting IAPS stimuli

On the basis of our brief comparison, we discovered that a
common practice is to group together stimuli that, according
to our method, actually represent different types of negative or
positive images (e.g., when a single group of positive material
is used, instead of one positive cluster of “serene scenes,” with
lower arousal and somewhat higher dominance, plus one clus-
ter of “exciting scenes,” with higher arousal and somewhat
lower dominance). Thus, a single, generic grouping of
“positive” (or “negative”) images may obscure any specific
effects due to just one #ype of positive (or negative) material—
particularly if the effects actually differ between the several
types of positive (or negative) images.

This would be in addition to the relatively frequent inclusion
of outliers in the literature, and importantly, of less reliable im-
ages (with 95 % ClIs wider than one point). Of these, outliers
could be ethically risky, and should be avoided especially when
relying on cluster analysis for stimulus selection (otherwise, they
may distort the clustering solutions), whereas images with wide
ClIs can introduce additional error variance into research results.

Another interesting finding that emerged from our compar-
ison is that effects can become diluted if neutral categories are
not truly neutral, and extend into the space of clusters that we
have found to actually be mildly positive or negative. This
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could result in diminished power to detect differences between
the “neutral” and positive or negative stimulus categories.
Finally, we would underline that we do not wish to high-
light these differences as criticisms of previous research using
the TAPS. Rather, it is our intention to improve on these very
widespread methods for selecting stimuli, by promoting our
novel method that relies on model-based cluster analysis.
Indeed, we believe previous image selection techniques may
still be useful in limited contexts; however, it would be very
difficult to predict when or to what extent they might influence
results (by obscuring effects or “diluting” them, etc.). In ad-
dition, they may often vary considerably from study to study
(in terms of both selection criteria and resulting selections),
making comparisons between studies more difficult. As such,
we argue that relying on a statistical, easily reproducible’ and
automatic procedure, which also quantifies the extent to which
images belong to a given cluster, is much to be preferred.

Further research and limitations

Despite being arguably more objective than “manual” selection
methods, cluster analysis is not an “exact science.” As has been
shown previously, the large variety of algorithms available can
lead to substantial variations in clustering solutions. It is some-
times partly up to the researcher to decide which clustering solu-
tion is appropriate for their data. This is particularly the case with
k-means and hierarchical clustering, because the clustering pro-
cess is initialized using random seeds and/or various clustering
indices that may suggest conflicting numbers of clusters. In con-
trast, with model-based clustering such difficulties can largely be
avoided, because the results are identical on different runs of the
algorithm (unlike A-means), and the only relevant criterion for
choosing the number of clusters is the BIC.

Thus, any flexibility attributed to clustering methods (model-
based clustering, in particular) may be seen as an asset, rather
than a risk for objectivity, as long as the choices made by re-
searchers (i.e., level of uncertainty, the width of Cls, etc.) are
transparent and justified by convincing arguments. The present
work aims only to provide a guide for a method that is more
appropriate than manual selection strategies—particularly if mul-
tiple dimensions are used simultaneously for selecting stimuli.

In addition, although the cases sampled from each cluster
acquit themselves of being good cluster representatives, the
overall selection of treatment levels (or clusters) is ultimately
constrained by the type of data in the [APS—or whichever
stimulus database would be used in research. As such, the
final selection of stimuli cannot include categories of stimuli
that are not part of the database to begin with. In the case of
IAPS data, this may be either because such stimuli would be
difficult to find, due to the PAD correlations (e.g., very

% As long as any researchers using model-based clustering are transparent
about all of the settings/data-cleaning methods used with the procedure.
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negative images with low arousal are unlikely), or because the
IAPS domain of images does not include emotional material
that extends as far as possible within the 3-D PAD space (e.g.,
images with moderate valence and moderate, rather than low,
arousal are not very common).

These concerns could be addressed in the future either by
the inclusion of new images or by a renorming process for the
IAPS database (potentially via Amazon Mechanical Turk),
using larger samples to rate each image. This can also present
the added benefit of the average values being more stable (i.e.,
smaller standard deviations), and therefore fewer images be-
ing filtered out of the clustering procedure, thus creating more
comprehensive clusters. However, until then, when
interpreting results based on the current IAPS norms, the emp-
ty areas in the PAD space will require careful consideration,
since otherwise research conclusions may be biased.

In terms of future research, an interesting avenue would be
to compare empirical results when using a manual image se-
lection method, relative to our cluster-analysis-based classifi-
cation. Also, there is room yet for further standardization of
the IAPS images—for example, in terms of their spatial fre-
quency content (i.e., their level of detail or “coarseness”),
which may interact with their affective processing
(Delplanque, N’diaye, Scherer, & Grandjean, 2007). Cluster
analysis could take such dimensions (as well as participant
age, etc.) into account when creating experimental treatment
levels, provided they have been converted to standard scores
beforehand. Furthermore, depending on whether the raw data
used to produce the IAPS normative ratings will be made
available, the source of the large standard deviations could
be explored further, to indicate improved selection strategies.

Finally, for any research requiring “emotionally ambiguous”
stimuli, which do not clearly fit into any particular cluster, un-
certainty estimates for the classification of images may provide a
more empirically principled means to identify these along mul-
tiple dimensions. This would represent a higher level of rigor,
the application of which could be explored in future research.

Conclusions

In this article, we have presented a method for selecting exper-
imental stimuli, which we have illustrated using the IAPS da-
tabase. Using model-based clustering and valence arousal, and
dominance scores, we classified the IAPS images into five cat-
egories—with each image presenting a certain level of certainty
of belonging to its respective cluster. Our method is flexible,
efficient, and reproducible, and it provides meaningful clusters
in a symmetrical format, in terms of their valence ratings: two
negative clusters (one more so than the other); one neutral clus-
ter; and two positive clusters (one more so than the other).
However, this method could easily be extended to other stimu-
lus databases, in which the same principles may be applied:
careful data inspection, including the removal of any duplicated

cases in the stimulus database; the exclusion of missing values
and outliers (in a judicious manner); selecting the most precise
cases; selecting an appropriate clustering algorithm and cluster-
ing solution; and finally, extracting a constant number of stim-
ulus exemplars from each cluster.
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