Solubility of Gases and the Temperature Dependency of Whole Leaf Affinities for Carbon Dioxide and Oxygen

AN ALTERNATIVE PERSPECTIVE¹

Received for publication January 8, 1978 and in revised form October 31, 1978

JOHN D. TENHUNEN, JAMES A. WEBER, CONRAD S. YOCUM, AND DAVID M. GATES The Biological Station and Matthaei Botanical Gardens, Division of Biological Sciences, The University of Michigan, Ann Arbor, Michigan 48109

ABSTRACT

An analysis of the kinetics of simultaneous photosynthesis and photorespiration at the end of a diffusion path is applied to observed net photosynthetic rate as a function of O2 and CO2 concentrations. The data of Ku and Edwards (Plant Physiol. 59: 991-999, 1977) from wheat (Triticum aestivum L.) are analyzed in detail. Ku and Edwards, using an analysis that ignored diffusion resistance between the intercellular air space and fixation site, the competitive effect of CO2 on photorespiration, and the actual concentrations of gases at the fixation site, concluded that: (a) the affinity coefficient of the leaf for CO₂ was approximately 3.5 to 5 micromolar; (b) this affinity coefficient is independent of temperature between 25 and 35 C; (c) the effect of O₂ was independent of temperature over this range; and (d) competition between CO₂ and O₂ is responsible for the major share of CO₂ loss from photosynthesis due to photorespiration. They suggest that using gas concentrations calculated as equilibium values in the liquid phase is very important in reaching these conclusions. By applying a more complete analysis to their data which includes diffusion in the cell, it is concluded that: (a) the affinity coefficient of the leaf for CO₂ is 0.1 to 1.1 micromolar; (b) the temperature dependence of this affinity coefficient cannot be determined from existing data, but there is no evidence to refute independent temperature effect on the two functions of ribulose-1,5-bisphosphate carboxylase-oxygenase being important in the regulation of whole leaf net photosynthesis; and (c) the competitive interplay of CO₂ and O₂ at ribulose-1,5-bisphosphate carboxylase may under certain conditions lead to a stimulation of fixation by the Calvin cycle because of photorespiration. These conclusions are reached whether CO₂ and O₂ are expressed as dissolved concentrations or as gas concentrations in the intercellular air space. The relative merits of these two expressions of concentration are discussed.

Ku and Edwards (12, 13) recently obtained data from wheat comparing the O_2 and CO_2 dependencies of net photosynthesis at 25, 30, and 35 C. The following questions were addressed in the analysis and interpretation of these data: (a) what role does solubility of gases play in the increased percentage inhibition of photosynthesis by O_2 with increasing temperature; (b) what is the temperature dependence of the whole leaf affinity coefficient for CO_2 ; (c) is the increased percentage inhibition of photosynthesis by O_2 at high temperature due to different temperature effects on the whole leaf affinity coefficients for CO_2 and O_2 regulating total photosynthesis and the photorespiratory process according to the Bowes-Ogren hypothesis (2)? The objective of this paper is to reevaluate the conclusions of Ku and Edwards (12, 13) using an alternative analysis. This second interpretation explains the original data but may lead to very different conclusions, which are fundamental to understanding the photosynthetic response of whole plant leaves to environmental factors.

In our analysis (31-33), a stepwise procedure is used to elaborate the environmental regulation of net photosynthesis in terms of physiologically meaningful parameters that characterize: (a) the production of photoproducts in the light reactions of photosynthesis; (b) transport of CO₂ from the intercellular air space to the site of fixation; (c) enzymic fixation of CO₂; and (d) reutilization of photosynthate products in the simultaneous processes of photorespiration and dark respiration. Stomatal resistance is treated as a separate effect superimposed on these processes. This general model has many characteristics in common with models of Peisker (25), Charles-Edwards and Ludwig (3), Chartier (4), Laisk (15), Hall (8), and Lake (16, 17) but differs in that it is developed specifically to separate the effects of light, temperature, CO₂, and O₂ on the individual metabolic subprocesses mentioned above.

At a specific light intensity and leaf temperature, the simultaneous processes of photosynthesis and photorespiration have been successfully described based on the assumption that CO_2 and O_2 compete for the same active site on RuBP² carboxylase. Various criteria, important in evaluating the performance of such a submodel have been considered (29, 31). The single most important criterion, an accurate description of the net photosynthetic response as a function of O_2 and CO_2 concentration, is well satisfied.

The determination of values for the whole leaf affinity coefficients for CO₂ is dependent on the photosynthetic model used in the analysis. The most meaningful definition of the kinetic constants of whole leaf photosynthesis is one based on estimations of CO_2 concentrations at the enzyme active site. This concentration is dramatically affected by respiration rates and the geometric distribution of CO₂ sources and sinks within the leaf (30), making a careful formulation of the regulation of photosynthesis and photorespiration based on the Bowes-Ogren hypothesis of paramount importance. It has likewise become apparent that suggested simplifications of these kinetic equations may heavily bias results. Although Ku and Edwards (12, 13) considered extensive data, their conclusions may be misleading due to inadequacies of their model. Reinterpretation of their results, using our net photosynthesis model, produces quite different results with significant implications for regulation of whole leaf photosynthesis.

¹Supported by a grant from the Ford Foundation and by Contract AT(11-1)-2164 from the Energy Research and Development Administration.

² Abbreviation: RuBP: ribulose 1,5-bisphosphate.

MATERIALS AND METHODS

The analysis summarized here describes net photosynthetic rate (P) as a function of CO_2 and O_2 concentrations in the air space with leaf temperature and light intensity held constant. The equations and their derivations have been discussed in detail elsewhere (19, 31). The following modifications from the equations of Lommen et al. (19) were made. First, stomatal resistance is removed and viewed as a separate process, i.e. description of photosynthesis is elaborated as seen inside the leaf. Second, the apparent affinity coefficient for CO_2 (K in the equation of Lommen *et al.*) is a function of the affinity coefficient (K_c) of the photosynthetic process for CO_2 and of O_2 as a competitive inhibitor, *i.e.* $K_{Lommen} = K_C(1 + [O_2]/K_{O_2})$. When the O₂ concentration is low, the kinetics of the photosynthesis process reflects the properties of K_c. This affinity coefficient is not the concentration of air space CO_2 at which net photosynthesis proceeds at half-maximal rate even with low O₂ concentration. It is the concentration of CO₂ at the enzyme fixation site which results in half-maximal photosynthesis (for simplicity we refer to this concentration as chloroplast CO₂ concentration). If significant diffusion resistances are assumed to exist between the air space and chloroplast, respiration sites and chloroplast, and respiration sites and air space, then K_C values different from the air space concentration producing halfmaximal net photosynthesis are determined from observed data.

Photorespiration (see equation 1 below) is described in a manner similar to that of photosynthesis and is assumed to be competitively inhibited by chloroplast CO₂ concentration. The resistance network of Lommen et al. describing the geometric distribution of CO₂ sources and sinks within the leaf is collapsed by considering the site of photorespiration to be close to the site of photosynthesis. As we have discussed extensively elsewhere (30), this obviously affects the predicted values for affinity coefficients. At present these can be based only on net photosynthesis data and only measurements on responses of other dependent variables (photorespiration, dark respiration) can lead to a more correct analysis. When fitting the photosynthesis equation to observed data, the calculated photosynthetic rate is obtained as a function of the chloroplast CO₂ concentration by an iterative solution of the equations describing simultaneous photosynthesis and photorespiration and diffusion (Fick's Law). This iterative procedure is discussed stepwise in the Appendix.

In summary, the rate of net photosynthesis (P) in nmol cm⁻² s⁻¹ as a function of [CO₂] and [O₂] with light and leaf temperature constant is given by:

$$P = \frac{AA - \{(AA)^2 - BB\}^{1/2}}{2 R_{M}}$$
(1)

where:

$$AA = C_{W} + K_{C}\beta + R_{M}(P_{M} - W_{p}) - W_{p} \left(\frac{R_{M}}{1 + M} \right)$$

$$BB = 4R_{M} \left[(C_{W} - W_{p} - \frac{R_{M}}{1 + M}) (P_{M} - W_{p}) - W_{p}K_{C}\beta \right]$$

$$W_{p} = \frac{W_{M}[O_{2}]}{[O_{2}] + K_{O_{2}}(1 + \frac{C_{c}}{K_{c}})}$$

...

[0,]

 P_M is the rate of photosynthesis at a specific light intensity, saturating CO₂, and a specific leaf temperature (nmol cm⁻² s⁻¹);

- K_c is a coefficient equal to the chloroplast CO_2 concentration (photorespiration ≈ 0) at which $P = P_M/2$ (nmol cm⁻²; see also alternative units below);
- C_w is the CO₂ concentration in the intercellular air space (nmol cm⁻³ or alternatives discussed below);
- C_c is the CO₂ concentration at the site of fixation in the chloroplast (nmol cm⁻³ or alternatives discussed below);
- R_M is the mesophyll diffusion resistance between C_w and C_c for CO₂ (s cm⁻¹)
- M is some large number, arbitrarily 100; this reflects the ratio of the diffusion resistance between C_w and C_c to the diffusion resistance between the photorespiratory site and the fixation site; as M approaches infinity, the photorespiratory site is moved to and becomes identical with the fixation site.
- W_M is the rate of photorespiration (CO₂ evolution) at saturating O₂, a specific leaf temperature, and a specific light intensity (nmol cm⁻² s⁻¹);
- W_P is the rate of photorespiration (CO₂ evolution) (nmol cm⁻² s⁻¹);
- K_{O_2} is a constant equal to the O₂ concentration in the atmosphere with C_c $\simeq 0$ at which $W_P = W_M/2$ (v/v expressed as a decimal fraction or alternatives discussed below);
- [O₂] is the concentration of O₂ in the air (v/v expressed as a decimal fraction, *i.e.* 1% = 0.01, or alternatives discussed below).

To describe a particular set of data, it is necessary to determine the values of five parameters: R_M , the diffusion resistance from the intercellular air space to the fixation site; K_C , the leaf affinity coefficient for CO_2 in CO_2 fixation; K_{O_2} , the leaf affinity coefficient for O_2 in oxygenation (photorespiration based on the rate of CO_2 evolution); P_M , the maximum rate of CO_2 fixation at saturating CO_2 ; and W_M , the maximum rate of oxygenation at saturating O_2 . It may be possible in the future to relate the leaf affinity coefficient for CO_2 more closely to biochemical kinetics (*cf.* ref. 25), but the definition used above will provide a focus for new ideas and promote progress in describing the interactive regulatory effects of environmental variables on leaf net photosynthesis (31–33).

Observed photosynthetic rates at different O_2 concentrations are expressed as a function of the air space CO_2 concentration (C_w). O_2 concentration is measured outside of the leaf (*cf.* ref. 26). This simplifiation may also lead to difficulties, (*cf.* ref. 28), but we have not considered it further at the present time. For raw data, C_w is calculated as described by Gaastra (7) from:

$$P = \frac{C_A - C_w}{1.56 R_1}$$
(2)

where:

- C_A is the concentration of CO_2 in air outside the boundary layer (nmol cm⁻² s⁻¹);
- 1.56 is the ratio of the diffusion coefficients for water vapor and CO₂;
- \mathbf{R}_1 is the total resistance to water flux out of the leaf determined from transpiration measurements (9).

In the present study, analysis proceeded in the following manner. Net photosynthetic rates as a function of dissolved $[CO_2]$ at 25, 30, and 35 C and 1 and 21% O₂ were obtained for wheat (*Triticum aestivum* L.) from Ku and Edwards (Fig 9 in ref. 13). Other data of Ku and Edwards could not be analyzed by our method because rates in the curvature region of the P versus C_w response for $[O_2] = 0.01$ are required to obtain estimates of K_C, and rates at CO₂ saturation for $[O_2] = 0.01$ are required to express photosynthetic rates in nmol cm⁻² s⁻¹ and to express CO₂ concentrations in nmol cm⁻³ in the intercellular air space corresponding to the μ M concentrations was done according to the method indicated by

Ku and Edwards using the temperature dependency of CO_2 solubility in water (34) and the gas law (PV = nRT) to consider the effect of temperature in the conversion from partial pressure to actual gas concentration.

Equation 1 describes photosynthesis as a process which at zero CO₂ and O₂ concentrations has zero net CO₂ exchange. In reality, photorespiration may continue at low rates, mitochondrial and/or glycolytic respiration may occur, and photosynthesis may continue to recycle the released CO₂. Initially we have not considered these aspects of recycling and have ascribed any negative net photosynthesis occurring at low O₂ concentration to residual mitochondrial respiration (32). We further assume that the residual respiration rate of CO₂ exchange can be estimated by extrapolating the initial slopes of the P versus C_w response curves where $[O_2] = 0.01$ to zero CO₂ concentration. This rate is then added to each data set before analysis. The added correction was 0.0, 0.05, and 0.32 nmol $cm^{-2} s^{-1}$ at 25, 30, and 35 C, respectively. These corrections are included in the data shown in Figure 1. Other treatments of mitochondrial respiration occurring in the light (or respiration resulting in a constant flux of decarboxylation from glycolate produced from other pathways) have been studied by modifying the expression W_P in equation 1 of the analysis (30). Such modifications may change the estimated value for K_c as much as an order of magnitude. We have no criterion for establishing the rates of such fluxes and therefore choose here to remain with the simpler description.

The corrected data were studied using nonlinear least squares analysis (6, 32), supplemented by three specific subroutines (31). These subroutines solve for the net photosynthesis rate at particular values of CO_2 concentration and O_2 concentration, and solve for partial derivatives of the function used for net photosynthesis rate in each case with respect to the parameters to be estimated. The subroutines are available from the authors.

Initial estimates of the parameters K_C , P_M , and R_M are obtained from analysis of the P versus C_w curve at 1% oxygen ($[O_2] = 0.01$). Photorespiration is essentially zero and a quadratic equation must be fit to the observed data (equation 12 in ref. 33). The solution is more or less straightforward since the only independent variable of equation 1 in this case (C_w) is known, and the only dependent variable (P) is observed. The partial derivatives of the quadratic photosynthesis equation with respect to K_C , R_M , and P_M are required in the solution and are calculated in subroutine A.

In the subsequent analysis step, K_{O_2} and W_M are drived from the best fit solution of equation 1 to data where photosynthesis has been measured as a function of both CO_2 and O_2 . As yet we have no procedure for determining $K_{O_{a}}$ and W_{M} independently of each other. A practical solution to this problem is to eliminate one parameter by setting W_M equal to a fixed proportionality or multiple of P_M . Whether this simplification is valid and what proportion to assume must still be determined. For the present study, we have set $W_M = P_M$. Essential to the determination of K_{0_2} is an iterative determination of the chloroplast CO_2 concentration (C_c) which competitively interacts with O_2 in the chloroplast to determine the relative velocities of photosynthesis and photorespiration. Nonlinear least squares analysis with subroutine B results in estimates of the O_2 -dependent parameters K_{O_2} and W_M at constant values of K_C , R_M , and P_M as determined with subroutine A.

A final solution for parameter values on the basis of least squares is obtained with subroutine C, which is a generalized version of subroutine B. Iteration is performed with respect to all five parameters: K_C , R_M , P_M , K_{O_2} , and W_M . Very little change in K_C , R_M , and P_M is observed in this final analysis step because these values are very strongly determined by the observations at low O_2 concentration. This three-step determination of K_C , R_M , P_M , K_{O_2} , and W_M was carried out on the respiration corrected data of Figure 1. With experience and with prior knowledge of reasonable estimates for the five parameters, only the last step of the

analysis need be performed.

Th data of Figure 1 were analyzed: (a) where CO_2 and O_2 concentrations were both expressed in μ M dissolved gas; (b) where CO_2 concentration was expressed as μ M dissolved CO_2 and O_2 concentration was expressed only as per cent composition of the gas in the intercellular air space; and (c) where CO_2 concentration was expressed in nmol cm⁻³ and O_2 concentration was expressed as per cent composition of the gas in the intercellular air space. As pointed out by Ku and Edwards (12) per cent composition for O_2 concentration. Nevertheless, it is desirable to determine what shift in parameter values might occur by analysis on these different bases especially since the third combination is very commonly used for expression of net photosynthesis data from whole leaves.

FIG. 1. Analysis of the wheat data of Ku and Edwards (13) using dissolved gas concentrations in equilibrium with measured gas concentrations in the intercellular air space and according to equation 1. Symbols are Ku and Edwards' observations at 1% (+) and 21% (*) O₂. Solid lines are predicted according to equation 1 with the parameter values shown. P_M and W_M are in nmol cm⁻² s⁻¹, K_C and K_{O₂} in μ M, and R_M in (μ M/nmol cm⁻² s⁻¹). W_M is based on the rate of CO₂ evolution in photorespiration. Light intensity = 0.15 μ E cm⁻² s⁻¹ PAR. NM = nmol.

RESULTS

The parameter values determined for the most correct case, *i.e.* where both CO_2 and O_2 concentrations are expressed in μM dissolved CO_2 and O_2 , are indicated in Figure 1 for the data at three temperatures. The solid lines in this figure were determined according to equation 1 with the parameters set at the values indicated. In each case, the model accurately describes the net photosynthesis rate as a function of CO_2 and O_2 concentration.

The solutions shown are not the best possible solutions with these equations but instead are those obtained under the restriction that $W_M = P_M$. This restriction was imposed due to a clear shortcoming in applying the least squares methodology to this system in which five parameters are determined from observations of net photosynthesis as a function of only two independent variables. The best solution will at times produce parameter estimates that seem very unlikely in order to minimize least squares. Such a situation was confronted in analysis of these data at 30 C and 35 C. The best solution produced estimates of W_M of 8+ and 20+ nmol cm⁻² s⁻¹, producing response curves that vary almost imperceptibly from those shown in Figure 1.

There are several possible reasons why one might obtain such solutions with the data shown in Figure 1. As temperature increases, less information is available on photosynthesis under saturating conditions, thus decreasing the accuracy of determining P_M. Estimations of CO₂ and O₂ coefficients become more difficult with increasing temperature because of decreased data in the curvature region of the response curves, especially at 21% O₂. Superimposed on these problems is the possibility of experimental error and the possibility that a constant correction for residual respiration across the entire CO₂ concentration range may be invalid. Values for W_M of the order of P_M have been obtained with our analysis without restrictions for the sunflower data of Ludwig (21), for the data of Ku and Edwards (12) at 25 C, for the data of Lommen et al. (20), and for certain cases of the families of response curves presented by Joliffe and Tregunna (10). As further data are obtained and examined, predicted values of W_M must be reevaluated. Further critical discussion and experimentation are needed to clarify this problem.

For many purposes, the solutions shown in Figure 1 are adequate. They emphasize the need to obtain very accurate data and to measure to very high CO₂ concentrations. Only then can we separate problems introduced by shortcomings of the model from those introduced by insufficient and/or inaccurate data. These estimates of K_c and K_{o₂} obtained with an analysis that attempts to account for the actual concentration of CO₂ at the reaction site and for photorespiration competitively inhibited by CO₂ are in our opinion the most reasonable estimates for the affinities of the whole leaf for CO_2 and O_2 from the data of Ku and Edwards. One observes that the estimates of K_C and K_O differ considerably from temperature to temperature and differ from those obtained by Ku and Edwards who considered the diffusion process to be negligible. While a solution based on dissolved gas concentration is advantageous in comparing whole leaf photosynthesis K values to those obtained for RuBP carboxylase in vitro, a disadvantage is found in determining a numerical value for mesophyll resistance which cannot be immediately compared to stomatal and boundary layer resistances. This problem arises from the fact that there is a change in the concentration (molar) of CO₂ when going from gas to liquid phase. This change is expressed as the solubility coefficient ([CO₂]_{liquid}/[CO₂]_{gas}) which for CO₂ in water at 25 C and 1 atmosphere is about 0.8. The solubility coefficient will be affected by solutes in the cell; for simplicity we are assuming that this effect is small. In order to evaluate the diffusion resistance over the path from the external atmosphere to the fixation site, it is necessary to take into account the solubility characteristics of CO₂ at the cell wall by converting the concentration of CO₂ at the cell wall and at the fixation site to their equivalent gas phase concentrations.

This conversion leads to an increased concentration difference between the cell wall and fixation site thereby affecting the estimate of R_M. R_M estimated from equivalent gas phase concentrations can be converted to the R_M estimated from dissolved CO_2 concentrations by multiplying the former by the solubility coefficient. This was done for the estimates of R_M (gas) (Table I) using the following solubility coefficients: 0.804 at 25 C, 0.709 at 30 C, and 0.633 at 35 C. Comparison with the estimates of R_M based on dissolved CO₂ shows a good correspondence. One might ask whether the expression of whole leaf photosynthesis affinities for CO₂ and O₂ can be based, as has been customary, on concentrations in the gas phase, thus allowing present modeling definitions and units to remain unchanged, and whether considering a simple gas/liquid equilibrium conversion to dissolved concentrations would allow comparison of whole leaf affinities to enzyme affinities. In other words, if CO_2 concentration is in nmol cm⁻³ in the intercellular air space and O₂ concentration is in per cent O₂ (v/v or partial pressure) in the air, are the predicted values of whole leaf affinities different? The data were expressed in these units and reanalyzed. The results are presented in Table I. When the parameters K_C and K_{O2} are thus determined and converted to dissolved concentrations, the results are identical. The solution for the 25 C data based on the units most likely to effect different results, nmol cm^{-3} for [CO₂] and per cent for [O₂], is shown in Figure 2 for comparison. Except for the scale on the abscissa, no difference can be seen between results presented in Figures 1 and 2. Results obtained for all cases summarized in Table I and at all three temperatures compare similarly. This suggests that present definitions and units of expressions are adequate.

DISCUSSION

We will first comment on the effect of O_2/CO_2 solubility ratio on the O_2 inhibition of photosynthesis in light of our analysis and then consider the problem of whole leaf affinities for CO_2 and O_2 . Ku and Edwards (12) have cited the experiments of Bowes et al. (2) and conclude that " O_2 competitively inhibits carboxylase activity with respect to CO_2 and $\dot{C}O_2$ competitively inhibits oxy-genase activity with respect to O_2 ." They then demonstrated that the per cent O_2 inhibition of photosynthesis is correlated with the solubility ratio of O_2/CO_2 calculated from concentrations in the intercellular air space (Fig 2 in ref. 12). They stated that the expression of O₂ and CO₂ concentrations as dissolved values eliminates differences in comparing certain photosynthetic parameters. The implication in conjunction with their second paper (13) is that expressing O₂ and CO₂ as dissolved concentrations eliminates differences in the calculated affinities of the whole leaf for CO₂ and O₂ at different temperatures and differences in the ratio of these affinities. The dissolved gas concentrations and their ratios, when calculated according to Ku and Edwards, assume gas-liquid equilibrium which does not necessarily reflect conditions at the site of fixation. This ratio to which RuBP carboxylase is responding can only be determined when the diffusion limitations and actual CO₂ fluxes are considered.

Net photosynthetic flux is seen to vary considerably in Ku and Edwards' tabulated data. The significance of diffusion resistance is obvious from observations that a CO₂ compensation point exists and that net photosynthesis in CO₂-free air reaches fairly large negative values, *i.e.* the concentration within the cells is considerably greater than zero to drive these rather large fluxes out of the leaf. While Ku and Edwards sought to describe "factors controlling photosynthesis at the cellular level such as affinity for CO₂." the K_m for CO₂ that is derived is only an apparent affinity coefficient for CO₂ that also includes respiratory and diffusion effects. The expression of CO₂ and O₂ as dissolved concentrations may only coincidentally remove some variation in the data and parameters describing those data. As seen in Table I, the parameters derived from our analysis incorporating respiratory fluxes

TENHUNEN ET AL.

Parameter values determined from the kinetic analysis Table I. outlined in the text applied to the data of Ku and Edwards (13) from wheat (symbols in Figure 1). Analyses are for three different expressions of these data with respect to concentration as explained in Materials and Methods.

	Leaf Temperature			of
Case Considered	25.0	30.0	35.0	Expression
$\mu Molar$ dissolved CO $_2$ and O $_2$				
$W_M = P_M^*$	3.46	3.92	4.95	nmol $cm^{-2} sec^{-1}$
к _с	0.400	0.147	1.10	µMolar CO ₂
^к о ₂	103.	34.1	303.	µMolar 0 ₂
R _M	1.85	1.42	0.829	µMolar** nmol cm ⁻² sec ⁻¹
µMolar dissolved CO ₂ ; percent O ₂ in [°] air				
К _С	0.402	0.144	1.07	µMolar CO ₂
к _о	8.23	2.90	27.5	percent 0 ₂
	103.	33.6	296.	µMolar 0 ₂ ***
R _M	1.85	1.42	0.841	$\frac{\mu Molar**}{nmol cm^{-2} sec^{-1}}$
nmol cm ^{-3} CO ₂ and percent O ₂ in air space ² gas				
к _с	0.493	0.201	1.61	nmol cm ⁻³
	0.402	0.147	1.06	µMolar CO ***
к _{о-}	8.23	2.94	27.3	percent 02
<u>2</u>	103.	34.1	294.	µMolar 02 ^{***}
R _M	2.27	1.94	1.28	sec cm ⁻¹
	1.83	1.38	0.811	µMolar** nmol cm ⁻² sec ⁻¹

*The values of $W_M = P_M$ are the same for all three analyses.

**This unit is technically reducible to sec cm-1 but has been retained here to emphasize that a resistance based on dissolved concentration

is not equal to the same numerical resistance based on gas concentrations.

***These values are simple conversions of the numbers tabulated immediately

above to give equilibrium dissolved gas concentrations.

FIG. 2. Analysis is according to equation 1 of the wheat data of Ku and Edwards (13) obtained at 25 C with CO₂ concentration expressed in nmol cm⁻³ in the intercellular air space and O₂ expressed as per cent. Symbols are Ku and Edwards' observations at 1% (+) and 21% (*) O₂. Solid lines are predicted according to equation 1 with the parameter values shown. P_M and W_M in nmol cm⁻² s⁻¹, K_C in nmol cm⁻³, K_{O_2} as a partial pressure (decimal fraction) = 0.082 = 8.2% O₂, and R_M in s cm⁻¹. Light intensity = 0.15 μ E cm⁻² s⁻¹. NM = nmol.

and diffusion resistances are the same regardless of the way in which gas concentrations are expressed.

Due to simplifications in the analysis of Ku and Edwards, we do not agree with their conclusion that differential temperature effects on the carboxylase and oxygenase functions do not play a major role in temperature regulation of whole leaf net photosynthesis; we regard the possibility that temperature may play a role, proposed by Badger and Andrews (1) and Laing et al. (14), as theoretically sound and consider it still an open question.

Before proceeding, a few general comments are in order. The importance of RuBP carboxylase-oxygenase in the over-all regulation of carbon fixation emphasizes that an analysis based on the properties of RuBP carboxylase-oxygenase provides an effective means of describing whole leaf net photosynthesis. Although the actual values of parameters determined in that analysis may in fact reflect properties of that enzyme determined in vitro, they are only effective values of the whole leaf system (5, 18). We do make comparisons between the K_C or K_{O_2} of our analysis and the respective carboxylase or oxygenase affinities determined in vitro, but we do not simply equate the two.

On the basis of the present analysis, which is consistent with a system such as that proposed by Bowes et al. (2), it is possible to obtain values for the leaf affinity constants for CO₂ and O₂ as used in equation 1. In this analysis, the effect of diffusion on the concentration of CO_2 at the carboxylation site is included at least in the simplest fashion, net photosynthetic rate is a function of this calculated value, and the nonlinear and saturation portions of response curves are included. The first of these with the iterative solution for net photosynthesis overcomes a major difficulty (estimation of C_c) that has plagued all other considerations of the problem to date. Including the nonlinear and saturation portions of the response is essential because it provides the only means of solving for the values of the five parameters required to describe both O_2 and CO_2 dependencies. Including the saturation portion also allows linking of this analysis with the P_M surface described previously (32).

From Figure 1 it is apparent that the K_C predicted by our method is an order of magnitude lower than that obtained by Ku and Edwards (13). In each case the magnitude of the affinity constant is simply a direct result of the model imposed. Ku and Edwards derived their affinity constants for CO₂ by fitting a transformation of the Michaelis-Menten equation to the observed data at 1% O₂. The photosynthesis model in that case was the Michaelis-Menten equation and the value obtained varies between 1 and 10 μ M. If a model is used which includes a diffusion resistance, the affinity coefficient decreases by an order of magnitude.

Using a model which includes a diffusion resistance, Jones and Slatyer (11) reported values for the affinity coefficient for whole leaves of cotton as low as 0.23 µM. Shown in Figure 3 are determinations of K_c from a Jones and Slatyer analysis (11) of CO₂ response curves at 1% O₂ for kidney bean measured by the authors in a manner similar (32) to the response curves of Ku and Edwards. The results of a similar analysis of the wheat data of Ku and Edwards and of Joliffe and Tregunna (10) are included. Note that with one exception the values for K_C vary between 0.1 and 1.0 nmol cm⁻³. Joliffe and Tregunna's data (connected by the solid line in Fig. 3), which are by far the best from the population response standpoint (mean of 80 seedlings in each case), suggest a temperature dependency in K_c similar to the temperature dependency for the enzyme $K_m(CO_2)$ for RuBP carboxylase-oxygenase observed by Laing et al. (14). The final data point at 40 C is estimated to be around 3 nmol cm⁻³. These data were not obtained at steady-state which may distort the response curves. The scatter

LEAF TEMPERATURE (DEG. C)

FIG. 3. Determinations of whole leaf affinity for CO₂ (K_C) at various leaf temperatures from the net photosynthesis *versus* air space CO₂ concentration response curves at 1% O₂ in red kidney bean (symbol = 0). Parameter estimates obtained from a Jones and Slatyer (11) type analysis modified for a nonlinear least squares approach (29, 31, 32). Similar values from the data of Ku and Edwards (13) are presented for wheat considering only the 1% response curve (+). Values obtained from analysis of Joliffe and Tregunna's data (10) at 1.8, 60.9, 78.6, and 99% O₂ according to the methods of this paper are connected by the solid line. Joliffe and Tregunna's data are mean values for 80 seedlings (final data point at 40 C \approx 3 nmol cm⁻³). Light intensity was high. NM = nmol.

of data points (Fig. 3) reemphasizes a point already made by Ku and Edwards that "the degree of temperature-dependent variation in factors controlling photosynthesis in C_3 plants at the cellular level such as affinity for CO_2 , nature of O_2 inhibition of photosynthesis, maximum velocity of photosynthesis based on enzyme potential, and solubility of O_2 and CO_2 is uncertain." To this list we add values for our parameters K_{O_2} , R_M , and W_M . The variability observed in Figure 3 underscores the need for extreme care in future determinations of CO_2 concentrations and corresponding photosynthesis rates.

Based on the above considerations, we feel that it is inappropriate to conclude as did Ku and Edwards that the temperature dependence of RuBP carboxylase-oxygenase activity is unimportant in the regulation of whole leaf net photosynthesis. Further application of the analysis presented above may help clarify the role of RuBP carboxylase-oxygenase in temperature regulation of whole leaf net photosynthesis but even this is uncertain. Different estimates for the affinity constants of the leaf for CO₂ and O₂ are obtained if the sources of photorespired CO₂ are assumed to be located further from the chloroplast, if dark respiration fluxes are included in the analysis, or if the function assumed to describe photorespiration is modified (30). These changes in the estimates of affinity coefficients are understandable because each modification of the model alters the relationship of net photosynthesis to CO₂ concentration at the fixation site. Final conclusions about affinity coefficients must await further information on respiratory fluxes determined independently of photosynthesis and on diffusion relationships between cellular organelles.

As with the model of Ku and Edwards, it is possible with our model to calculate net photosynthetic flux, photorespiratory flux, and total photosynthetic flux for any combination of external CO₂ and O₂ concentrations and to determine the contributions to net photosynthetic response. Several characteristics are thus illustrated that apply to a model of photosynthesis based on the Bowes-Ogren hypothesis These characteristics are strongly determined by the competitive terms in equation 1 and are inconsistent with models that have assumed that competition between CO₂ and O₂ at low CO₂ concentration is negligible (23, 27) or that the rate of photorespiration is unaffected by CO₂ concentration below 300 μ l/1 CO₂ as observed by Ludwig and Canvin with the ¹⁴CO₂ technique (22).

In equation 1, the predicted photorespiratory rate always decreases as air space CO_2 concentration is increased above zero. The predicted photorespiration at 25 C based on nmol cm⁻³ for C_w and per cent for $[O_2]$ is shown in Figure 4. Contributions to

FIG. 4. Predicted relationship of photorespiration to air space CO_2 concentration at 1, 5, 10, and 21% O_2 . This case corresponds to the solution shown in Figure 2 where CO_2 concentration is expressed in nmol cm⁻³ and O_2 concentration is expressed in per cent. See Figure 2 for parameter values and units.

FIG. 5. Simulated contributions to the net photosynthesis response of wheat according to the solution presented in Figures 2 and 4 at 25 C as a function of air space CO₂ concentration. Solid line is the true or total photosynthetic rate (TPS) at 0% O₂ or with no photorespiration occurring. *Symbols indicate the true photosynthetic rate at 21% O₂ (net photosynthesis plus photorespiration) and demonstrate the stimulation at low CO₂ concentration effected by photorespiration. + symbols indicate the predicted net photosynthesis (NPS) due to loss of photorespiratory CO₂ from the leaf.

the net photosynthetic response at $21\% O_2$ due to competition for RuBP carboxylase-oxygenase and due to photorespiration are shown in Figure 5. With the photorespiratory site close to the fixation site, net photosythetic rate at zero air space CO₂ concentration and low O_2 is essentially zero rather than negative as suggested by Figure 4 because of recycling of CO₂. The analysis of Ku and Edwards does not account for recycling CO₂ and total photosynthesis at 21% O_2 can never be higher than the total (or net) photosynthesis at low O₂. With the present analysis, the chloroplast CO₂ concentration remains high due to respiratory CO_2 production and diffusion resistance to the escape of CO_2 . According to our model, it would only be possible to achieve the photosynthetic CO₂ response indicated by the solid line in Figure 5 if photorespiration did not occur. When O₂ concentration is increased to 21%, net photosynthesis decreases at all CO₂ concentrations (+ symbols). At low air space CO_2 concentration, photorespiratory CO₂ is available for recycling and results in a stimulation of true photosynthesis (* symbols).

Although it is clearly speculative to extrapolate on the basis of this analysis in light of its shortcomings (30), the model results are nevertheless interesting. Since a leaf behaving according to this model uses photoproducts more effectively even at low CO₂ concentration in the intercellular air space, photorespiration of such a leaf might protect the leaf reaction centers from possibly damaging effects of excess photoproducts during periods of water stress and high irradiance as suggested by Osmond and Björkman (24). The calculated rate of total photosynthesis (rate of carboxylation or Calvin cycle cycling) at zero CO₂ concentration in the intercellular air space might be considered a measure of this possible protective ability of photorespiration and is obviously a function of O₂ concentration. One determines from equation 1, little protective ability at low O2 concentrations and maximal protective ability at higher concentrations near normal ambient concentration.

Our analysis, which includes both kinetics and diffusion, provides more realistic estimates of whole leaf affinities for CO_2 and O_2 , estimates of mesophyll resistance, and maximum rates of photosynthesis and photorespiration at one temperature than have been previously obtained. The analysis provides a mathetical description of the net photosynthetic response which separates the simultaneous effects of O_2 and CO_2 on the rates of the two processes, photosynthesis and photorespiration. The complexity of determining the temperature dependencies is illustrated by the scatter of estimated K_C (Fig. 3). From our studies it appears inappropriate to draw conclusions on the effect of temperature of the leaf affinity coefficients at this time. We provide evidence that expression of CO₂ concentrations as nmol cm⁻³ and O₂ as per cent is adequate for determination of kinetic constants and that the results are readily convertible to dissolved gas concentrations of interest in the study of enzyme data.

Acknowledgments-We wish to thank Meredy Gockel and Peter Harley for their contributions.

LITERATURE CITED

- BADGER M, T ANDREWS 1964 Effects of CO₂, O₂, and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun 60: 204-210
- BOWES G, W OGREN, R HAGEMAN 1971 Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45: 716-722
- CHARLES-EDWARDS D. L LUDWIG 1974 A model for leaf photosynthesis by C₃ plant species. Ann Bot 38: 921–930
- CHARTIER P 1970 A model of CO₂ assimilation in the leaf. In Prediction and Measurement of Photosynthetic Productivity. Wageningen, The Netherlands, Pudoc pp 307-315
- COLLATZ G 1978 Interaction between steady state photosynthesis and [RuP₂] as a function of irradiance, CO₂ and O₂. Plant Physiol 61: S-109
- 6. DRAPER N, H SMITH 1966 Applied Regression Analysis. John Wiley & Sons, New York 7. GAASTRA P 1959 Phytosynthesis of crop plants as influenced by light, carbon dioxide,
- temperature and stomatal diffusion resistance. Med Land, Wageningen 59: 1-68
 HALL A 1970 Photosynthetic capabilities of healthy and beet yellow virus infected sugar beets (*Beta vulgaris* L.). PhD thesis. University of California, Davis
- JARVIS P 1971 The estimation of resistances to carbon dioxide transfer. In Z Sestak, J Catsky, P Jarvis, eds, Plant Photosynthetic Production Manual of Methods. Dr W Junk. The Hague pp 566-631
- JOLIFFE P, E TREGUNNA 1973 Environmental regulation of the oxygen effect on apparent photosynthesis in wheat. Can J Bot 51: 841-853
- JONES H, R SLATYER 1972 Estimation of the transport and carboxylation components of the intracellular limitation to leaf photosynthesis. Plant Physiol 50: 283-288
- KU S, G EDWARDS 1977 Oxygen inhibition of photosynthesis. I. Temperature dependence and relation to O₂/CO₂ solubility ratio. Plant Physiol 59: 986–990
- KU S, G EDWARDS 1977 Oxygen inhibition of photosynthesis. II. Kinetic characteristics as affected by temperature. Plant Physiol 59: 991-999
- LAING W, WOGREN, R HAGEMAN 1974 Regulation of soybean net photosynthesis CO₂ fixation by the interaction of CO₂, O₂ and ribulose-1,5-diphosphate carboxylase. Plant Phyiol 54: 678–683
- LAISK A 1970 A model of leaf photosynthesis and photorespiration. In Prediction and Measurement of Photosynthetic Productivity, Wageningen, The Netherlands, Pudoc pp 295– 306
- LAKE J 1967 Respiration of leaves during photosynthesis. I. Estimates from an electrical analogue. Aust J Biol Sci 20: 487–493
- LAKE J 1967 Respiration of leaves during photosynthesis. II. Effects on the estimation of mesophyll resistance. Aust Biol Sci 20: 495-499
- LILLEY R, D WALKER 1975 Carbon dioxide assimilation by leaves, chloroplasts, and ribulose bisphosphate carboxylase from spinach. Plant Physiol 55: 1087-1092
- LOMMEN P, C SCHWINTZER, C YOCUM, D GATES 1971 A model for describing photosynthesis in terms of gas diffusion and enzyme kinetics. Planta 98: 195-220
- LOMMEN P, S SMITH, C YOCUM, D GATES 1975 Photosynthetic model. In D Gates, R Schmerl, eds, Perspectives of Biophysical Ecology. Springer, Heidelberg, pp 33–43
- LUDWIG L 1972 The relationship between photosynthesis and respiration. In A Rees, K Cockshull, D Hand, R Hurd, eds, Crop Processes in Controlled Environments, Academic Press, London, pp 305-326
- LUDWIG L, D CANVIN 1971 The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products of photosynthesis in sunflower leaves. Plant Physiol 48: 712-719
- OGREN W 1975 Control of photorespiration in soybean and maize. In Environmental and Biological Control of Photosynthesis. Dr W Junk, The Hague, pp 45-52
- 24. OSMUND C, BJÖRKMAN 1971 Effects of O₂ on photosynthesis. Simultaneous measurements of oxygen effects of net photosynthesis and glycolate metaboblism in C₃ and C₄ species of *Atriplex*. Carn Inst Wash Year Book 71: 141–148
- PEISKER M 1976 Ein Modell der Sauerstoffabhangigkeit des photosynthetischen CO₂-Gaswechsels von C₃-Pflanzen. Kulturpflanze 24: 221–223
- 26. SAMISH Y 1975 Oxygen build-up in photosynthesizing leaves and canopy is small. Photosynthetica 9: 372-375
- SAMISH Y, D KOLLER 1968 Estimation of photorespiration of green plants and of their mesophyll resistance to CO₂ uptake. Ann Bot 32: 687-694
- STEIGER H, E BECK, R BECK 1977 Oxygen concentration in isolated chloroplasts during photosynthesis. Plant Physiol 60: 903-906
- TENHUNEN J, J HESKETH, D GATES 1979 Leaf photosynthesis models. In Predicting Photosynthate Production and Use for Ecosystem Models. CRC Press, West Palm Beach, Fla. In press
- TENHUNEN J, J HESKETH, P HARLEY 1979 Modeling Caleaf respiration in the light. In Predicting Photosynthate Production and Use for Ecosystem Models. CRC Press, West Palm Beach, Fla. In press
- 31. TENHUNEN J, J WEBER, L FILIPEK, D GATES 1977 Development of a photosynthesis model

CONTRIBUTIONS TO NET PHOTOSYNTHESIS

with an emphasis on ecological applications. III. Carbon dioxide and oxygen dependencies. Oecologia 30: 187-207

- TENHUNEN J, J WEBER, C YOCUM, D GATES 1976 Development of a photosynthesis model with an emphasis on ecological applications. II. Analysis of a data set describing the P_M surface. Oecologia 26: 101-119
- TENHUNEN J, C YOCUM, D GATES 1976 development of a photosynthesis model with an emphasis on ecological applications. I. Theory. Oecologia 26: 89-100
- UMBREIT W, R BURRIS, J STAUFFER 1945 Manometric Techniques and Related Methods for the Study of Tissue Metabolism. Burgess Publishing Co, Minneapolis, pp 18-27

APPENDIX

To calculate net photosynthetic and photorespiration rates at steady-state, three equations must be balanced. At a constant O_2 concentration, the following iterative estimation of CO_2 concentration (C_c) at the chloroplast fixation site balances these equations and provides the desired rates in the final step. Consider the parameters P_M , W_M , K_C , K_{O_2} , and R_M to be known from the analysis by nonlinear least squares as described in the text. (See equation 1 of text for definitions.) An initial value of C_c is chosen and used in equation A.1 to calculate the rate of photorespiration (W_P).

$$W_{p} = \frac{W_{M}[O_{2}]}{[O_{2}] + K_{O_{2}}(1 + \frac{C_{c}}{K_{c}})}$$
 A.1

Then W_P is used in the net photosynthesis equation A.2.

$$P = \frac{AA - \{(AA)^2 - BB\}^{1/2}}{2 R_{M}}$$
 A.2

where:

$$AA = C_{W} + K_{C}B + R_{M}(P_{M} - W_{P}) - W_{P} \left(\frac{M}{1 + M}\right)$$

$$BB = 4R_{M} \left[(C_{W} - W_{P} \frac{R_{M}}{1 + M}) (P_{M} - W_{P}) - W_{P}K_{C}B \right]$$

$$B = (1 + \frac{[O_{2}]}{K_{O_{2}}})$$

$$M = 100$$

The values obtained for W_P and P are then used in Fick's Law equation to calculate a new C_c compatible with these fluxes (equation A.3).

$$C_{c} = C_{w} - P R_{M} - W_{P} (\frac{R_{M}}{1 + M})$$
 A.3

The second estimate of C_c is compared to the first and used again in equation A.1 until the change in C_c between iteration steps is acceptably small. Calculations of this sort are possible by hand but are extremely tedious. In the above fashion, the predicted responses of net photosynthesis *versus* C_w at different O_2 concentrations shown in Figure 1 are obtained.

R. .