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Genetic dissection of yield traits in 
super hybrid rice Xieyou9308 using 
both unconditional and conditional 
genome-wide association mapping
Yingxin Zhang1, Liyuan Zhou2,3, Xihong Shen1, Daibo Chen1, Weixun Wu1, Xiaodeng Zhan1, 
Qunen Liu1, Aike Zhu1, Xiangyang Lou4, Haiming Xu2, Shihua Cheng1 & Liyong Cao1

With the development and application of super rice breeding, elite rice hybrids with super high-yielding 
potential have been widely developed in last decades in China. Xieyou9308 is one of the most famous 
super hybrid rice varieties. To uncover the genetic mechanism of Xieyou9308’s high yield potential, a 
recombinant inbred line (RIL) population derived from cross of XieqingzaoB and Zhonghui9308 was re-
sequenced and investigated on the grain yield (GYD) and its three component traits, number of panicles 
per plant (NP), number of filled grains per panicle (NFGP), and grain weight (GW). Unconditional and 
conditional genome-wide association analysis, based on a linear mixed model with epistasis and gene-
environment interaction effects, were conducted, using ~0.7 million identified SNPs. There were six, 
four, seven, and seven QTSs identified for GYD, NP, NFGP, and GW, respectively, with accumulated 
explanatory heritability varying from 43.06% to 48.36%; additive by environment interactions were 
detected for GYD, some minor epistases were detected for NP and NFGP. Further, conditional genetic 
mapping analysis for GYD given its three components revealed several novel QTSs associated with yield 
than that were suppressed in our unconditional mapping analysis.

Rice is a fundamentally important staple crop, and improving rice yields has remained a major goal in world 
agriculture. Super hybrid rice shows great advantages in grain yield and biomass in comparison with conven-
tional rice varieties. Since its inception in China in 1996, super rice breeding program has achieved tremendous 
increases in rice yields1. Xieyou9308 is one of the most famous super hybrid rice varieties with a grain yield as 
high as 12.23 t/ha1. However, the genetic basis underlying this high yield potential remains largely unclear. In 
order to fuel the further successes of super rice breeding programs, continued efforts to dissect the genetic basis 
of economically-important traits will be necessary.

Economically, the most important agronomic trait for rice is grain yield (GYD). GYD exhibits complex genet-
ics, as it is known to be an integrated quantitative trait that is influenced variously by yield component traits and 
by the environment. Several QTL linkage mapping studies with Xieyou9308 have used conventional molecular 
markers to explore the causal loci that are responsible for the phenotypic variation of economically-important 
traits2–4. However, owing to the insufficient density of polymorphism markers, the QTLs reported in these studies 
could typically only be localized to very large chromosomal regions, where still may harbor considerable amounts 
of genetic variants5. This restricts the consequent application of these QTLs in marker assisted breeding to some 
extent.

Partly impelled by advances in sequencing technologies and the resulting improvements in genotyping, 
genome-wide association study (GWAS) strategy has become one of the primary approaches used to identify 
causal genes underlying phenotypic variation. GWAS is particularly attractive because it offers hope for rapidly 
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narrowing the region where a causal gene might lie. Although pioneered by human geneticists, GWAS is also 
being appealingly applied to plants including rice6–12. Huang et al.9 re-sequenced 517 rice landraces and used 
GWAS methods to analyze putative causal relationships between 14 agronomic traits and ~3.6 million SNPs, 
from which they identified three loci associated with tiller number, two loci associated with spikelet number, 
two loci associated with grain width, and five loci associated with grain length. A subsequent study from Huang 
et al.12 reported 32 new loci associated with 11 agronomic traits based on a natural population of 950 worldwide 
rice varieties. Another GWAS based on 413 diverse accessions of O. sativa from 82 countries identified 234 loci 
associated with 34 agronomic traits using 44,100 identified SNP variants11.

These studies confirm that GWAS is a powerful approach that can be used in rice to identify genetic variants 
associated with complex traits with high resolution. However, most of these studies were focused on detecting 
genetic variant exhibiting additive genetic effects without consideration of gene-environmental and gene-gene 
interactions which were thought to be very important for complex traits. In addition, the cryptic population 
structure in the rice natural population (collected landraces) which would increase the false positive associations 
also haunted the researchers. Moreover, although increasing numbers of association studies have attempted to 
map the casual genes for yield traits of rice, most of these studies dissected traits separately, without considering 
genetic correlations between traits. As yield traits are known to be interrelated, exploring genetic correlations 
among these traits should provide additional insights into the genetic basis of grain yield. Conditional genetic 
analysis is a methodology first introduced by Zhu13 to study developmental quantitative genetics; it was later 
extended for the analysis of the genetic contributions of component traits to an integrated trait at the molecular 
level14, 15.

In this study, the derived recombinant inbred line (RIL) population of Xieyou9308, which should theoretically 
have no deleterious issues relating to population structure, were re-sequenced and used for both genome-wide 
association mapping and for conditional association mapping for GYD and its three constitutive traits. The anal-
ysis was based on a saturated mixed linear model that included both epistasis and gene-environmental inter-
actions. Further, a conditional methodology was adopted to identify additional candidate regions that likely 
contribute to grain yield. Our results provided some information that should be of use in efforts seeking genetic 
improvement of yield potential in rice.

Results
Phenotypic variation of yield traits and their inter-correlations.  As shown in Table 1, all four traits 
varied widely among the RI lines (CV = 9.88~27.51% in E1, and 10.23~25.36% in E2), with the NFGP trait show-
ing the largest variation and the GW trait showing the smallest variation for both locations. Additionally, sig-
nificant differences in mean values were detected at the 0.05 significance level (Tukey’s test) for the GYD, NP, 
and NFGP traits between the two environments. All four traits segregated continuously (Fig. 1), and the NP and 
NFGP exhibited approximately bimodal distributions, probably suggesting the existence of complex genetic bases 
underlying these two traits. The inter-correlations in phenotypic values and genotypic values between any two of 
the four traits are presented in Table 2. Significant positive correlations were observed between GYD and its three 
components: GYD had relatively higher positive correlations with NFGP than with NP, and insignificant positive 
correlation with GW. In contrast, the component traits were negatively correlated with each other. There was an 
especially strong negative correlation between NP and NFGP, which indicated that it will likely be necessary to 
conduct conditional mapping as the variation caused by these two components could be counteracted by the 
opposite effects during the formation of the final yield trait.

Genome-wide association analyses for four yield traits.  In total, there were 24 SNPs detected signif-
icantly (6 SNPs for GYD, 4 SNPs for NP, 7 SNPs for NFGP, and 7 SNPs for GW) with accumulated explanatory 
heritabilities varying from 43.06% to 48.36%. There was an additive by environment interaction detected in grain 
yield (GYD), and some epistatic effects were detected for NP and NFGP (Table 3; Fig. 2).

As shown in Table 3, for GYD, there were 6 significant SNPs located on 4 chromosomes, together accounting 
for 43.06% of the phenotypic variation. All QTSs except one (rs5137246 on chromosome 6), showed large nega-
tive additive effects with individual contributions to the heritability in a range from 4.01% to 10.91%. The negative 
additive genetic effects indicated that the paternal homozygous genotype (QQ, Q here referred to as the allele 
from ZH9308) would decrease the grain yield, while the corresponding maternal allele homozygotes (qq) would 
increase the grain yield. The QTS located on chromosome 4 (rs8203251) exhibited the largest main additive 
(h2 = 10.91%), and additive by environment interaction which showed opposite genetic effects in the two different 
locations. For NP, the total heritability (43.35%) mainly consisted of additive heritability (41.03%) from 4 QTSs 

Trait

Hangzhou Lingshui

DMean ± SD Range CV(%) Mean ± SD Range CV(%)

GYD 22.86 ± 6.10 8.50–39.50 26.68 17.69 ± 3.47 7.70–27.00 19.61 5.17**

NP 10.60 ± 2.03 5.60–18.00 19.2 8.21 ± 1.86 4.80–16.70 22.63 2.38*

NFGP 88.22 ± 24.27 27.8 
0–152.50 27.51 95.69 ± 24.26 38.10–153.60 25.36 7.47**

GW 25.68 ± 2.54 20.7 0–37.60 9.88 25.14 ± 2.57 19.60–37.80 10.23 0.54

Table 1.  Summary statistics of grain yield and yield components in two experiment locations. GYD = grain yield; 
NP = number of panicles per plant; NFGP = number of filled grains per panicle; GW = grain weight; CV = coefficient 
of variation; D = the difference in mean between two experimental locations; *p ≤ 0.05; **p ≤ 0.01.



www.nature.com/scientificreports/

3Scientific Reports | 7: 824  | DOI:10.1038/s41598-017-00938-7

whose individual heritability was quite large, especially for rs28989077 (h2 = 18.54%). The remaining heritability 
was from one pair of additive by additive epistasis effects (rs20829501/rs9429313). All the main additive effects 
were negative; only one epistasis was positive, and its genetic effect size was relatively small as compared with the 
main additive effects (Table 3).

For NFGP, unlike the aforementioned two traits, most detected QTSs showed positive and modest-size addi-
tive effects, suggesting that the paternal-allele homozygotes (QQ) in these detected SNP loci would increase the 
number of filled grains. Additionally, there was a pair of positive epistasis interactions (rs645267/rs23681930) 
detected; and their individual main additive exhibited opposing genetic effects (rs645267 was negative while 
rs23681930 was positive). For GW, 7 SNPs, all with only additive effects, were found; in aggregate, these 
QTSs accounted for 48.36% of phenotypic variation. Of particular note, the SNP located on chromosome 3 
(rs18572583) contributed 15.19% of the phenotypic variation and should thus be considered to be a very impor-
tant candidate locus for subsequent breeding efforts.
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Figure 1.  The phenotypic distribution of grain yield and yield components. The histograms for phenotypes 
from each experiment location Hangzhou (top panel), Lingshui (middle panel), and their together (bottom 
panel) were plotted; and each column represents one phenotype (from left to right: grain yield (GYD), number 
of panicles (NP), number of filled grains per panicle (NFGP), grain weight (GW)).

Trait GYD NP NFGP GW

GYD 0.17* 0.61*** 0.10

NP 0.23**/0.20* −0.53*** −0.17*

NFGP 0.68***/0.52*** −0.37***/−0.57*** −0.16

GW 0.09/0.12 −0.13/−0.15 −0.15/−0.15

Table 2.  Phenotypic and genotypic correlations for four yield traits. The up-triangle are genotypic correlation 
coefficients estimated by predicted genotypic values; the first and the second values in the low-triangle are 
phenotypic correlation coefficients for the environment 1 (Hangzhou) and 2 (Lingshui), respectively; *, **, 
*** indicate the significant level of 0.05, 0.01 and 0.005; GYD = grain yield, NP = number of panicles per plant, 
NFGP = number of filled grains per panicle, GW = grain weight.
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Conditional association mapping for GYD given its component trait.  All significant QTSs with 
additive effects for yield conditioned on each of its components are presented in Table 4. There were 10, 7, 
and 5 QTSs detected, respectively, for yield conditioned on number of panicles (GYD|NP), yield conditioned 
on number of filled grains per panicle (GYD|NFGP), and yield conditioned on grain weight (GYD|GW). For 
GYD|NP, two QTSs (rs8203251 and rs26302731) were remained to be detected and eight novel conditional 
QTSs were identified in comparison with unconditional yield mapping (Tables 3 and 4). For the two over-
lapping QTSs, rs26302731 was supposed to be independent upon NP, as there was no significant difference 
in additive effects in the 95% confidence interval between unconditional and conditional mapping (data not 
shown), while rs8203251 was supposed to be involved in variation of NP as the additive by environment inter-
action failed to be detected in the conditional mapping (Fig. 2), even though the additive main effect was still 
similar. The eight novel conditional QTSs exhibited modest-sized effects, with individual contributions to phe-
notypic variation ranging from 2.31% to 6.58%. Similar results were observed for GYD|NFGP; most detected 
QTSs (5 out of 7) were novel loci that were supposed to be suppressed by the given component trait in the 
unconditional mapping results. This might be true because the conditional analysis could exclude the impact 
of the given component trait on the target trait and thus reveal the genes masked by an antagonist or repressor 
in the component trait. A different phenomenon was observed in GYD|GW mapping that only a small number 
of additional QTSs (2 SNPs) which were supposed to be suppressed by grain weight was detected. The small 
number of novel QTSs in the GYD|GW mapping may mainly result from the counterbalance between the two 
remaining components and partly from the relatively weak correlation between grain yield and grain weight. 
These results at the molecular level showed good agreement with those obtained using genotypic or phenotypic 
correlation analysis.

Trait QTS Chr. Allele
Effect 
type

Effect 
size −log10(P) h2(%) hT

2(%)

GYD

rs8203251 4 C/T

a −1.54 12.43 10.91

43.06

ae1 −0.65 1.62 1.91

ae2 0.64 1.61

rs26662491 5 A/C a −1.04 6.09 5.02

rs5137246 6 T/G a 1.19 7.76 6.56

rs26302731 6 G/A a −1.42 10.75 9.34

rs12354751 9 A/G a −0.93 4.98 4.01

rs17926420 12 C/A a −1.07 6.4 5.31

NP

rs28989077 3 C/T a −0.83 20.65 18.54

43.35

rs20829501 7 C/T a −0.65 13.01 11.39

rs20270326 9 T/C a −0.44 6.23 5.12

rs9429313 10 A/C a −0.47 7.16 5.98

rs20829501 & 
rs9429313 7 & 10 C/T & 

A/C aa 0.29 3.12 2.32

NFGP

rs41315645 1 G/A a 6.31 9.7 8.16

44.40

rs27878540 3 C/T a 4.31 4.87 3.82

rs29922937 3 A/T a 6.45 10.1 8.53

rs31992782 4 A/T a −4.6 5.45 4.33

rs645267 5 A/G a −5.57 7.7 6.35

rs24646393 6 G/A a 4.23 4.7 3.67

rs23681930 11 C/T a 5.83 8.38 6.96

rs645267 & 
rs23681930 5 & 11 A/G & 

C/T aa 3.55 3.47 2.58

GW

rs7115540 1 C/T a −0.49 7.09 5.43

48.36

rs12778614 2 A/T a −0.44 5.93 4.45

rs18572583 3 T/C a −0.82 18.52 15.19

rs13250114 5 A/C a −0.5 7.4 5.69

rs23416877 6 G/A a −0.54 8.64 6.74

rs2377773 11 C/T a −0.46 6.43 4.87

rs25458920 12 T/C a 0.51 7.76 5.99

Table 3.  The estimated heritability and predicted genetic effects of all detected significant SNP loci for four yield 
traits. QTS = the detected significant SNPs associated with the yield and yield components traits; Chr. = chromosome; 
Allele = paternal allele/maternal allele; a = additive effect for paternal allele homozygotes (QQ, ZH9308), ae = additive 
by environmental interaction effect, aa = additive by additive epistasis effect; −log10(P) = inverse of the base 10 
logarithm of p value; h2(%) = heritability in percentage due to the genetic component effect; hT

2(%) = total heritability 
equal to summation of heritabilities of all individual QTSs; GYD = grain yield, NP = number of panicles per plant, 
NFGP = number of filled grains per panicle, GW = grain weight.
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Comparing the results of the unconditional and conditional association mapping for GYD (Table 4 and Fig. 2), 
three possible scenarios were evident : (1) An unconditional QTS was still detected under conditional mapping, 
generally with some fluctuation in genetic effect size, indicating this particular QTS was independent of (i.e., no 
significant difference in genetic effect size between unconditional and conditional mapping), or was partially cor-
related with, the corresponding given component trait; (2) A previously-detected unconditional QTS was totally 
absent under conditional mapping, suggesting that this QTS may be associated with the final grain yield through 
the corresponding given conditional component trait; (3) Some novel QTSs were detected under conditional 
mapping, suggesting that these QTSs might have been suppressed by the corresponding given component trait 
in the unconditional mapping analysis. As shown in Table 4, the rs8203251 locus was the only locus detected in 
the unconditional mapping and in all three of the conditional mappings; it seemed to be partially-correlated with 

Figure 2.  Genetic architecture of detected QTSs for grain yield and yield components in both the 
unconditional mapping and conditional mapping analyses. Circle = QTX individual additive effect; Line 
between two QTXs = epistasis effects; Red = general effects across two environments; Blue = general and 
environment-specific effects.

QTS Chr. Allele

GYD|NP GYD|NGFP GYD|GW

Effect 
size −log10(P) h2(%)

Effect 
size −log10(P) h2(%)

Effect 
size −log10(I) h2(%)

rs8203251 4 C/T −1.25 12.09 9.01 −0.59 3.02 2.52 −1.73 7.6 8.28

rs26302731 6 G/A −0.88 6.29 4.43

rs17926420 12 C/A −0.8 5.18 4.7 −1.59 6.57 7.05

rs26662491 5 A/C −1.05 3.15 3.05

rs5137246 6 T/G

rs12354751 9 A/G

rs11756284 2 T/G −0.69 4.06 2.71

rs21512047 2 C/T −0.96 7.45 5.34

rs28361738 6 G/A −0.96 7.39 5.29

rs5137241 6 T/C 0.79 5.24 3.61

rs1508663 10 T/G −0.79 5.18 3.57

rs3063720 10 G/A −0.63 3.54 2.31

rs5738746 10 G/A −1.07 9.03 6.58

rs18309603 12 A/G −0.97 7.52 5.39

rs21260267 2 C/T −0.96 7.16 6.74

rs28567251 3 T/C −0.77 4.87 4.39

rs28377293 6 G/C −0.93 6.7 6.27

rs21456330 7 T/C −0.77 4.82 4.33

rs28331893 7 A/C −0.77 4.83 4.35

rs15874222 2 T/A 1.18 3.87 3.88

rs27371211 6 G/A −1.23 4.17 4.23

Table 4.  The estimated heritability and predicted genetic effects of all detected SNP loci for grain yield 
conditioned by its component traits. QTS, Chr., Allele, −log10(P), h2(%), GYD, NP, NFGP, GW have same 
definitions as those in Table 3.
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NP and NFGP but independent of GW, as the difference in genetic effects was not significant (data not shown). 
Three QTSs were detected both in the unconditional mapping and at least one conditional mapping: rs26302731 
was independent of NP but had high correlations with both NFGP and GW; rs17926420 was independent of both 
NFGP and GW but was highly correlated with NP; rs26662491 was independent of GW but had high correlations 
with both NP and NFGP. Two QTSs, rs5137246 and rs12354751, were totally absent in the three conditional 
mappings, suggesting they were highly correlated with the three component traits simultaneously. There was also 
a batch of novel QTSs associated with GYD that were detected through different conditional mappings. As shown 
in Table 4, in general, these novel QTSs did not exhibit a large effect size and were likely suppressed by some other 
QTSs associated with the other traits.

Bioinformatics analysis for candidacy of genes.  According to the latest version of rice genome anno-
tation (MSU Rice Genome Annotation Project Release 7, http://rice.plantbiology.msu.edu/index.shtml), of the 
39 significantly QTSs detected for yield traits from the unconditional and conditional mapping, 18 QTSs were 
located within known annotated genes (Table 5). Five of these were identified simply as genes encoding hypo-
thetical proteins or expressed proteins. The remaining genes were found to encode particular enzymes, domains, 
transcription factors, and transposon or retrotransposon proteins, which might function in important roles in 
plant development. For instance, the LOC_Os06g43680 gene harboring the QTS rs26302731 associated with 
grain yield (detected both by conditional and unconditional mapping) putatively encodes the palmitoyltrans-
ferase TIP1, which was revealed by prior studies16, 17 to be involved in a number of processes including root hair 
and pollen tube growth in Arabidopsis. Another conditional QTS, rs3063720, is located in the LOC_Os10g06030 
gene. This gene encodes a rice wall-associated kinase (OsWAK) that is known to play a critical role in communi-
cation between the plant cell wall and the cytoplasm18 and has been shown via functional studies in Arabidopsis 
to be involved in various functions such as cell expansion19, 20. The QTS rs28989077 associated with NP is located 
in the LOC_Os03g50780 gene, which encodes a protein containing a PHD finger domain. PHD finger domains 
are thought to play an important role in the regulation of chromatin or transcription21, 22. SNP rs20829501 is 
another NP-associated QTS in the LOC_Os07g34770 gene. A previous study23 reported that the function of 
LOC_Os07g34770 may relate to rice seed dormancy, but evidence for its possible association with NP is, to our 
knowledge, new in the literature. In addition, the rest of the detected QTSs that are not located in known genes 
but they are near some sensible genes. For instance, rs41315645, found in our study to be related to filled-grain 
numbers, is located ~12 kb downstream of the LOC_Os01g71310 gene, which exhibits the same gene function 
as the known cloned gene Gn1a (MSU: LOC_Os01g10110, http://www.ricedata.cn/gene/). Gn1a encodes a cyto-
kinin oxidase/dehydrogenase that degrades bioactive cytokinins; and reduced expression of Gn1a can lead to the 
accumulation of cytokinins and thus increase the number of grains24.

Discussion
In the last decade, genome-wide association method have been a primary tool for dissecting complex traits, espe-
cially for human diseases. Such methods have also become appealing and affordable in plant research programs 
owing to dramatically-reduced costs for genomic technology services. Even though genome-wide association 
studies (GWASs) have led to some promising scientific discoveries, they have encountered the ‘missing herita-
bility’ problem. This refers to the situation where identified genetic variants (mainly SNPs) only explain a small 
proportion of the expected heritability estimated from classical pedigree analyses. It has been suggested that the 
failure to evaluate genetic interactions (epistasis, gene-by-environment interactions) is a reasonable explanation 
for this phenomenon25, 26. In this study, a saturated model based on a mixed linear model approach was adopted 
to identify additive, additive by additive epistasis, and their interactions with environment effects simultaneously. 
Gene-by-environment interactions were detected for GYD (Table 3), which might partly account for the signif-
icant differences for mean of grain yield in the two environments that we observed in our phenotypic analysis 
(Table 1). There was also one pair of epistasis detected separately for NP and NFGP, which is consistent with 
the inference from the phenotypic distribution analysis that the non-normal distribution implied the existence 
of non-additive effects. Even though the genetic interactions did not contribute to a large degree of heritability 
(~2.0%) in this study, a relatively large total heritability (~45%) was observed for each trait. This large heritabil-
ity might result from our use of controlled experimental population for association mapping, which compro-
mised the resolution to some extent whereas acquired the advantage of well-controlled population structure 
and thus increased the explainable heritability. In addition, this study based on the RIL population derived from 
Xieyou9308 can only reveal part of the genetic basis for its high yield potential because all the RIL lines are theo-
retically homozygous genotypes and it can hardly address the genetic basis for heterosis which mainly rises from 
heterozygotes. Thus, for further investigation of the genetic basis for heterosis, the immortalized F2 (IF2) popu-
lation that is generated from random mating of recombinant inbred (RI) strains would be ideal, since it contains 
more heterozygous loci as well as more kinds of combination of genes in different positions on genome which are 
basic requirements for analyzing dominance, dominance-related epistasis effects.

Conditional analysis is another important tool used to increase the extent of explainable heritability in GWAS 
by identifying additional secondary association signals conditioned on the primary associated signals27–29. Here, 
we adopted this methodology to analyze the genetic interrelationships between rice yield and its three com-
ponents, and further detected some additional QTSs for final yield by conditioning on its component traits. 
Grain yield in rice can be viewed as the integration of some quantitative component traits, which, as proposed 
by Piepho30, can be represented by observed primary characters like number of panicles (NP), number of filled 
grains (NFGP) and grain weight (GW). This integrated character also complicates the causal gene mapping 
for final grain yield, especially because of the negative correlations between the components. Thus, it has been 
thought more effective to dissect its component traits individually, as these probably have simpler genetic control 
and can exclude the influence of the other components. In this study, we first performed genome-wide association 

http://rice.plantbiology.msu.edu/index.shtml
http://www.ricedata.cn/gene/
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mapping for all four traits separately. There were a total of 24 significant unconditional QTSs detected and the two 
or three highly significant QTSs for each trait were found to be located within or near annotated genes, most of 
which are predicted to have functions conceivably associated with target traits (Table 3, Table 5). Although quite 
high phenotypic correlations were observed between grain yield and some of its components (NP and NFGP), 
there were no coincident QTSs detected for grain yield and its components. Conditional analysis was conducted 
to complement our understanding of the relationships between the causal and resultant traits and to reveal some 
novel candidate loci for yield traits. We found 21 SNPs that significantly affected yield, among which 6 were 
revealed by the unconditional mapping and 19 by the conditional mapping (Table 4). SNP rs8203251 on chromo-
some 4 was the only QTS for yield that could be detected without the influence of any individual component. The 
QTSs rs5137246 and rs12354751 were undetectable in the conditional mapping, which indicates the close correla-
tion between these two loci and yield component traits. 3 QTSs (rs26302731, rs17926420, and rs26662491) could 
be detected both in conditional and unconditional mapping; the remaining 15 were novel conditional QTSs; 8 of 
them were located within annotated genes. These results suggested that conditional mapping can help to identify 
more QTSs for grain yield.

As for practical breeding, we detected some high potential candidates for these yield traits. For grain yield, 
rs26302731 appears to be a reliable candidate locus due to its high heritability (h2 = 9.34%) and corresponding gene 

QTS Chr. Allele Trait Gene ID Gene Annotation

rs5137246 6 T/G GYD LOC_Os06g10090 hypothetical protein

rs17926420 12 C/A GYD,GYD|NFGP,GYD|GW LOC_Os12g29990
O-sialoglycoprotein 
endopeptidase, 
putative, expressed

rs26302731 6 G/A GYD,GYD|NP LOC_Os06g43680
palmitoyltransferase 
TIP1, putative, 
expressed

rs15874222 2 T/A GYD|GW LOC_Os02g27000
ATP-binding region, 
ATPase-like domain 
containing protein, 
expressed

rs28567251 3 T/C GYD|NFGP LOC_Os03g50090
transposon protein, 
putative, CACTA, 
En/Spm subclass, 
expressed

rs28377293 6 G/C GYD|NFGP LOC_Os06g46720
retrotransposon 
protein, putative, 
unclassified, 
expressed

rs28331893 7 A/C GYD|NFGP LOC_Os07g47360 CW-type Zinc Finger, 
putative, expressed

rs11756284 2 T/G GYD|NP LOC_Os02g19980 expressed protein

rs5137241 6 T/C GYD|NP LOC_Os06g10090 hypothetical protein

rs3063720 10 G/A GYD|NP LOC_Os10g06030
OsWAK103 - 
OsWAK receptor-
like protein kinase, 
expressed

rs18309603 12 A/G GYD|NP LOC_Os12g30500
DUF593 domain 
containing protein, 
expressed

rs28989077 3 C/T NP LOC_Os03g50780
PHD finger domain 
containing protein, 
putative, expressed

rs20829501 7 C/T NP LOC_Os07g34770
transposon protein, 
putative, CACTA, 
En/Spm subclass, 
expressed

rs9429313 10 A/C NP LOC_Os10g18590
retrotransposon 
protein, putative, 
unclassified, 
expressed

rs27878540 3 C/T NFGP LOC_Os03g48950 expressed protein

rs29922937 3 A/T NFGP LOC_Os03g52110
retrotransposon 
protein, putative, 
Ty3-gypsy subclass, 
expressed

rs12778614 2 A/T GW LOC_Os02g21530 expressed protein

rs18572583 3 T/C GW LOC_Os03g32480
retrotransposon 
protein, putative, 
unclassified, 
expressed

Table 5.  Detected significant SNPs located within annotated genes. Note: Gene annotation information comes 
from the database: MSU Rice Genome Annotation Project Release 7, http://rice.plantbiology.msu.edu/index.shtml.

http://rice.plantbiology.msu.edu/index.shtml
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functional analysis in Arabidopsis, which revealed its regulation role for plant cell growth16. Additionally, the con-
ditional mapping analysis indicated that rs26302731 is supposed to be independent of the panicle number trait. 
The QTS rs8203251 is another reliable candidate locus, although it was not located in an annotated gene. It is quite 
special; it is the only QTS found to be independent of all three components and to exhibit a very high heritability 
(h2 = 10.91%). The nearest gene to it was LOC_Os04g14620 (715 bp away) that encodes a retrotransposon protein 
belonging to the Ty3-gypsy subclass. Retrotransposons seemed ubiquitous in our results, as they were associated 
with all four yield traits (the corresponding QTSs are rs9429313 associated with NP, rs29922937 associated with 
NFGP, rs18572583 associated with GW and rs28377293 associated with GYD conditioned NFGP as showed in 
Table 5). The QTSs rs28989077 and rs20829501 are two reliable candidate loci for panicle number; both have high 
individual heritability (h2 = 18.54% and h2 = 11.39%, respectively) and conceivable gene functions as described in 
candidate gene analysis section. The QTS rs41315645 is highly correlated with filled-grain number (h2 = 8.16%) 
and near a gene (~12 kb away and there is no SNP in this gene) that exhibits the same function as the cloned gene 
Gn1a which has been demonstrated to have a function in influencing grain number24; it should thus be considered 
a quite reliable candidate for grain number in this population. Novel loci from the conditional mapping also have 
high potential to be reliable candidates for grain yield along with the analysis of corresponding gene function. For 
instance, rs3063720 is located in the OsWAK gene; studies in Arabidopsis have shown that this gene functions in cell 
expansion during plant development19, 20 and thus it is a high potential candidate for breeding.

Methods
Plant Materials and SNP Genotyping.  A recombinant inbred line (RIL) mapping population consisting 
of 138 F13 lines was developed from the super hybrid Xieyou9308 via the single seed descent (SSD) method, 
with XieqingzaoB (XQZB) (female) as the maintainer line and Zhonghui9308 (ZH9308) (male) as the restorer 
line. The inbred lines were planted in Lingshui, Hainan province and in Hangzhou, Zhejiang province in 2009, 
respectively. Four rice yield traits, including grain yield per plant (GYD), panicle number per plant (NP), number 
of filled-grains per panicle (NFGP), and the weight of 1000 grains (GW) were measured. Based on the mixed 
linear model approach implemented in the software of QGAStation31, the total genotypic values were predicted 
for the calculation of genetic correlation between traits. Calculations of the summary statistics of the phenotypic 
data, as well as analysis of the data distributions and correlation coefficients were performed using the R (v3.2.2) 
statistical software32.

DNA re-sequencing was conducted at the Beijing Genome Institute (BGI) for the 138 inbred lines with 2X 
coverage and the parent lines with 10X coverage. The latest version of the Nipponbare sequence was used as the 
reference genome. Subsequently, sequence alignment was performed between the re-sequencing data and the 
reference genome using BWA software33. SNPs were identified between the individuals and the reference genome 
by using SAMtools software34, with settings as follows: base quality ≥30, mapping quality ≥20, and the maximum 
sequence depth ≤1000. Finally, a total of 701,867 SNPs were identified for the 138 RILs and used in the subse-
quent association studies. The filtration of SNPs and LD pattern analysis have been demonstrated in our another 
study35 based on this RIL population. It has shown that the LD decay rate was estimated approximately 1,000 kb 
on whole genome-wide. It is noteworthy that associations in this population would not be affected by population 
structure issues, as these progenies are from the same ancestry (the cross of XQZB and ZH9308), and the related-
ness among these lines is distributed evenly (r ≈ 0.5 for any two individuals).

Genetic Models and Statistical Analysis.  In this study, we adopted a saturated genetic model with addi-
tive (a) and additive by additive epistasis (aa) as fixed effects, the environment (e) which is mostly uncontrollable 
as random effects, and thus their interactions (ae, aae) also as random effects. The genetic model for the pheno-
typic value of the k-th genotype in the h-th environment (yhk) can be expressed by the following mixed linear 
model,

∑ ∑ ∑ ∑µ ε= + + + + + +
< <

y a x aa x x e ae u aae u
(1)

hk
i

i ik
i j

ij ik jk h
i

hi hik
i j

hij hijk hk

Where, μ is the population mean; ai is the additive effect of the i-th gene (QTS) with coefficient xik, fixed effect; aaij 
is the additive by additive epistasis effect of the i-th QTS and the j-th QTS with coefficient xik · xjk, fixed effect; eh 
is the main effect of the h-th environment, random effect; aehi is the additive by environment interaction effect of 
the i-th QTS and the h-th environment with coefficient uhik(=xhik), random effect; aaehij is the interaction effect of 
the aaij and the h-th environment with coefficient uhijk(=xhik · xhjk)), random effect; and εhk is the random residual 
effect of the k-th line in the h-th environment.

Based on the above mixed linear model, both unconditional and conditional genetic mapping were performed 
for grain yield and its three components. For conditional association mapping, the conditional phenotypic values 
of grain yield given its components (T1|T2) were first produced by software of QGAStation 2.031 which imple-
mented the mixed model approach for the conditional analysis of quantitative traits as described by Zhu13, where 
the T1|T2 means trait 1 conditioned on trait 2. GMDR-GPU36 was then employed for preliminary filtering for 
both of the association mapping approaches due to the heavy computational burden resulting from the detection 
of two-dimensional interactions for a very large number of SNPs. During the process, both the single-locus effects 
and two-loci interaction effects were tested for each trait in each environment using the GMDR-GPU, and the 
~400 top candidate SNPs (setting the “-m 400” option in GMDR-GPU) potentially associated with the trait were 
kept for each chromosome according to their testing accuracy from high to low. Finally, based on the screened 
SNP subsets, association mappings were conducted for each trait using the mixed linear approach implemented 
in QTXNetwork37 software. In this procedure, first significant testing for each individual SNP and for all possi-
ble SNP pairs were performed using F-test which is permutation-based to control the experiment-wise type I 
error rate at 0.05, and then stepwise model selection was conducted to pick out the relatively high explanatory 
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significant candidates for the final full model (1). Finally, all the parameters and corresponding standard errors of 
model (1) were estimated via Markov chain Monte Carlo (MCMC) with 20,000 Gibbs sampler iterations. Based 
on the estimated genetic component effects (additive, epistasis, and their interaction effects with environment), 
the heritability of each QTS in each genetic component was calculated and the summation of all detected QTSs 
for the trait is regarded as the total heritability.

References
	 1.	 Cheng, S. H. et al. Super hybrid rice breeding in china: Achievements and prospects. Journal Of Integrative Plant Biology 49, 

805–810, doi:10.1111/j.1672-9072.2007.00514.x (2007).
	 2.	 Liang, Y. S. et al. Mapping of qtls associated with important agronomic traits using three populations derived from a super hybrid 

rice xieyou9308. Euphytica 184, 1–13, doi:10.1007/s10681-011-0456-4 (2012).
	 3.	 XiHong, S. et al. Dissection of qtls for panicle traits in recombinant inbred lines derived from super hybrid rice, xieyou 9308. Chinese 

Journal of Rice Science 23, 354–362 (2009).
	 4.	 Wang, H. M. et al. Identification of qrl7, a major quantitative trait locus associated with rice root length in hydroponic conditions. 

Breeding Science 63, 267–274, doi:10.1270/jsbbs.63.267 (2013).
	 5.	 Mackay, T. F. C., Stone, E. A. & Ayroles, J. F. The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics 10, 

565–577, doi:10.1038/nrg2612 (2009).
	 6.	 Thornsberry, J. M. et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28, 286–289, 

doi:10.1038/90135 (2001).
	 7.	 Agrama, H. A., Eizenga, G. C. & Yan, W. Association mapping of yield and its components in rice cultivars. Molecular Breeding 19, 

341–356, doi:10.1007/s11032-006-9066-6 (2007).
	 8.	 Atwell, S. et al. Genome-wide association study of 107 phenotypes in arabidopsis thaliana inbred lines. Nature 465, 627–631, 

doi:10.1038/nature08800 (2010).
	 9.	 Huang, X. H. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42, 961–U76, 

doi:10.1038/ng.695 (2010).
	10.	 Kump, K. L. et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association 

mapping population. Nature Genetics 43, 163–U120, doi:10.1038/ng.747 (2011).
	11.	 Zhao, K. et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in oryza sativa. Nat Commun 

2, 467, doi:10.1038/ncomms1467 (2011).
	12.	 Huang, X. H. et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice 

germplasm. Nature Genetics 44, 32–U53, doi:10.1038/ng.1018 (2012).
	13.	 Zhu, J. Analysis of conditional genetic-effects and variance-components in developmental genetics. Genetics 141, 1633–1639 (1995).
	14.	 Guo, L. B. et al. Dissection of component qtl expression in yield formation in rice. Plant Breeding 124, 127–132, doi:10.1111/j.1439-

0523.2005.01093.x (2005).
	15.	 Cao, G. & Zhu, J. Conditional genetic analysis on quantitative trait loci for yield and its components in rice. Life Sci J 4, 71–76 (2007).
	16.	 Hemsley, P. A., Kemp, A. C. & Grierson, C. S. The tip growth defective1 s-acyl transferase regulates plant cell growth in arabidopsis. 

Plant Cell 17, 2554–63, doi:10.1105/tpc.105.031237 (2005).
	17.	 Hemsley, P. A. Protein s-acylation in plants (review). Mol Membr Biol 26, 114–25, doi:10.1080/09687680802680090 (2009).
	18.	 Kohorn, B. D. Waks; cell wall associated kinases - commentary. Current Opinion In Cell Biology 13, 529–533, doi:10.1016/S0955-

0674(00)00247-7 (2001).
	19.	 Lally, D., Ingmire, P., Tong, H. Y. & He, Z. H. Antisense expression of a cell wall-associated protein kinase, wak4, inhibits cell 

elongation and alters morphology. Plant Cell 13, 1317–1331, doi:10.1105/TPC.010075 (2001).
	20.	 Wagner, T. A. & Kohorn, B. D. Wall-associated kinases are expressed throughout plant development and are required for cell 

expansion. Plant Cell 13, 303–318, doi:10.1105/tpc.13.2.303 (2001).
	21.	 Aasland, R., Gibson, T. J. & Stewart, A. F. The phd finger - implications for chromatin-mediated transcriptional regulation. Trends In 

Biochemical Sciences 20, 56–59, doi:10.1016/S0968-0004(00)88957-4 (1995).
	22.	 Bienz, M. The phd finger, a nuclear protein-interaction domain. Trends In Biochemical Sciences 31, 35–40, doi:10.1016/j.

tibs.2005.11.001 (2006).
	23.	 Qin, H. D. et al. Transcriptomics analysis identified candidate genes colocalized with seed dormancy qtls in rice (oryza sativa l.). 

Journal Of Plant Biology 53, 330–337, doi:10.1007/s12374-010-9120-0 (2010).
	24.	 Ashikari, M. et al. Cytokinin oxidase regulates rice grain production. Science 309, 741–5, doi:10.1126/science.1113373 (2005).
	25.	 Hemani, G., Knott, S. & Haley, C. An evolutionary perspective on epistasis and the missing heritability. Plos Genetics 9, e1003295, 

doi:10.1371/journal.pgen.1003295 (2013).
	26.	 Haig, D. Does heritability hide in epistasis between linked snps? European Journal of Human Genetics 19, 123–123, doi:10.1038/

ejhg.2010.161 (2011).
	27.	 Ripke, S. et al. Genome-wide association study identifies five new schizophrenia loci. Nature Genetics 43, 969–U77, doi:10.1038/

ng.940 (2011).
	28.	 Psychiatric, G. C. B. D. W. G. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus 

near odz4. Nat Genet 43, 977–83, doi:10.1038/ng.943 (2011).
	29.	 Yang, J. et al. Conditional and joint multiple-snp analysis of gwas summary statistics identifies additional variants influencing 

complex traits. Nature Genetics 44, 369–U170, doi:10.1038/ng.2213 (2012).
	30.	 Piepho, H.-P. A simple procedure for yield component analysis. Euphytica 84, 43–48, doi:10.1007/BF01677555 (1995).
	31.	 Chen, G. B., Zhu, Z. X., Zhang, F. T. & Zhu, J. Quantitative genetic analysis station for the genetic analysis of complex traits. Chinese 

Science Bulletin 57, 2721–2726, doi:10.1007/s11434-012-5108-0 (2012).
	32.	 Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria, URL 

https://www.R-project.org/ (2015).
	33.	 Li, H. & Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754–1760, 

doi:10.1093/bioinformatics/btp324 (2009).
	34.	 Li, H. et al. The sequence alignment/map format and samtools. Bioinformatics 25, 2078–2079, doi:10.1093/bioinformatics/btp352 

(2009).
	35.	 Zhou, L. et al. Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies. 

Scientific Reports 6 (2016).
	36.	 Zhu, Z. X. et al. Development of gmdr-gpu for gene-gene interaction analysis and its application to wtccc gwas data for type 2 

diabetes. Plos One 8 (2013).
	37.	 Zhang, F.-T. et al. Mixed linear model approaches of association mapping for complex traits based on omics variants. Scientific 

Reports (2015).

http://dx.doi.org/10.1111/j.1672-9072.2007.00514.x
http://dx.doi.org/10.1007/s10681-011-0456-4
http://dx.doi.org/10.1270/jsbbs.63.267
http://dx.doi.org/10.1038/nrg2612
http://dx.doi.org/10.1038/90135
http://dx.doi.org/10.1007/s11032-006-9066-6
http://dx.doi.org/10.1038/nature08800
http://dx.doi.org/10.1038/ng.695
http://dx.doi.org/10.1038/ng.747
http://dx.doi.org/10.1038/ncomms1467
http://dx.doi.org/10.1038/ng.1018
http://dx.doi.org/10.1111/j.1439-0523.2005.01093.x
http://dx.doi.org/10.1111/j.1439-0523.2005.01093.x
http://dx.doi.org/10.1105/tpc.105.031237
http://dx.doi.org/10.1080/09687680802680090
http://dx.doi.org/10.1016/S0955-0674(00)00247-7
http://dx.doi.org/10.1016/S0955-0674(00)00247-7
http://dx.doi.org/10.1105/TPC.010075
http://dx.doi.org/10.1105/tpc.13.2.303
http://dx.doi.org/10.1016/S0968-0004(00)88957-4
http://dx.doi.org/10.1016/j.tibs.2005.11.001
http://dx.doi.org/10.1016/j.tibs.2005.11.001
http://dx.doi.org/10.1007/s12374-010-9120-0
http://dx.doi.org/10.1126/science.1113373
http://dx.doi.org/10.1371/journal.pgen.1003295
http://dx.doi.org/10.1038/ejhg.2010.161
http://dx.doi.org/10.1038/ejhg.2010.161
http://dx.doi.org/10.1038/ng.940
http://dx.doi.org/10.1038/ng.940
http://dx.doi.org/10.1038/ng.943
http://dx.doi.org/10.1038/ng.2213
http://dx.doi.org/10.1007/BF01677555
http://dx.doi.org/10.1007/s11434-012-5108-0
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp352


www.nature.com/scientificreports/

1 0Scientific Reports | 7: 824  | DOI:10.1038/s41598-017-00938-7

Acknowledgements
This study was supported in part by the project of the National Sci-Tech Support Plan (2011BAD35B02), the 
Major Sci-Tech Programs of Zhejiang Province (2012C12901-3), the National Natural Science Foundation 
grants 31101203, 31521064 and 31671570, the National Science Foundation grant DMS1462990, and the Bill and 
Melinda Gates Foundation Project.

Author Contributions
H.X., S.C. and L.C. conceived the ideas; Y.Z., X.S., D.C., W.W., X.Z., Q.L. and A.Z. conducted the field trials and 
collected the data; Y.Z. and L.Z. analyzed the data. The manuscript was written by L.Z. and improved by H.X. and X.L.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Genetic dissection of yield traits in super hybrid rice Xieyou9308 using both unconditional and conditional genome-wide ass ...
	Results

	Phenotypic variation of yield traits and their inter-correlations. 
	Genome-wide association analyses for four yield traits. 
	Conditional association mapping for GYD given its component trait. 
	Bioinformatics analysis for candidacy of genes. 

	Discussion

	Methods

	Plant Materials and SNP Genotyping. 
	Genetic Models and Statistical Analysis. 

	Acknowledgements

	Figure 1 The phenotypic distribution of grain yield and yield components.
	Figure 2 Genetic architecture of detected QTSs for grain yield and yield components in both the unconditional mapping and conditional mapping analyses.
	Table 1 Summary statistics of grain yield and yield components in two experiment locations.
	Table 2 Phenotypic and genotypic correlations for four yield traits.
	Table 3 The estimated heritability and predicted genetic effects of all detected significant SNP loci for four yield traits.
	Table 4 The estimated heritability and predicted genetic effects of all detected SNP loci for grain yield conditioned by its component traits.
	Table 5 Detected significant SNPs located within annotated genes.




