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Abstract

The acquisition of reproductive competence is organized and activated by steroid hormones acting 

upon the hypothalamus during critical windows of development. This review describes the 

potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual 

differentiation of the hypothalamus by hormones. We examine disruption of these processes by 

endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on 

how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex 

steroid hormone receptor expression throughout life. These receptors are necessary for brain 

sexual differentiation and their altered expression may underlie disrupted reproductive physiology 

and behavior. Finally, we review the literature on histone modifications and non-coding RNA 

involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data 

into a sex and developmental context we conclude that perinatal EDC exposure alters the 

developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner.
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1. Development of reproductive neuroendocrine circuitry

1.1. Hormones, endocrine disrupting chemicals (EDCs), and brain development

The neuroendocrine systems of the brain play critical roles in the integration of information 

about environmental stimuli and the orchestration of appropriate responses. More 

specifically, the hypothalamic-anterior pituitary neuroendocrine systems provide an interface 
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between peripheral signals and central processes involved in the control of adrenal, thyroid, 

reproductive, growth, metabolic, and lactational functions (Marieb, 2006). With particular 

regard to the acquisition of reproductive competence, hypothalamic, preoptic, and limbic 

regions involved in the control of reproductive physiology and behavior begin to develop in 

the fetus, and continue their maturation through postnatal life and puberty until adult 

reproductive status is attained. The hypothalamic neuropeptide, gonadotropin releasing 

hormone (GnRH), is obligatory for reproductive competency, and is regulated by a neuronal 

and glial network comprising heterogeneous inputs that signal through many different 

neurotransmitters, neuropeptides, and neurotrophic factors. This neural circuit mediates the 

influences of sex-steroid hormonal feedback onto GnRH neurons, resulting in a pattern of 

pulsatile GnRH release in both sexes, and the preovulatory GnRH/LH surge in females 

(Ebling, 2005). More broadly, GnRH neurons are regulated by a complex neural network 

comprising heterogeneous neural inputs from neurons signaling via many types of 

neurotransmitters (e.g., glutamate, GABA, norepinephrine, and neuropeptides such as 

kisspeptin, galanin, and others). Many of these inputs are steroid-hormone sensitive, and the 

anatomical organization of these neurons begins to be established during late embryonic and 

early postnatal life in mammals, during which developmental and sex-specific exposures to 

gonadal hormones act during a critical period of brain sexual differentiation to “program” 

permanent neuroanatomical and molecular changes. Once male- and female-typical circuits 

are established and organized, they are activated by the peripubertal increase in gonadal 

hormones and maintained by hormonal exposure throughout adulthood (Terasawa and 

Fernandez, 2001).

Endocrine disrupting chemicals (EDCs), as defined by an Endocrine Society statement of 

principles (Zoeller et al., 2012), are “an exogenous chemical, or mixture of chemicals, that 

interferes with any aspect of hormone signaling.” The Endocrine Society’s 2015 scientific 

statement, EDC-2, further qualified this definition by emphasizing the particular importance 

of developmental exposures to EDCs as most problematic (Gore et al., 2015). EDCs are 

ubiquitous, and exposure can occur through industrial waste that has entered the 

environment and the food chain, contaminated water systems, widespread use of pesticides, 

as well as exposures from cosmetics and personal care products, pharmaceuticals, plastic 

products and diet. Once these compounds are in the environment or in the food chain, 

depending upon their structure and properties (e.g., lipophilicity), they can bioaccumulate. 

Organisms that are at the top of the food chain, including humans, have the greatest body 

burdens [Reviewed in (Annamalai and Namasivayam, 2015)]. In the body, EDCs interfere 

with normal endocrine actions by a variety of mechanisms; the best-studied are by their 

actions as agonists or antagonists of steroid hormone receptors due to structural similarities 

(Fig. 1), and/or by interfering with steroid hormone synthesis and metabolism, in target 

tissues [Reviewed in (De Coster and van Larebeke, 2012)]. The effects of EDCs are tissue-

specific and depend on timing, dose and duration of exposure. Although exposure at any life 

stage can cause endocrine dysfunctions, developing organisms, especially fetuses, infants, 

and children, are especially vulnerable. Exposures during this time, even at very low levels, 

may induce some alterations in the developing organism, but the phenotypic changes may 

not become apparent until later in development or when the organism has reached maturity. 

This concept, referred to as the developmental origins of health and disease (DOHaD), has 
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been proposed to explain how the perinatal developmental period is highly sensitive to 

environmental perturbations and results in irreversible changes in gene expression, cellular 

function and morphology that predispose the organism to dysfunction later in life (Barker, 

2004; Vandenberg et al., 2012; Heindel et al., 2015).

Although this review article focuses solely on EDCs and the brain, it is important to point 

out that indirect EDC effects on the nervous system can be induced through EDCs’ actions 

on the gonads. There is a strong literature showing that the developing male and female 

gonads are highly sensitive to EDCs, with consequences for follicular development, 

ovulation and steroidogenesis in the ovary; and spermatogenesis, steroid synthesis in males 

[reviewed in (Gore et al., 2015)]. Effects of EDCs on the timing of puberty, or on 

subfertility/infertility, can involve any level of the hypothalamic-pituitary-gonadal axis. 

Therefore, the literature we will be discussing on EDC actions in the brain should be 

considered in this broader context of both direct and indirect mechanisms.

1.2. The brain is sensitive to hormones during prenatal and early postnatal life

The ability of the brain to respond to hormones begins extremely early in life, at the end of 

the first trimester in humans and in mid-embryonic development in rodents, due to the early 

life expression of steroid hormone receptors [Humans, (McCarthy et al., 2009); rodents, 

(McEwen, 1981; Forger, 2006)]. There are several sources of natural hormones to which the 

fetal brain is exposed, including placental hormones, maternal hormones that can cross the 

placenta, and the fetus’s own developing endocrine organs (Gore et al., 2014). Each 

hormone plays a unique role, with precise timing of hormonal exposure being absolutely 

critical to normal development. In the absence of the proper hormonal milieu the fetus may 

not survive or, if it does, it is likely to have some abnormality that may be manifested at 

birth, or later in life. In the developing brain, gonadal steroids alter neurogenesis, glial 

development, neural apoptosis (programmed cell death), and the formation and maintenance 

of synaptic connections (Forger, 2006; McCarthy et al., 2009). Steroids also modulate 

neurotransmitter synthesis, release, and actions on their target receptors (Mani et al., 1994), 

and control critical components of neural and glial plasticity (Arnold and Gorski, 1984; 

McEwen et al., 1991).

In addition to the brain’s early life responsiveness to steroid hormones is its ability to 

generate these hormones from precursors by steroidogenesis. The primary substrate of 

steroidogenesis is cholesterol, which, after a series of enzymatic reactions is converted to the 

major steroid hormone classes. Thus, the presence or absence of enzymes in any tissue 

determines if and which hormones will be synthesized. Enzymes that are critical for these 

processes are distributed throughout various brain regions including: cytochrome p450 side 

chain cleavage (p450scc) enzyme encoded by the CYP11A1 gene, which catalyzes a rate-

limiting step in the initial conversion of cholesterol (Compagnone et al., 1995); 

steroidogenic acute regulatory protein (StAR), involved in cholesterol transport as a first step 

in steroid biosynthesis (Furukawa et al., 1998) and other members of the cytochrome p450 

family such as 17α-hydroxylase or p450c17 (CYP17A1) and aromatase (CYP19A1) 

(Stromstedt and Waterman, 1995). Thus, many, if not all, of the major steroidogenic 

enzymes are present in the brain, with developmental-, sex-, and region-specific differences 
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in expression. Importantly, the enzymes that interconvert testosterone to estradiol 

(aromatase) or to dihydrotestosterone (5α-reductase) are also abundant in the nervous 

systems of rodents and humans (Celotti et al., 1997; Wu et al., 2009), and expression (5α-

reductase) and enzymatic activity (aromatase) coincide with the critical window for sexual 

differentiation of the brain in rodents (George and Ojeda, 1982; Melcangi et al., 1998). This 

highlights the importance of steroidogenic enzymes in the development of a male- or 

female-typical brain in terms of regional size, cell numbers, and neural and glial phenotypes 

(Balthazart et al., 2011; Panzica et al., 2012). Given the crucial role of hormones in normal 

brain development, it is not surprising that the brain is exceptionally sensitive to 

perturbations by EDC exposure during development.

1.3. Brain sexual differentiation and epigenetics

Sex determination in mammals is dependent upon the complement of sex chromosomes 

(XX, female; XY, male) in the fetus. Activation of a cascade of genes in males, beginning 

with SRY on the Y chromosome, triggers a sexual differentiation pathway that drives 

testicular development, whereas the absence of the Y chromosome in females results in 

activation/repression of genes that specify ovarian development [Reviewed in (Brennan and 

Capel, 2004; Bowles and Koopman, 2013)]. Information from rodent, sheep, macaques and 

humans, shows that the fetal testis becomes capable of secreting several hormones, including 

testosterone and anti-Mullerian hormone (AMH), that have profound effects on the 

development of male reproductive tracts, glands, and genitalia [Reviewed in (Capel, 1996; 

Kashimada and Koopman, 2010; Bowles and Koopman, 2013; Forger et al., 2016)]. 

Moreover, waves of testosterone released in the embryo and infant are important for 

masculine sexual differentiation of the brain [(Baum et al., 1991); Reviewed in (McCarthy, 

2011; de Vries and Forger, 2015)]. The female embryo is quite different from the male. The 

developing ovary is relatively quiescent compared to the male testis, and the female 

reproductive organs and genitalia form in the absence of exposure to testosterone and AMH 

[Reviewed in (Capel, 1996; Kashimada and Koopman, 2010; Spiller et al., 2012)]. These 

differences between the sexes in normal development underscore the potential for the 

genitals and the brain to be highly sensitive to developmental perturbations by EDCs. 

Furthermore, these organs develop during overlapping but not identical phases of fetal life, 

underscoring the point that the critical period of sexual differentiation for one organ may not 

be the same as in another.

The organizational effects of steroids set the stage for numerous neurobiological processes, 

some of which are not manifested until childhood, adolescence, or adulthood. Our 

understanding of the importance of hormones in brain sexual differentiation is nearly a 

century old, with evidence that this is established in the embryo through early postnatal life 

(Phoenix et al., 1959; Barraclough and Gorski, 1961; Petrusz and Flerko, 1965; Morris et al., 

2004; Kudwa et al., 2006; Sodersten et al., 2014). While most of the prior evidence was 

accumulated from rodent work, the human brain is also structurally and functionally 

sexually dimorphic (Ehrhardt and Meyer-Bahlburg, 1981; Wizemann and Pardue, 2001; 

Cahill, 2006). Sex differences in reproductive behavior and strategies (e.g. parental behavior, 

pair bonding, etc.) are necessary for the perpetuation of the species, as they increase the 

likelihood of successful reproduction and offspring survival. Therefore, the process of sexual 
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differentiation of the brain is critical for species survival (Dulac and Kimchi, 2007). Even 

subtle changes in brain organization and activation from disruption by EDCs can have 

profound effects on reproductive strategies, physiology, and behaviors, with potentially 

devastating effects on a population living in a contaminated area (Crews and Gore, 2011, 

2012).

Although not the focus of this review, it is important to acknowledge the key role of adrenal 

steroids. The adrenal cortex also develops during embryonic development, when it first 

begins to secrete cortisol or corticosterone depending upon species, as well as adrenal 

androgens such as DHEA that are a substrate for placental estrogen synthesis (Ishimoto and 

Jaffe, 2011). This placental estrogen stimulates pituitary adrenocorticotropic hormone 

(ACTH), which in turn stimulates adrenal steroidogenesis (Wood, 2005). Similar effects are 

observed in humans, in which the fetal adrenals also become active, producing progesterone, 

its metabolites, and cortisol (Baron-Cohen et al., 2015). Thus, the developing adrenal has the 

potential to affect brain glucocorticoid receptors through cortisol production, as well as to 

indirectly influence estrogen receptors through the placenta. This is an understudied yet 

intriguing mechanism for EDCs to alter the neuroendocrine stress axis as well. However, due 

to a dearth of evidence in this field, the remainder of this review article will focus on 

gonadal steroid hormones and EDCs.

As mentioned above, the organizational and activational effects of gonadal hormones in 

sexual differentiation of the brain is well established. However, recent evidence suggests that 

sex chromosomes also play a role in sexual differentiation of the brain. The development of 

four core genotype mice, transgenic animals in which the SRY gene is knocked out on the Y 

chromosome and introduced on an autosomal chromosome, has contributed to our 

understanding. Mating these animals yields gonadally similar males and females (XXM vs 

XYM with testes, and XXF and XYF with ovaries). This model provides the opportunity to 

investigate the contribution of sex chromosomes to sexual differentiation of the brain as well 

as interactions of sex chromosomes and gonadal hormones [Reviewed in (Arnold and Chen, 

2009)]. These animals have revealed that some sex differences in the brain, e.g., differences 

in mesencephalic tyrosine hydroxylase, develop before the gonadal hormone surge in 

rodents and are dependent on sex chromosomes (Sibug et al., 1996). Furthermore, sexually 

dimorphic behaviors such as aggression and maternal behaviors are influenced by 

interactions of sex chromosomes and gonadal hormones (Gatewood et al., 2006). Future 

work is needed to determine whether and how EDCs may affect these processes.

Because brain sexual differentiation produces robust and enduring alterations in brain and 

behavior, epigenetic mechanisms have been proposed as regulators of both the phenotypic 

priming and activation of male- and female-typical behavior and reproductive function. 

Although there are many definitions of epigenetics, here we define a molecular epigenetic 

change as one that is transmitted to daughter cells through cell division, and does not involve 

changes to the DNA sequence itself, but rather, occurs through modifications that influence 

production of RNA or protein from the DNA template. These mechanisms include DNA 

methylation, histone modifications and post-transcriptional regulators such as non-coding 

RNAs. Work to date on epigenetic regulation of sexual differentiation of the brain or 

perturbations by EDCs has focused on sexually dimorphic hypothalamic nuclei as targets, 
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notably the anteroventral periventricular nucleus (AVPV) and medial preoptic area (mPOA) 

(Table 1), and this will be the main focus of the sections below. When available, data from 

limbic and reward systems, as well as neocortical brain regions, have been included (Table 

1). However, it should be noted that sex differences and sexual differentiation of the brain 

are wide ranging and much more work is necessary to determine if and how epigenetic 

mechanisms may contribute to the effects of EDCs throughout the brain.

While epigenetic molecular mechanisms have been proposed as a mechanism for brain 

sexual differentiation and disruption for over a decade, empirical evidence has been lacking 

until recently [Reviewed in (Forger, 2016)]. We are only now beginning to identify how 

these mechanisms may work in concert to program the brain in male- and female-typical 

patterns. Because developmental exposures to EDCs disrupt hormone actions and sexual 

differentiation of the brain and behavior (Walker and Gore, 2007), epigenetic mechanisms 

may underlie some of the effects of EDCs that have been observed after perinatal exposure. 

In fact, this has been shown in other tissues, including reproductive organs, and has been 

investigated widely as a potential mechanism for the developmental programming of 

numerous reproductive cancers [Reviewed in (Singh and Li, 2012; Seachrist et al., 2016)]. 

However, few studies have specifically investigated if EDCs alter the epigenetic machinery 

or mechanisms in the brain. To follow is an overview of three well-characterized epigenetic 

molecular mechanisms, their roles in sexual differentiation of the brain, and evidence of 

epigenetic regulation of altered gene expression due to perinatal EDC exposure.

2. DNA methylation, sexual differentiation of the brain, and EDCs

2.1. Mechanisms of DNA methylation

DNA methylation is the process of adding a methyl group to the C5 position of a cytosine 

(5-mC) often adjacent to a guanine at the 5′ site, referred to as CpG (Fig. 2). DNA 

methylation has traditionally been considered to be a relatively stable epigenetic mark 

playing a pivotal role in development, the regulation of tissue-specific gene expression, X 

inactivation, imprinting of parental alleles, cellular differentiation, and repetitive element 

silencing. DNA methylation at gene promoters is generally associated with transcriptional 

repression, whereas in many species, including humans, methylation in gene bodies is 

associated with active transcription [Reviewed in (Suzuki and Bird, 2008)] and often occurs 

as the oxidized form of 5-mC, 5-hydroxy-mC (5-hmC). 5-hmC appears to be concentrated in 

gene bodies (Tahiliani et al., 2009), is associated with active transcription, and may be a 

transitional epigenetic state marking a site for future demethylation (Szulwach et al., 2011) 

(Fig. 2). Importantly, 5-hmC is enriched in the brain (Kriaucionis and Heintz, 2009). Thus 

the identification of this mark indicates that DNA methylation, especially in the brain, may 

be more dynamic than previously thought (Mikaelsson and Miller, 2011). What is clear is 

that DNA methylation and histone modifications (see below) participate in an “epigenetic 

conversation” to regulate transcription (Fig. 3). For example, DNA methylation can recruit 

methyl-binding proteins, which in turn recruit histone deacetylases (HDACs), leading to 

chromatin condensation and transcriptional repression (Hashimoto et al., 2010).

Initially, DNA methylation was hypothesized as an important epigenetic mechanism 

regulating brain sexual differentiation, as well as for mediating the effects of EDCs, because 
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the permanent effects of early life hormone (and EDC) on brain structure and subsequent 

behavior presupposed an irreversible programming event early in life. This hypothesis has 

had to evolve because of the more recent evidence for the greater transience of DNA methyl 

marks than originally thought. In the next sections, we discuss the evidence that DNA 

methylation is an important mechanism for brain sexual differentiation, followed by 

information on the actions of two classes of EDCs, bisphenol A (BPA) and polychlorinated 

biphenyls (PCBs), on this molecular pathway.

2.2. DNA methyltransferases (DNMTs) and brain sexual differentiation

Sex differences in global DNA methylation have been observed in several brain regions in 

rodents including the POA (Nugent et al., 2011; Ghahramani et al., 2014), bed nucleus of the 

stria terminalis (BNST) and striatum (Ghahramani et al., 2014) (Table 2). The degree and 

directionality of these differences is dependent on the developmental time point of 

evaluation, but generally speaking, global methylation increases with increasing age in both 

male and female mice (Ghahramani et al., 2014). Importantly, global sex differences in DNA 

methylation in the rat POA were reversed by a masculinizing dose [Postnatal day (P) 0; 100 

μg] of estradiol in females (Nugent et al., 2011). However in the POA/BNST combined and 

striatum of mice, sex differences in global DNA methylation were not observed, but a male-

specific increase in DNA methylation of autosomal genes was induced in females exposed to 

a masculinizing dose of testosterone (100 μg) when measured on P60 but not P4 

(Ghahramani et al., 2014). This suggests that perinatal exposure to gonadal hormones 

regulates DNA methylation and results in species-, sex-, age- and region-specific adult 

methylation patterns. In further support of this, recent evidence suggests that activity of a 

family of enzymes that are part of the machinery regulating DNA methylation, DNA 

methyltransferases (DNMTs), is sexually dimorphic in rats and altered by perinatal 

treatments with exogenous steroid hormones (Nugent et al., 2015).

DNMTs are a family of methyltransferases that catalyze the addition of a methyl group to 

CpGs. There are five known DNMTs in the brain: DNMT1, DNMT2, DNMT3a, DNMT3b 

and DNMT3L. In general, DNMT1 regulates DNA methylation maintenance, meaning it 

preferentially methylates hemi-methylated DNA or DNA on which only one strand is 

methylated, usually after replication (Fig. 2). DNMT3a and 3b regulate de novo DNA 

methylation and preferentially methylate unmethylated CpGs, especially during 

development. Finally, while DNMT3L does not seem to have catalytic activity, it assists in 

de novo DNA methylation by increasing the ability to bind a methyl donor [Reviewed in 

(Kareta et al., 2006; Subramaniam et al., 2014)]. While it is apparent that each enzyme 

catalyzes specific types of DNA methylation events, there is mounting evidence that they 

work in concert. For example, DNMT1, while best-studied for its role in the maintenance of 

DNA methylation, is also required for de novo DNA methylation. Furthermore, DNMT3a 

and 3b both play a role in DNA methylation maintenance, suggesting that there is a complex 

interplay between these enzymes during DNA methylation [Reviewed in (Jin et al., 2011)].

There are sex differences in expression and activity of DNMTs in rodents (Table 2). During 

the neonatal period, DNMT enzymatic activity was higher in female than in male rats, and 

was decreased to male-typical levels in females by neonatal exposure to estradiol. Blocking 
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DNMT activity in the neonatal female rat via a DNMT antagonist or conditional gene 

knock-out in mouse POA (specifically Dnmt3a), masculinized neonatal gene expression and 

adult reproductive behavior (Nugent et al., 2015). These data suggest that brain 

masculinization is actively repressed by DNA methylation in females, and that brain 

feminization is an active process and not simply the default state of brain development.

Further supporting the importance of DNA methylation in brain sexual differentiation, 

several groups reported sex differences in expression of DNMT mRNA and protein levels in 

the hypothalamus and other limbic regions (Table 2). Most of these studies focused on 

DNMT1 and DNMT3a. Sex differences in Dnmt3a expression in rats were observed in the 

amygdala as early as P1 (females > male) (Kolodkin and Auger, 2011), but in general, sex 

differences in gene and protein expression of DNMT1 and DNMT3a in rats and mice were 

not apparent until P15 (measured on E18.5, P0 – 8, P10, and P15) (Kolodkin and Auger, 

2011; Wolstenholme et al., 2012; Walker et al., 2014; Nugent et al., 2015). From P15 

through adulthood (see Table 2 for details), sex differences in both Dnmt1 and Dnmt3a 
expression emerged in a region-specific manner in the mouse hypothalamus (Kundakovic et 

al., 2013; Walker et al., 2014).

Regarding Dnmt1, gene expression was greater in the female than the male rat AVPV (Table 

2) when measured at P15 (Walker et al., 2014) and higher in peri-pubertal (P28) females 

than males when measured in whole hypothalamus of mice (Kundakovic et al., 2013). 

However, by adulthood (P90) a reversal of the sex difference was observed in the AVPV 

whereby Dnmt1 expression was greater in the male than female, underscoring the point that 

the age at which gene expression is measured has an important influence on the outcome. As 

mentioned above, sex differences in Dnmt1 expression are also region specific, as no sex 

differences were identified across development (P15 – P90) in the arcuate (ARC) nucleus of 

the hypothalamus of rats (Table 2) (Walker et al., 2014). Interestingly, if female rats were 

exposed to a low dose (50 μg) of estradiol benzoate (EB) during the critical period of brain 

sexual differentiation (E16 and E18), they displayed a male-typical expression pattern of 

Dnmt1 in the AVPV from P15 to P90 (Walker et al., 2014) suggesting that the 

developmental trajectory of Dnmt1 expression in the AVPV is organized by gonadal 

hormones during the critical period. Further research is necessary to determine if this altered 

developmental profile yields sex-specific alterations to DNA methylation in the developing 

AVPV.

Unlike Dnmt1, Dnmt3a expression is sexually dimorphic in the ARC but not the POA or 

medial basal hypothalamus (MBH) of rats on P1 and P10 (Kolodkin and Auger, 2011), the 

AVPV of rats (P15 through P90) (Walker et al., 2014), or whole hypothalamus in mice on 

P28 (Kundakovic et al., 2013). For example, our lab reported that sex differences in the rat 

ARC were age-specific with greater expression in females than males at P15, and a reversal 

of that sex difference (M > F) in adulthood (P90) (Walker et al., 2014). Additionally, a low 

dose of EB (50 μg) on E16 and E18 resulted in a reversal of the sex difference on in the male 

and female ARC on P15. However, this effect was not persistent in males, as only the 

females exposed to EB displayed a male-typical expression profile on P90 (Walker et al., 

2014). Interestingly, while the AVPV is sexually dimorphic, the ARC is thought to be 

structurally similar between males and females (Table 1), suggesting that DNA methylation 
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may play a region-specific role in brain sexual differentiation, by driving sex differences in 

the case of the AVPV and repressing them in the case of the ARC.

Unlike Dnmt1, Dnmt3a is sexually dimorphic in extrahypothalamic brain regions. As 

mentioned above, in the juvenile amygdala, a limbic region that regulates social behaviors 

including aggression (Pinel et al., 1977) and anxiety (Hitchcock and Davis, 1986; Shibata et 

al., 1986) (Table 2), DNMT3a mRNA and protein expression was greater in female than 

male rats on P1 but not P10. A masculinizing dose of EB (100 μg) or dihydrotestosterone 

(250 μg) on P1 reduced Dnmt3a mRNA expression on P2 in female rats when compared to 

the vehicle treated controls (Kolodkin and Auger, 2011), suggesting that the female 

amygdala is sensitive to disruption by gonadal hormones during the critical period of sexual 

differentiation of the brain. Additionally, in the peripubertal (P28) prefrontal cortex (PFC) of 

mice, a region of the brain involved in inhibition of several limbic regions (Grace, 2000) that 

undergoes vast developmental changes during puberty (Koss et al., 2012; Koss et al., 2014; 

Drzewiecki et al., 2016), Dnmt3a expression was greater in the female than the male PFC 

(Kundakovic et al., 2013). Finally, in the mouse cortex, Dnmt3a expression increases from 

P1 – P10, peaks on P10 and decreases to early postnatal levels by P25 in both males and 

females and Dnmt1 expression increases from P1 – P25 (direct sex differences not analyzed) 

(Westberry et al., 2010). Taken together these data suggest that DNA methylation may play a 

role in sexual differentiation of extra-hypothalamic regions, presumably through the actions 

of DNMT3a.

2.3. EDCs and DNA methylation machinery

2.3.1. 3a Bisphenol A (BPA)—BPA is an EDC that is widely used in the production of 

polycarbonate plastics, epoxy resins used to line metal cans, and numerous plastic consumer 

products including toys, medical equipment and electronics [Fig. 1; (Suzuki et al., 2000; 

Kang et al., 2003; Vandenberg et al., 2007)]. Although primarily studied for actions on 

estrogen receptor-mediated pathways (Cao et al., 2013; Naule et al., 2014), BPA also 

perturbs thyroid hormone, androgen receptor, and aromatase systems (Pelayo et al., 2012; 

Picot et al., 2014; Kinch et al., 2015). Human exposure to BPA occurs through everyday 

exposure to food sources and plastics containing BPA, and through handling of thermal 

receipts, among other routes. Serum concentrations in the human population are estimated to 

be between ~0.2–20 ng/ml (Vandenberg et al., 2007). Currently, the no-observed-adverse-

effect-level (NOAEL) that has been extrapolated for BPA is considered to be 50 mg/kg/day; 

however, over 150 peer-reviewed studies have reported detrimental effects of BPA exposure 

far below the estimated NOAEL (Vandenberg et al., 2007). Gestational and/or early life 

exposure to BPA in animal models causes long-term alterations in gene expression, protein 

expression, behavior, brain morphology, cellular function, reproductive physiology, genital 

abnormalities, reproductive cancers and infertility [Reviewed in (Kundakovic and 

Champagne, 2011; Seachrist et al., 2016)]. Although it is not possible to infer such direct 

linkages between early life BPA exposures and disease in humans, epidemiological evidence 

shows that humans with higher BPA concentrations, compared to those with low levels, have 

increased incidence of prostate cancer, cardiovascular disease, reproductive impairments, 

and other endocrine and chronic diseases [Reviewed in (Gore et al., 2015)]. However, few 

studies have investigated the epigenetic mechanisms in the brain that may be affected by 
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BPA, nor determined consequences for reproductive and behavioral outcomes that may 

relate to actions on neuroendocrine or neurodevelopmental systems.

BPA was first shown to directly alter DNA methylation in the variable yellow agouti (Avy) 

mouse containing a retrotransposon that is methylated to different degrees, and in which 

DNA methylation status is directly related to coat color and obesity, phenotypic features that 

are driven by the agouti gene. In this mouse, maternal exposure to BPA (50 mg/kg to the 

dam beginning 2 weeks prior to mating through the end of lactation) decreased methylation 

and resulted in altered coat color, an effect that was prevented by supplementing with a 

methyl donor (folic acid) during BPA exposure throughout gestation and lactation (Dolinoy 

et al., 2007). There is also evidence that BPA affects the epigenome through DNA 

methylation in reproductive tissues and may underlie the development of reproductive 

cancers, especially prostate (Prins, 2008; Prins et al., 2014; Calderon-Gierszal and Prins, 

2015; Wong et al., 2015) and breast cancer [Reviewed in (Singh and Li, 2012; Seachrist et 

al., 2016)]. To our knowledge, only one study has explicitly investigated genome-wide 

changes in DNA methylation in the mouse forebrain associated with gestational BPA 

exposure (20 μg/kg maternal body weight) (Yaoi et al., 2008). Using restricted landmark 

genomic scanning, Yaoi et al. determined that BPA altered both methylation and 

demethylation to roughly equivalent degrees in the mouse forebrain on embryonic day 12.5 

and 14.5.

Several studies have measured BPA induced expression of DNA methylation machinery in 

the brain as a proxy for DNA methylation changes (Table 2). BPA exposure (5 mg/kg in the 

maternal diet) during gestation had no effect on Dnmt expression in whole mouse brain at 

embryonic day 18.5 (Wolstenholme et al., 2012). However, by P28, dose and sex-specific 

effects emerged in the whole hypothalamus and PFC of male and female mice (Kundakovic 

et al., 2013). In the female hypothalamus, Dnmt1 but not Dnmt3a displayed a U-shaped 

dose-response curve, whereas in males both Dnmt1 and Dnmt3a had this effect. In the PFC 

of these animals, both males and females displayed a dose-dependent decrease in Dnmt1 
expression. However, gestational BPA exposure in mice resulted in opposing expression 

patterns of Dnmt3a between the sexes, with males having an inverted U-shaped dose-

response curve and females displaying a U-shaped dose response curve (Kundakovic et al., 

2013). Such non-monotonic dose response curves (i.e. U-shaped and inverted-U shaped dose 

response curves) are common in response to both natural hormones as well as EDCs 

(Vandenberg et al., 2012). Consistent with this, inverted U-shaped dose-response curves 

were observed for both Dnmt1 and Dnmt3a (but not Dnmt3b) in an embryonic hypothalamic 

cell line (mHypoE-N44) treated with BPA for 3 h (Warita et al., 2013). Finally, BPA 

exposure (2 μg/kg/day) of rats from E0 through P21 resulted in an increase in Dnmt1 
expression in the basolateral amygdala, an effect that was associated with differences in 

anxiety-related behaviors and GABA function in rats (Zhou et al., 2013). These data suggest 

that BPA alters DNMT expression in a sex- and brain region-specific manner however, the 

studies discussed above only show that BPA can influence Dnmt expression in the brain. To 

our knowledge, no study has conclusively shown that BPA altered Dnmt expression after 

BPA exposure influences sexual differentiation of the brain in adulthood. This is a major gap 

in the literature and is necessary for providing amechanism by which BPA may influence 

sexually dimorphic behaviors and physiology in adulthood. While more research is 
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necessary, these data do lend support to the hypothesis that gestational exposure to BPA 

might alter the epigenome in brain by targeting the enzymes that catalyze DNA methylation 

and suggest that DNA methylation may play a role in maintenance of sexually dimorphic 

gene expression in the brain.

2.3.2. 3b Polychlorinated biphenyls (PCBs)—PCBs (Fig. 1) are industrial 

contaminants that were used in a variety of applications including, but not limited to, 

electrical transformers, lubricants, and carbonless paper from the 1930s through the 1970s. 

Even though their synthesis and use has largely been banned for decades, they persist in the 

environment because they are stable lipophilic compounds that can bioaccumulate up the 

food chain. Depending on their structure, PCBs can interact with various receptors and 

enzyme systems in the body including those involved in thyroid and reproductive function 

and neurotransmission [Reviewed in (Zoeller et al., 2002)].

To date, there have not been any studies investigating the effects of PCBs on global 

methylation patterns in brain. However, in the human literature, serum concentrations of a 

mixture of persistent organic pollutants, including PCBs, was associated with global 

hypomethylation in the blood of people exposed to high [Greenland Inuit; (Rusiecki et al., 

2008)] and low [Koreans; (Kim et al., 2010)] levels of PCBs. A similar effect was found in 

sperm (Consales et al., 2016). Interestingly, in elderly humans an opposite effect was 

observed whereby high levels of serum PCBs were associated with global hypermethylation 

(Lind et al., 2013). These discrepancies may be due to the age of the subjects, as global 

DNA methylation has been shown to decrease with aging in numerous mammalian species 

across a number of tissues, including brain, [Reviewed in (Lardenoije et al., 2015)].

In the rat brain, PCBs alter sexual differentiation of the AVPV and mPOA (Dickerson et al., 

2011a; Dickerson et al., 2011b), reproductive senescence [aging; (Walker et al., 2013)], 

behavior [(Steinberg et al., 2007; Reilly et al., 2015; Bell et al., 2016b); reviewed in (Walker 

and Gore, 2007)] and cognition [(Widholm et al., 2001); Reviewed in (Schantz and 

Widholm, 2001; Boucher et al., 2009; Dzwilewski and Schantz, 2015)], outcomes that are 

influenced by changes in DNA methylation. Additionally, there is some evidence that 

perinatal exposure to PCBs altered expression of the methylation enzymes, DNMT1 and 

DNMT3a. In general, perinatal PCB exposure decreased sexually dimorphic mRNA 

expression of Dnmt1 in the female hypothalamus prior to puberty (Table 2). Specifically, 

exposure of female rats to a high dose (~1000X highest human exposure) of a reconstituted 

mixture of aryl hydrocarbon agonists (including PCBs) from P0 to P21, resulted in mRNA 

levels of Dnmt1 in the whole hypothalamus that were reduced by 38% compared to controls 

on P21 (Desaulniers et al., 2005). Similarly, a low dose of Aroclor 1221 (A1221), a mixture 

of approximately 45 lightly chlorinated PCB congeners, decreased expression of Dnmt1 in 

the female rat AVPV on P15, comparable to levels in males in which expression of this gene 

is normally lower than in females (Walker et al., 2014). Interestingly, by comparing the 

developmental profiles between males and females from P15 through P90 in that study, it 

becomes apparent that A1221 exposure on E16 and 18 (1 mg/kg) induced a male-typical 

expression pattern throughout development of the AVPV of females. In the rat ARC, Dnmt1 
expression was not sexually dimorphic or altered by perinatal exposure to A1221 (Walker et 

al., 2014).
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We also identified both sex and region-specific effects of perinatal A1221 exposure on 

Dnmt3a expression (Walker et al., 2014). While no effects were observed in the AVPV, in 

the ARC, male and female rats exposed to A1221 on E16 and 18 displayed a reversal of 

baseline sex difference (F > M) in expression on P15. Additionally, a persistent effect on 

expression was observed in females, who displayed male-typical expression on P90. This 

effect was not observed in adult males (P90) exposed to A1221. In both the AVPV and the 

ARC, A1221 had similar effects as prenatal exposure to EB, suggesting that the results may 

be attributable to the estrogenic activity of these specific congeners of lightly chlorinated 

PCBs.

Taken together, these data suggest that DNMT expression in the brain is altered by early life 

exposures to PCBs. However, whether the changes in genes for the DNMTs occur in parallel 

with protein expression or activity of the enzymes, is unknown. Additionally, other 

epigenetic mechanisms may be influenced by PCBs and other EDCs, so data on DNMTs 

should also be considered in the context of these other processes that have not yet been 

investigated.

2.4. Methyl-CpG-binding protein 2 (MeCP2) and brain sexual differentiation

Methyl binding proteins play a crucial role in the “epigenetic conversation” between DNA 

methylation, histone modifications, and transcriptional repression. Methyl binding proteins 

are recruited to methylated CpGs, which in turn recruit histone deacetylases (HDACs) that 

remove acetyl groups from histone tails (Fig. 3). The deacetylation of histones leads to 

transcriptional repression by increasing the interaction of DNA with histones, as will be 

discussed in more detail below [Reviewed in (Jaenisch and Bird, 2003)]. While there are a 

number of methyl binding proteins, the only one investigated as a potential regulator of 

sexual differentiation of the brain is methyl-CpG-binding protein 2 [MeCP2; (Kurian et al., 

2007; Kurian et al., 2008; Forbes-Lorman et al., 2012)]. MeCP2 is an X-linked gene 

commonly associated with the neurodevelopmental disorder, Rett’s syndrome (Amir et al., 

1999; Samaco et al., 2005; Chahrour and Zoghbi, 2007). In rats, males expressed less 

MeCP2 mRNA and protein than females in the amygdala and ventral medial hypothalamus 

(VMH; Table 1) on P1 but not P10; this effect was not seen in the POA (Kurian et al., 2007). 

Transient knock-down of MeCP2 using siRNAs infused into the amygdala of rats on P0 to 

P2 reduced sex differences in play behavior (decreased in male to female levels) assessed on 

P25 to P29 (Kurian et al., 2008) and eliminated sex differences in gene expression of 

vasopressin (Avp), galanin (Gal), and androgen receptor (Ar) by decreasing expression in 

males to female levels on P14. Transient knock-down of MeCP2 on P0 to P2 in rats resulted 

in prolonged alteration in protein levels in the adult limbic circuitry. Specifically, sex 

differences in AVP-immunoreactive cells (males > females) in the central amygdala, BNST, 

and projection fibers in the lateral septum were abolished and male levels were reduced to 

female levels (Forbes-Lorman et al., 2012), suggesting that MeCP2 plays a role in sexual 

differentiation of the limbic circuitry.

2.5. BPA and MeCP2

A recent study in embryonic hypothalamic cells (mHypoE-N44) reported a dose-dependent 

increase in Mecp2 mRNA expression 3 h after BPA exposure (used at 0.02, 0.2, 2, 20, or 200 
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μmol), with the highest two doses having significant effects (Warita et al., 2013). While 

more research is necessary, these data provide the first intriguing evidence that BPA affects 

the “epigenetic conversation” between DNA methylation and histone modification and/or 

chromatin silencing by altering Mecp2 expression.

2.6. Gene specific DNA methylation of sex steroid hormone receptors and brain sexual 
differentiation

Sex steroid hormone receptors are transcription factors that are members of the nuclear 

hormone receptor superfamily. Among their members are the gonadal steroid hormone 

receptors, estrogen receptor alpha and beta (Esr1, Esr2 genes), progesterone receptor (Pgr) 
and androgen receptor (Ar). Nuclear sex steroid hormone receptors are activated by ligand 

binding in the cytoplasm and/or nucleus, followed by receptor-ligand dimerization, and 

translocation into the nucleus. There, they bind specific DNA sequences, referred to as 

response elements, in promoter regions of steroid-sensitive genes. Depending on the 

presence of other cell-specific cofactors and transcription factors on the target gene 

promoter, gonadal steroid hormones can activate or repress transcription. Interestingly, the 

binding of sex steroid hormone receptors to DNA can produce a “molecular memory,” 

presumably through altered DNA methylation at the promoter, which results in longterm 

alterations in expression of hormone sensitive genes and regulation of the genes by nuclear 

hormone receptors [(Thomassin et al., 2001); Reviewed in (Holterhus, 2011)].

Sex steroid hormone receptors are expressed in the brain beginning in embryonic 

development; this is necessary to coordinate the timing of sexual differentiation of the brain 

with hormonal changes during critical periods of organization, and to enable the subsequent 

activation of these organized pathways by pubertal hormones to trigger sex-typical adult 

reproductive physiology and behavior. ESR1, PGR, and AR are well-studied for their 

influences on the sexual differentiation of the brain; of these, the estrogen receptor α has 

been extensively studied as a possible target of DNA methylation during the process of brain 

sexual differentiation (Tables 3–5) [Reviewed in (Matsuda, 2014)]. There is a CpG-rich 

region of Exon 1b of the Esr1 gene; and methylation of this region has been shown to be 

negatively correlated with altered Esr1 expression in several brain regions in females 

(Champagne et al., 2003; Champagne et al., 2006; Prewitt and Wilson, 2007; Kurian et al., 

2010; Schwarz et al., 2010; Westberry et al., 2010; Pena and Champagne, 2015) and males 

(Prewitt and Wilson, 2007; Kurian et al., 2010; Schwarz et al., 2010; Westberry et al., 2010). 

Furthermore, both DNA methylation and Mecp2 were associated with the ESR1 promoter 

on P10 and P18 in the cortex of male and female mice (Westberry et al., 2010), a time when 

Esr1 expression was decreased (Prewitt and Wilson, 2007) suggesting that epigenetic 

mechanisms regulate Esr1 expression throughout development. Few studies have made 

direct comparisons between the sexes of DNA methylation at the ESR1 promoter (Kurian et 

al., 2010; Schwarz et al., 2010). At P1, two of seven CpGs in Exon1b showed sex-specific 

methylation in the POA and MBH [females > males (Champagne et al., 2003; Champagne et 

al., 2006; Schwarz et al., 2010; Pena and Champagne, 2015)]. In the POA but not the MBH 

of rats, this effect was reversed to male-typical levels when females were exposed to a 

masculinizing dose (100 μg) of estradiol at P0, suggesting that methylation of Esr1 
contributes to sexual differentiation of the POA (Schwarz et al., 2010). Furthermore, and 
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contrary to the dogma that DNA methylation is static, methylation of this region in Esr1 was 

dynamic across development; in fact, the sex difference in methylation seen at birth (female 

> male) (Schwarz et al., 2010) was reversed at P8 (male > female) (Kurian et al., 2010), 

abolished at P20, and emerged again at P60 (female > male) in rats (Schwarz et al., 2010).

On the other hand, Esr2 and Pgr, but not Esr1, seem to play a role in sexual differentiation of 

the MBH (Tables 3–5). Additionally, as observed for global methylation patterns described 

previously (Ghahramani et al., 2014), these methylation changes did not become apparent 

until later in life. In the case of Esr2, the sex differences in methylation (male > female) 

were observed at P20 and P60 but not P1 in rats, and were increased to male-typical levels in 

masculinized females. Regarding Pgr, sex differences in methylation were only observed at 

P20 (male > female) and were increased to male-typical levels in masculinized female rats at 

P20, when sex differences can normally be observed (Schwarz et al., 2010). These data 

suggest that DNA methylation of the regulatory regions of sex steroid hormone receptors 

may influence the expression of these receptors in a region-specific manner, and that many 

of these effects may be influenced by the perinatal surge in gonadal hormones. The strongest 

evidence for this hypothesis is supported by the extensive data investigating ESR1 regulation 

where DNA methylation is consistently negatively correlated Esr1 expression in numerous 

brain regions across development [Reviewed in (Matsuda et al., 2012)]. However, evidence 

for other sex steroid hormone receptors is lacking and to our knowledge, no study has 

conclusively shown that altering DNA methylation at sex steroid hormone receptors, 

potentially through genome editing technics (Crispr/Cas9), alters sexual differentiation of 

the brain and influences long-term changes in sexually dimorphic behaviors and physiology. 

However, these findings do lend validity to the hypothesis that DNA methylation is an 

important epigenetic mechanism underlying sexual differentiation of the brain.

2.7. EDCs and gene specific methylation of sex steroid hormone receptors

A number of studies have investigated how developmental exposure to EDCs alters the 

expression of steroid hormone receptors in hypothalamic regions. While few have attempted 

to elucidate the epigenetic mechanisms underlying the observed expression changes, we will 

discuss the literature on effects of EDCs on the expression of sex steroid hormone receptors 

and, when available, provide evidence for the involvement of DNA methylation.

2.7.1. 7a BPA—The effects of BPA on sex steroid hormone receptor expression vary 

depending upon brain region analyzed and developmental time point investigated (Tables 3–

5), as well as the dose, route, and timing of exposure. Despite these experimental 

differences, some patterns are beginning to emerge that may help inform the molecular 

mechanisms underlying the effects of BPA on altered hypothalamic-pituitary-gonadal 

physiology and reproductive behavior. In whole hypothalamus of mice, BPA induced a 

complex regulatory pattern of both mRNA and protein expression of the nuclear estrogen 

receptors. In peripubertal mice (P28), gestational exposure to BPA resulted in an inverted U-

shaped dose-response curve in males and a U-shaped dose-response curve (2, 20 and 200 

μg/kg/d) in female for both Esr1 and Esr2 (Kundakovic et al., 2013). In females, exposure to 

20 μg/kg/day of BPA decreased expression of Esr1, and decreased DNA methylation of in 

the 5′ untranslated region referred to as Exon A of the Esr1 gene (Kundakovic et al., 2013). 
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The positive correlation of gene expression and DNA methylation in this region is surprising 

as an inverse relationship between methylation in this region expression of Esr1 is observed 

in other models [Reviewed in (Matsuda, 2014)]. These differences may be attributable to 

transcription factor binding, other epigenetic mechanisms, or timing of the insult/stimulus 

(Kundakovic et al., 2013). No effects were observed in males in that study, showing the sex-

specificity of epigenetic mechanisms of long-term regulation of sex steroid hormone 

receptor expression in brain. Furthermore, results are consistent with the possibility that 

methylation status of the Esr1 gene may regulate sex-specific alterations in Esr1 mRNA 

expression in the peripubertal hypothalamus (Kundakovic et al., 2013). Finally, the inverted 

U- and U-shaped dose response curves for BPA effects on Esr1 and Esr2 expression in the 

hypothalamus are consistent with non-monotonic dose-response effects of environmental 

EDCs.

In further support of a role for BPA in the regulation of estrogen receptors, in a different 

study in rats, a high dose of BPA (150 mg/kg/day), increased ERβ but not ERα protein 

levels in P12 hypothalamus, but no effects were observed at P70 (Yu et al., 2010). On the 

other hand, a low dose of BPA (2 μg/kg/day) increased Esr1 expression in whole 

hypothalamus of male and female rats, and decreased Esr2, an effect that was seen only in 

males (Chen et al., 2014). Taken together, these data suggest that the hypothalamus is 

sensitive to perturbation of perinatal BPA exposure in a dose- and sex-dependent manner.

These prior studies were conducted using whole hypothalamic dissections. However, the 

hypothalamus is composed of heterogeneous nuclei that have disparate functions (Table 1). 

Therefore, other reports have been published on sub-regions of the hypothalamus together 

with the preoptic area (POA) to elucidate how changes in gene expression in specific regions 

might contribute to the long-term alterations in behavior (Kundakovic and Champagne, 

2011). In the POA, effects of EDCs on Esr1 expression were developmental age-dependent 

(Tables 3–5). More specifically, in juvenile female rats, a low dose of BPA (0.05 mg/kg) 

given on P1–P7 increased Esr1 expression on both P8 and P21. However, a high dose (20 

mg/kg) from P1 to P7 increased Esr1 expression on P8, but decreased expression on P21 

(Monje et al., 2007). BPA (25 or 250 μg/kg/day) administered during gestation had no effect 

on Esr1 expression in the adult male rat POA, but increased male Esr2 expression when 

measured on either P30 and P120 (Ramos et al., 2003). In the medial POA/medial preoptic 

nucleus (mPOA/MPN; Table 1), gestational exposure to BPA (5 mg/kg/day) increased Esr1 
and decreased Esr2 mRNA expression in sheep (Mahoney and Padmanabhan, 2010), but had 

no effect on Esr1 expression in rats or mice (measured on P1, P21, P60 and P90) (Cao et al., 

2013; Naule et al., 2014; Rebuli et al., 2014). In the AVPV, the effects of BPA on Esr1 and 

Esr2 expression were age-specific, and affected females to a greater extent than males 

(Tables 3–5). Gestational exposure of rats to low doses of BPA (2.5 or 25 μg/kg/day) but not 

to higher dosages decreased Esr1 expression on P21 and decreased expression of Esr2 at P90 

(Rebuli et al., 2014). Additionally, perinatal BPA altered sensitivity to estradiol in the AVPV, 

as indicated by an increase in ERα and dose-dependent decrease in PGR protein levels after 

an E2 induced LH surge in ovariectomized female rats (Monje et al., 2010). Thus, the effects 

of BPA on the developing anterior hypothalamus depend upon age at analysis and are sex-

specific.
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The posterior hypothalamus, on the other hand, is less sensitive to perturbations by BPA. 

The MBH contains a number of sub-nuclei, including the ARC and VMH (Table 1). 

Neonatal exposure to BPA (100 μg/day from P1 to 5) increased Esr1 expression in the 

female but not the male rat MBH on P30 (Khurana et al., 2000). Consistent with these 

findings, prenatal exposure to a low (25 μg/kg) or high (250 μg/kg) dose of BPA had no 

effect on Esr1 or Esr2 expression in male rats on P30 or P120 as well (Ramos et al., 2003), 

suggesting that the female MBH may be more sensitive to developmental perturbations than 

males. Both the ARC and VMH, two subregions of the MBH (Table 1), displayed a similar 

response to BPA with regard to Esr1 and Esr2 expression (Tables 3–5). On P1 (~24 h after 

the last exposure), Esr1 and Esr2 were increased in the ARC, and Esr2 was increased in the 

VMH, of both male and female rats exposed to BPA (2.5 μg/kg/day and 25 μg/kg/day E6–

E21) when compared to naïve but not vehicle treated animals. It should be noted that 

expression of both Esr1 and Esr2 were increased by the route of exposure (gavage), so these 

results should be interpreted with caution (Cao et al., 2013). In any case, these effects did 

not persist in female rats, as no effects of gestational exposure were observed on P21 or P90 

independent of dose (2.5–2700 μg/kg/day E6–E21) [males not measured; (Rebuli et al., 

2014)]. Finally, there is evidence that neonatal exposure of rats to BPA results in altered 

sensitivity to estradiol in the ARC. While estradiol increased ERα protein levels in the 

AVPV, it decreased ERα in the ARC, suggesting hypersensitivity of the hypothalamus to 

changes in serum estradiol (Monje et al., 2010).

While only one study has investigated the epigenetic mechanisms underlying BPA induced 

alterations in sex steroid hormone receptor expression (Kundakovic et al., 2013), the 

persistent and sex- and region-specific alterations in mRNA expression provide compelling 

evidence that epigenetic mechanisms are regulating these long-term effects. Therefore, it is 

plausible to hypothesize that DNA methylation is a candidate for EDC actions given this 

molecular mechanism’s role in sexual differentiation of the brain.

2.7.2. 7b Methoxychlor (MXC)—Methoxychlor (MXC; Fig. 1) is an organochlorine 

widely used as pesticide, developed as a replacement for DDT and a derivative of the 

original compound. Initially, it was thought to be less toxic and less persistent but has 

recently been banned because of its EDC activity and toxicity. Gestational exposure to MXC 

has been consistently linked to the advancement of puberty in females and delayed puberty 

in males in rodents (Gray et al., 1989a, 1989b; Masutomi et al., 2003; Armenti et al., 2008) 

and humans (Ozen et al., 2012). It is also associated with impaired reproductive function 

(Masutomi et al., 2003; Savabieasfahani et al., 2006; Armenti et al., 2008), infertility, and 

early reproductive senescence (Armenti et al., 2008). With reference to the POA, perinatal 

exposure to high (100 mg/kg/day) but not low (20 μg/kg/day) dosages of MXC advanced 

reproductive senescence in female rats, and increased expression of Esr1 but not Esr2 when 

measured at 17 months of age. The change in Esr1 gene expression was not associated with 

changes in DNA methylation of Esr1 in the Exon 1b promoter region, suggesting that other 

epigenetic mechanisms may underlie the gene expression changes observed (Gore et al., 

2011). By contrast, a similar regimen of treatment with estradiol benzoate at high doses [100 

mg/kg/day] in that same study not only increased Esr1 expression; it also increased DNA 

methylation in the Exon 1b promoter (Gore et al., 2011). Thus, DNA methylation in the 
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aging POA can be modified by early life exposure to estradiol, but this effect is not caused 

by MXC despite the chemical’s effect on Esr1 gene expression.

While gestational exposure to MXC resulted in profound effects on gene expression after 

reproductive senescence, few effects of any dose (24, 240, or 1200 ppm) of MXC were 

observed in the mPOA, a sub-region of the POA, on P10 in male and female rats (Masutomi 

et al., 2003). These data suggest that the physiological and gene expression effects of 

gestational exposure to MXC may not manifest until after the pubertal transition or later. 

However, it should be noted that differences in experimental conditions (dose, treatment 

period, age at analysis) undoubtedly contribute to the different outcomes of the studies.

2.7.3. 7c PCBs—PCBs interact with a variety of steroid hormone receptors, including the 

two estrogen receptors, progesterone receptors, and the androgen receptor in the 

hypothalamus (Tables 3–5).

The androgen receptor (AR) is emerging as an important target of perinatal PCB exposure in 

both sexes and in several brain regions. There are over 200 possible PCB structures, and 

their chemical properties confer different mechanisms of action (Fig. 1). For example, 

lightly chlorinated congeners are more likely to display estrogenic/antiestrogenic effects 

whereas the more persistent and highly chlorinated PCBs are more likely to interact with 

neurotransmitter systems or aryl hydrocarbon receptors [Reviewed in (Tilson and Kodavanti, 

1998)]. Although less well-studied, PCBs can also act as anti-androgens in cell lines or in 

assays of AR transcriptional activation/repression (Bonefeld-Jorgensen et al., 2001; Portigal 

et al., 2002; Schrader and Cooke, 2003), and as discussed below, modulate expression of 

ARs and steroidogenic enzymes in vivo.

Persistent effects of PCBs on Ar expression in the brain are relatively consistent and 

interestingly, occur independently of the composition of the PCB mixture. Like ERs, the AR 

plays a role in sexual differentiation of the brain and behavior [Reviewed in (Zuloaga et al., 

2008)] and its actions as a transcription factor in development is thought to impart a 

“molecular memory” on its targets, presumably through epigenetic mechanisms [Reviewed 

in (Holterhus, 2011)]. Therefore, the finding that the AR is a target of perinatal EDC 

exposure is not unexpected (Tables 3–5). In the rat embryonic hypothalamus on E20, Ar 
expression was decreased in females but not males after exposure on E15 to E19 to A1254 

(25 mg/kg), a mixture of persistent and highly chlorinated PCBs (Colciago et al., 2006). Our 

lab has conducted a number of studies investigating the effects of gestational exposure to 

A1221, which is a more lightly chlorinated mixture (Matthews and Dedrick, 1984), on gene 

expression throughout the hypothalamus. The results showed that Ar expression was 

consistently altered in an age-, sex- and region-specific manner. In the rat POA, Ar was 

decreased in adult female rats but not males after gestational exposure (E16 and E18) to 

A1221 (1 mg/kg) (Dickerson et al., 2011b). In the AVPV, Ar expression was altered in 

females but not males by gestational A1221 (E16 and E18), with females displaying a male-

typical expression pattern across development when assessed at four ages from P15 through 

P90 (Walker et al., 2014). This dosing paradigm did not alter Ar expression in the male rat 

MPN at these same developmental ages (Topper et al., 2015). Interestingly, altering the 

dosing paradigm slightly (A1221 administered on E16, E18 and E20, rather than just on E16 
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and E18) decreased Ar expression in the mPOA of adult males (~P100) but not females, 

suggesting that even slight changes in the window of exposure and/or age at analysis result 

in sex and/or region specific alterations on gene expression in adulthood (Bell et al., 2016a). 

In the latter experiment, adolescent rats were exposed to A1221 on P24, P26, and P28 (1 

mg/kg), resulting in a similarly decreased Ar expression in the mPOA of adult males (Bell et 

al., 2016a). Finally, in the ARC, gestational exposure to A1221 (E16 and E18) increased Ar 
expression in pubertal males (P45), but had no effects on females (Walker et al., 2014). 

Taken together, these data provide compelling evidence that the AR is an important gene 

target of developmental exposures to PCBs, and that even small differences in the timing of 

exposure result in different outcomes on this endpoint.

In an effort to identify potential epigenetic mechanisms underlying the long-term changes in 

Ar expression, DNA methylation was measured in the rat AVPV (Walker et al., 2014) and 

mPOA (Bell et al., 2016a) of the same animals used for gene expression assays. Contrary to 

our hypothesis, few effects of DNA methylation were observed in the female AVPV and 

none were detectable in the male mPOA (Bell et al., 2016a). Thus, other as yet-to-be-

determined epigenetic mechanisms appear to be regulating the long-term expression changes 

in Ar in the AVPV (Walker et al., 2014) and mPOA (Bell et al., 2016a).

By contrast to these consistent effects of PCBs and A1221 on the AR, their effects on 

estrogen receptors are generally more subtle and less consistent. Our lab found that 

gestational exposure to A1221 (1 mg/kg on E16 and E18) had no effect on Esr1 or Esr2 gene 

expression in the POA of neonatal (P1) (Dickerson et al., 2011a) or adult rats (P60) 

(Dickerson et al., 2011b), or in the AVPV and ARC of rats across development (P15 – P90). 

Despite this lack of effect on gene expression, exposures to A1221 or a reconstituted mixture 

of PCBs decreased immunoreactive ERα (Dickerson et al., 2011b) and ERβ (Salama et al., 

2003) cell numbers in adult females (Salama et al., 2003; Dickerson et al., 2011b) but not 

males (Dickerson et al., 2011b). These results suggests the possibility that perinatal exposure 

to PCBs may have lasting effects on posttranscriptional or posttranslational properties of 

estrogen receptors in the AVPV. In the rat mPOA, gestational and adolescent A1221 

exposure decreased Esr1 expression in adult males but not females (Bell et al., 2016a). 

Conversely, polybrominated diphenyl ethers (PBDEs, 1 or 10 mg/kg given from E10–18) 

increased Esr1 in the mPOA of adult male and female rats, and A1254 (10 mg/kg, same 

days), a more highly chlorinated industrial mixture of PCBs than A1221, increased Esr2 
expression in adulthood in both sexes (Faass et al., 2013). Differences are more than likely 

due to the mechanisms of action of the different compounds, dose and duration of exposure 

as well as other experimental differences. Finally, in the VMH of these same rats, PBDEs 

increased Esr1 expression in females and males (1 mg/kg dose only) and decreased Esr2 
expression (Faass et al., 2013). Taken together, these data suggest that perinatal exposure to 

PCBs can alter estrogen receptor gene expression and protein levels in the hypothalamus but 

effects are region-specific.

While there is evidence that the progesterone receptor (PGR) plays a role in sexual 

differentiation of the brain (Wagner et al., 1998; Lonstein et al., 2001; Quadros et al., 

2002a), it is understudied in the field of endocrine disruption (Gore, 2015). Our lab reported 

that gestational exposure to A1221 did not affect Pgr expression in the POA (P1 or P60) 
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(Dickerson et al., 2011a; Dickerson et al., 2011b), or the AVPV or ARC of rats (P15 through 

P90) (Walker et al., 2014). In the rat VMH, adult sex differences (F > M) in Pgr expression 

were abolished by both high and low doses of A1254 and PBDEs in gestation, with Pgr 
expression decreasing in females and increasing in males (lower dosage only) (Faass et al., 

2013). These effects may be due to differences in the properties and mechanisms of action of 

A1221 and A1254.

Taken together, these data suggest that sex steroid hormone receptors are sensitive targets for 

early life programming of the brain. In some cases DNA methylation is a candidate for the 

regulation of such programming, but it is probable that other mechanisms are involved, 

especially because most of the gene expression changes were not associated with alterations 

in methylation. It is important to note that any interpretation of changes (or the lack of 

changes) in DNA methylation in the hypothalamus after exposure to EDCs must be done 

cautiously for a number of reasons. First, the brain is highly heterogeneous. Even 

neighboring neurons can have entirely different functions and phenotype, and express 

different receptors and other proteins. Second, technical advances are needed to determine 

cell specific DNA methylation changes on a genome-wide scale to get a comprehensive view 

of how EDCs affect this mechanism. Third, most methylation studies assay either global 

methylation, or methylation on just a few sites of a promoter, neither of which may 

representing the relationship between complex permutations and combinations of many sites 

that contribute to the overall contribution of methylation to gene regulation. Of relevance to 

this point, the studies presented herein mainly focused on the promoter regions of genes, or 

in a limited number of intragenic sites such as Exon 1a of Esr1. In the future, it will be 

necessary to conduct genome-wide studies to account for changes in methylation across 

gene bodies and other genomic regions, and to account for both 5-mC and 5-hMC as each of 

these modifications are associated with opposing functional outcomes, the balance of which 

causes gene expression changes in adulthood.

3. Histone modifications, sexual differentiation of the brain, and EDCs

3.1. Molecular mechanisms of histone modifications

DNA is condensed in the nucleus in a highly organized and compact manner as chromatin 

(Fig. 3). The nucleosome, the functional unit of chromatin, is composed of ~147 base pairs 

wrapped around core histone octamers consisting of 2 copies of each of the following 

proteins: H2A, H2B, H3 and H4. Post-translational modifications to each histone protein, 

including acetylation, methylation, phosphorylation, SUMOylation, ubiquitination, 

citullination, ADP-ribosylation, and others, occur when different functional groups are 

covalently added to amino acid residues of their N-terminal tails. These modifications alter 

chromatin structure and change the interaction of the DNA with associated histones, thus 

increasing or decreasing the likelihood of transcription at a given locus. Histone 

modifications are diverse and we are only beginning to understand how various 

combinations of histone post-translational modifications interact to influence or indicate 

different transcriptional states [Reviewed in (Maze et al., 2014)]. Moreover, histone 

modifications are exceptionally dynamic and reversible. They are added and removed by a 

large family of enzymes referred to as “writers” and “erasers,” respectively [Reviewed in 
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(Jaenisch and Bird, 2003)]. Efforts are underway to understand how histone modifications 

can influence such long-term processes as sexual differentiation of the brain and whether 

they are disrupted by EDCs.

3.2. Histone modifications and sexual differentiation of the brain

While there are a number of known chromatin modifications, the two that are the most 

studied and best-understood are histone acetylation and methylation (Fig. 3). Histone 

acetyltransferases (HATs) catalyze the addition of acetyl groups to lysine residues on the 

histone tails and increase the likelihood of transcription through the addition of a negative 

charge to histones, thus causing a repulsion between the DNA and histone proteins resulting 

in an open chromatin state and allowing for transcription factors and co-factors to interact 

with the DNA. This process can be reversed through the action of histone deacetylases 

(HDACs), which remove the acetyl mark and change the chromatin conformation. 

Deacetylation is associated with a closed chromatin state and reduced transcription. Histone 

methylation is much more complicated and can result in active or repressed states depending 

on the number and location of methyl groups added to the chromatin [Reviewed in 

(Jenuwein and Allis, 2001)].

Few studies have investigated the role of histone acetylation in sexual differentiation, likely 

because of its relative transience. One group demonstrated sex differences in both H3K9 and 

H3K14Ac (males > females), two marks associate with transcriptional activation, in the 

cortex and hippocampus on E18 and P0 of mice; however this difference was no longer 

evident by P6 (Tsai et al., 2009). Interestingly, treating females with a masculinizing dose of 

testosterone propionate (2 μg) on E16 through E21 resulted in male-typical H3K9/14Ac 

expression on P0 (Tsai et al., 2009), suggesting that histone modifications may play a role in 

sex-specific epigenetic programming of the cortex and hippocampus, and that at the very 

least histone modifications are hormone sensitive. Surprisingly, no difference in global 

histone acetylation was observed in the POA, an area that is sexually differentiated (Tsai et 

al., 2009). However, when a region- and gene-specific approach was taken, sex differences 

were identified. Investigation of total acetylated H4, a mark associated with active 

transcription, in the mPOA at the promoters of 2 genes necessary for sexual differentiation 

of the brain, Esr1 and aromatase (Cyp19a1), showed that each promoter was differentially 

acetylated in males and female rats. Sex differences in acetylated H4 were observed for 

Exon 1b of Esr1 on E21 (males > females) and Esr1 and Cyp19a1 on P3 (males < females). 

Similar results were reported for total acetylated H3. More specifically, on E21, acetylated 

H3 at the Cyp19a1 promoter was greater in males than in females, but greater in females 

than males on P3, illustrating the dynamic changes in histone acetylation over the span of 5 

days (Matsuda et al., 2011). This result suggests that transcription is more active in the male 

brain during the prenatal testosterone surge (~E17 to E19), and that this falls off postnatally. 

Interestingly, if males are treated with the general HDAC inhibitor, trichostatin A by 

infusion into the mPOA on P1, adult male reproductive behavior was altered as indicated by 

decreased intromission ratio (number of intromissions/sum of intromissions and mounts). 

This suggests that a developmental decrease in acetylation in the mPOA is important for the 

organization of adult reproductive behaviors in males [N.B., females were not studied; 

(Matsuda et al., 2011)]. HDAC activity is necessary for the organization of the BNST. A 
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pharmacological inhibitor of HDAC, valproic acid (VPA), was administered to mice on P1 

and P2, and volume and cell numbers of the BNST were analyzed at ~P21 (Murray et al., 

2009). VPA treatment eliminated the sex difference in BNST volume and cell number and 

blocked androgen-dependent masculinization of the male BNST, suggesting that histone 

acetylation is associated with the androgen-induced masculinization of the brain. VPA had 

no effect in the suprachiasmatic nucleus, a hypothalamic region that is not structurally 

sexually dimorphic (Murray et al., 2009).

Endogenous HDACs comprise a class of enzymes made up of a number of unique 

molecules. Of these, HDAC1 through HDAC11 and sirtuins (Sirts) show tissue-specific 

expression. In order to test the specific role of HDACs 2 and 4 in sexual differentiation of 

the brain, Matsuda and colleagues knocked down their expression in the mPOA of rats using 

antisense oligonucleotides on P0 and P1 (Matsuda et al., 2011). The premise for this work 

was the finding from the same study that HDAC2 and HDAC4 associated with Esr1 Exon 1b 

and Cyp19a1 promoters to a greater degree in males than in females (Matsuda et al., 2011), 

suggestive of the possibility that they play a role in developmental deacetylation of the 

promoters. Results showed that knocking down HDAC2 and HDAC4 resulted in a reduced 

intromission ratio in adult males, suggested that these HDACs were involved in sexual 

differentiation of the mPOA (Matsuda et al., 2011).

While histone acetylation is associated with transcriptional activation, histone methylation is 

associated with activation or repression of gene expression (Fig. 3) depending on which 

residues are methylated and the number of methyl groups added. Therefore, translating the 

role of histone methylation in sexual differentiation of the brain is much more difficult 

(Jenuwein and Allis, 2001). Limited evidence suggests that histone methylation may play a 

role in sexual differentiation of the brain. Sex differences in histone methyltransferases, 

which catalyze the addition of a methyl group onto the histone tail, have been reported in a 

few studies. Levels of MLL1/KMT2a, a histone methyltransferase complex, were higher in 

the PFC of females compared to males (Huang et al., 2007). Additionally, KDM5c/SMCX/

JARID1c, a H3K4 specific demethylase, is X-linked, resulting in its sex-specific expression 

in brain (Xu et al., 2008).

To our knowledge, only two studies have directly linked histone methylation to sexual 

differentiation of the brain, with results supporting sex differences that are observed in a 

region-specific manner. Tsai et al. (Tsai et al., 2009) reported that H3K9me3, a repressive 

mark, was greater in males than females on P0 and P6 but not at E18 in the cortex and 

hippocampus of mice, suggesting a shift from activating to repressive marks in males during 

early development. However, testosterone propionate during gestation had no effect on 

H3K9me3 in females or males (Tsai et al., 2009). Genome-wide changes in H3K4me3, a 

mark associated with transcriptionally active genes, were investigated by ChIP-seq 

(chromatin immunoprecipitation followed by sequencing) in the BNST and POA. Sex 

differences were observed at 248 loci, with enrichment in females greater than males in 176 

and enrichment greater in males at 72 loci. Those loci with significant enrichment in females 

also displayed significant increases in the mRNA expressed from those loci (Shen et al., 

2015). While studies linking histone modifications to sexual differentiation of the brain are 

scarce, we are beginning to identify potential histone marks involved in these processes. 
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Further research is necessary to understand the developmental timeline of histone changes as 

well as the characterization of sex differences and developmental profiles for the numerous 

histone “writers” and “erasers.”

3.3. Histone modifications as targets for EDCs

3.3.1. 3a BPA and phthalates—To our knowledge, no studies have been published on 

the role of chromatin modifications in models of endocrine disruption in the brain. However, 

such studies have been conducted in other reproductive tissues and reproductive cancers 

[Reviewed in (Seachrist et al., 2016)], with results suggesting that exposures to BPA or 

phthalates (Fig. 1), a class of EDCs in plasticizers, personal care products, intravenous 

tubing, and used in other applications, caused changes in chromatin modification.

In primary cortical neuronal cultures from rat, mouse, and humans, BPA exposure delayed 

the perinatal chloride shift caused by a decrease in potassium chloride cotransporter (Kcc2) 

mRNA expression (Yeo et al., 2013). BPA increased MeCP2 binding and decreased H3K9ac 

at the Kcc2 promoter and transcription start site respectively. HDAC inhibition with 

decitabine and trichostatin A, as well as knockdown of HDAC1 and combined knockdown 

of HDAC1 and 2, rescued the mRNA expression effects of BPA. Finally, these effects were 

greater in females than in males, indicative of sex differences in the histone modification 

response to BPA in this cell culture system (Yeo et al., 2013).

In human neuroblastoma lines, DEHP caused dose-dependent cell death via activation of 

caspase 3. These effects were prevented by the class II HDAC inhibitor MC-1588 (HDAC 4–

7 and 9–10). Phthalates increased expression of HDAC4 and reduced HDAC5 but not HDAC 

6, 7 or 10 suggesting that the toxic effects of phthalates occur through increased expression 

of HDAC4 and deacetylation of the cell survival protein S3 (Guida et al., 2014).

While these studies were performed in cell culture, they provide intriguing molecular 

evidence that BPA and phthalates can directly alter the machinery regulating histone 

modifications.

4. Noncoding RNAs as targets for endocrine disruptors

4.1. Introduction to noncoding RNAs

Complete sequencing of the transcriptome in numerous mammalian species has revealed 

evidence for a large and diverse numbers of RNA transcripts that are not translated into 

protein (O’Carroll and Schaefer, 2013). Since the time of this recent discovery, these 

noncoding RNAs have been found to have important roles in cell function, particularly in the 

regulation of gene expression. While the functions of some noncoding RNAs have been 

known for decades, e.g. tRNA and those involved in splicing, the recent identification of 

microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and piwi-interacting RNAs 

(piRNAs), among others, have revealed a role of these noncoding RNAs in regulating gene 

expression through myriad mechanisms. MiRNAs are short sequences of RNA (21–24 bp) 

that repress translation by binding target sequences of specific mRNAs, leading to mRNA 

degradation or inhibition of translation of that mRNA. In animals, a single miRNA can 

inhibit numerous mRNA targets and in some cases, miRNAs can influence histone 
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modification or DNA methylation to repress transcription as well (Hawkins and Morris, 

2010; Tan et al., 2015). Long noncoding RNAs (lncRNAs) are longer RNA sequences (>200 

bps) that regulate gene expression by forming RNA-protein complexes and modulating 

transcription factors or chromatin-regulatory proteins. Additionally, recent evidence suggests 

that lncRNAs can influence histone conformation through direct interactions with the 

chromatin to change the conformation, thus altering the availability of certain DNA 

sequences to transcriptional machinery and inducing an active or repressive transcriptional 

state [Reviewed in (Kim and Shiekhattar, 2016)].

4.2. Noncoding RNAs and sexual differentiation of the brain

Few studies have investigated the role of non-coding RNAs in sexual differentiation of the 

brain and those that have focused on miRNAs. For example, Morgan and Bale (Morgan and 

Bale, 2011) used a qPCR array to not only show that a number of miRNAs are sexually 

dimorphic in the whole brain of mice on P1, but that aromatase inhibition on P1 

demasculinized miRNA expression on P2, suggesting that miRNAs are sensitive to 

alterations in gonadal hormones during the critical period of sexual differentiation and may 

be playing a role in sex-specific brain development. Similar sex differences and hormonal 

responses were observed in halibut (Bizuayehu et al., 2012). Additionally, these effects may 

be region- and age- specific as our lab has identified developmental sex differences (P15–

P90) in miRNAs in the MPN but not VMH of rats, which are sensitive to perinatal estrogen 

exposure (Topper et al., 2015). Finally, there is evidence that miRNAs, specifically let-7 and 

lin-28, are necessary for the initiation of puberty in rats and monkeys and are altered by 

neonatal hormonal manipulation in a sex-specific manner (Sangiao-Alvarellos et al., 2013).

While the sexually dimorphic lncRNA, xist, is one of the most extensively studied lncRNAs 

for its role in X-inactivation (Galupa and Heard, 2015), few studies have investigated the 

role lncRNAs may play a role in sexual differentiation of the brain. However, one study 

identified MHM, a lncRNA in chickens, as playing a role in female-specific gonadogenesis 

(Roeszler et al., 2012). The dearth of research on noncoding RNAs highlights the need for 

more research in the field of epigenetics and sexual differentiation of the brain.

4.3. Noncoding RNAs and PCBs

There are a few studies investigating how EDCs alter miRNAs in peripheral reproductive 

tissues (Zhang and Pan, 2009; Choi et al., 2011; Kovanecz et al., 2014; Lesiak et al., 2014), 

but little on central reproductive neuroendocrine systems. Our lab directly tested the 

hypothesis that miRNA expression in the hypothalamus is altered by prenatal exposures to 

PCBs. Using the model described earlier for effects of A1221 (1 mg/kg), estradiol benzoate 

(EB, 50 μg/kg), or vehicle (all administered on E16 and E18) on hypothalamic gene and 

protein expression, and on reproductive behaviors, developmental expression profiles of 

eight miRNAs (mir-132, mir-219, mir-7, mir-9, mir-145, mir-124a, let-7a, and let-7b) were 

profiled. Measurements were made in the MPN and VMN of male and female exposed 

offspring across postnatal development and puberty, on P15, 30 (peripubertal), 45 (late 

puberty) and P90 (adulthood) (Topper et al., 2015). In the MPN, the most common 

expression pattern of miRNAs was a developmental increase, seen in both sexes for 7 of the 

8 miRNAs. Interestingly, expression of 6 of the 8 miRNAs was increased on P30 specifically 
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in the females, an effect found in both the A1221 and EB groups compared to the vehicle-

exposed females (Topper et al., 2015). In the males, a completely different response pattern 

was seen, with expression of 6 of 8 miRNAs decreased by A1221, but not EB, at P90. These 

results are very interesting because they show sex-dependence in the effects of prenatal 

PCBs on miRNA expression that differ by age (P30 in females, P90 in males), directionality 

(up-regulated miRNA expression in the PCB females, down-regulated in the PCB males), as 

well as similarities/differences to the EB treated groups (A1221 and EB had similar effects 

in females, but different in males). Considering that our experiment only measured 8 

miRNAs, it is important to study effects of EDCs on a broader spectrum of these and other 

noncoding RNAs.

In that same study (Topper et al., 2015) we also measured the same 8 miRNAs in the VMN. 

While all of the measured miRNAs underwent developmental increases from P15 to P90, 

there were relatively few effects of treatment. Thus, there is also region-specificity in EDC 

actions on developing miRNA expression. Furthermore, this study also measured expression 

of several mRNAs predicted by bioinformatics programs to be regulated by the selected 

miRNAs. Interestingly, expression changes in miRNA expression were not associated with 

mRNA expression change in their predicted targets. It is possible that this lack of the 

predicted correlation was due to the relatively small number of genes investigated, both for 

miRNAs and mRNAs. The relationships among these systems are complex and typically 

involve numerous players, most of which were not measured. Furthermore, considering that 

miRNAs inhibit translation of mRNA to protein, it is possible that the protein products 

would be affected. However, no proteins were measured in that study. These data suggest 

novel and potentially exciting evidence that miRNAs may be altered by perinatal exposure to 

PCBs, providing evidence of another epigenetic mechanism underlying altered behavior and 

physiology in the adult organism.

To our knowledge, only one study has investigated how EDCs alter lncRNAs, specifically X-

inactivation in the brain of female mice (Kumamoto and Oshio, 2013). Exposure to a high 

(50 mg/kg), but not low (0.02 mg/kg) dose of BPA on E6 and E15 altered expression of two 

X-inactivation related mRNAs in the cerebrum of mice. Expression of the X-chromosome 

inactivating factor Tsix was increased on P2, ~P21 and ~P60 and Xist expression decreased 

on ~P21 and ~P60 (both doses). These expression changes were associated with a down-

regulation of neurodevelopment genes (Kumamoto and Oshio, 2013). Although more 

research is necessary, these data provide compelling evidence that lncRNAs are altered by 

prenatal exposure to BPA and provide a possible link for how EDCs might alter chromatin 

modifications.

5. General conclusions and future directions

5.1. Epigenetic mechanisms for sexual differentiation of the brain

It is clear that epigenetic mechanisms including DNA methylation, histone modifications 

and non-coding RNAs, all contribute to sexual differentiation of the brain. Currently, DNA 

methylation is the most comprehensively studied in the field because of its relative stability 

in comparison to other epigenetic mechanisms. Our review of the data reveals several 

emergent properties with regard to epigenetic mechanisms underlying sexual differentiation 
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of the brain: (1) activity of the methylation machinery (DNMT enzymatic activity) but not 

gene expression is sexually dimorphic in hypothalamic regions prior to P15. After P15, sex 

differences in gene expression begin to be observed. (2) Exposure to a masculinizing dose of 

estradiol or testosterone can reverse sex differences in activity and gene expression in the 

hypothalamus. (3) Postnatal sex differences in histone acetylation (males > females) are 

seemingly transient and can be reversed by exposure to testosterone in the neonatal 

hippocampus and cortex but not the POA. (4) In the hypothalamus, there are not genome-

wide sex differences in histone modifications but rather, they are gene-specific. (5) Sex 

differences in miRNA expression are observed in the brain in a region-specific manner. 

While these results are promising, much more research is necessary to confirm these initial 

studies, to better understand the role that each of these epigenetic molecular mechanisms 

plays in sexual differentiation of the brain, and to determine how they work in concert to 

maintain long-term alterations in gene and protein expression throughout the life cycle. It is 

imperative to understand the baseline mechanisms of sexual differentiation of the brain so 

we can compare them to the effects of perinatal exposure to EDCs in the brain and develop a 

comprehensive understanding of how sex differences in the epigenome arise, develop, are 

maintained throughout the life cycle, and may be perturbed.

5.2. Epigenetic machinery targeted by EDCs

Compared to knowledge on brain sexual differentiation, evidence that EDCs alter epigenetic 

mechanisms in the brain is more limited. Much of what we know comes from the studies 

focused on chemicals and cancer, and work done in that field can serve as a model for future 

EDC studies. Given the role of the brain in regulating reproductive physiology, behavior, 

metabolism and stress, greater focus on the brain as a sensitive target to the epigenetic 

impacts of EDCs is much-needed. In fact, many of the long-term effects of EDCs and 

epigenetic mechanisms reported for reproductive cancers may be the result of altered 

reproductive physiology earlier in life, and could include contributions from the three levels 

of the HPG axis through feed-forward and feedback mechanisms. Future research must 

integrate how EDCs might alter a combination of epigenetic mechanisms to affect the 

“epigenetic conversation,” resulting in altered behavior, metabolism, physiology and stress 

responses in the organism as a whole.

By considering the data in an age- and sex-specific context we show that exposure to EDCs 

early in life not only alter sexual differentiation of the brain, but in many cases alter the 

developmental trajectory of specific brain regions. For example, expression of Dnmt1 and 3a 
undergo striking sex- and region specific developmental changes that are disrupted by EDCs. 

Additionally, the alterations reviewed herein affect females more often than males, 

suggesting that the female brain may be more sensitive to disruption by perinatal EDC 

exposure and could explain the long-term alterations in reproductive physiology and 

behavior previously reported. This contributes to our understanding of the molecular 

mechanisms underlying sex-specific development and may aid in identifying sex-specific 

windows for intervention after early life exposures to EDCs.
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Fig. 1. 
Chemical structures for steroid hormones: (A) Testosterone and (B) Estradiol. 

Representative endocrine disrupting chemicals (EDCs) structures are shown for (C) 

Bisphenol A, (D) Methoxychlor, (E) lightly chlorinated polychlorinated biphenyls (PCBs), 

(F) highly chlorinated PCBs, and (G) Phthalates.
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Fig. 2. 
Model of DNA methylation machinery. During DNA methylation a methyl group is added to 

the 5C position of the cytosine nucleotide. A family of enzymes called DNA 

methyltransferases (DNMTs) catalyze the reaction. This can take place as de novo 
methylation (adding a new methyl group to an unmethylated cytosine) by DNMT3a/3b, or 

hemi-methylation (adding a methyl group to the unmethylated strand of DNA, often referred 

to as methylation maintenance), catalyzed by DNMT1. Cytosines are thought to be 

unmethylated through the actions of the Tet proteins, which catalyze conversion of 5-mC to 

5-hmC, and ultimately result in the removal of the methyl group from the DNA molecule.
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Fig. 3. 
Epigenetic mechanisms can increase or decrease the likelihood of transcription through an 

“epigenetic conversation.” DNA is condensed in the nucleus as chromatin, which consists of 

the DNA strands wrapped around histones octamers consisting of H2A, H2B, H3 and H4. 

(A) Each histone protein can be modified through the addition of different functional groups 

that influence how tightly the DNA strands interact with the histone proteins. Histone 

modifications are a relatively transient event as “writers” and “erasers,” acting by adding or 

removing functional groups in response to external stimuli. (B) Histone deacetylases 

(HDACs) remove the acetyl mark from a histone tail. In a closed state, MeCP2 and other 

methyl-binding proteins bind methylated cytosines on the DNA strand, which in turn, recruit 

HDACs to the histones to remove acetyl groups from the histone tails. This, in turn, 

increases the interaction of the DNA with the histones. DNMTs also play a role in partnering 

with MeCP2 with a net effect of decreasing the likelihood of transcription factor (TF) 

binding and transcription. (C) Histone acetyltransferases (HATs) add acetyl marks to a 

histone tail, resulting in an open chromatin state. By this mechanism, HATs and histone 

methyltransferases (not shown) add functional groups to the histone tails to increase access 

of transcription factors and RNA polymerase II to the DNA, thereby blocking DNMTs from 

methylating the DNA, and facilitating gene transcription. (D) The closed or open status of 

chromatin affects transcription of mRNAs as well as non-coding RNAs such as microRNAs 

and long non-coding (lnc) RNAs, that in turn regulate expression, stability, and organization 

of gene expression and chromatin structure.
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